RESUMEN
Vascular remodeling is the process of structural alteration and cell rearrangement of blood vessels in response to injury and is the cause of many of the world's most afflicted cardiovascular conditions, including pulmonary arterial hypertension (PAH). Many studies have focused on the effects of vascular endothelial cells and smooth muscle cells (SMCs) during vascular remodeling, but pericytes, an indispensable cell population residing largely in capillaries, are ignored in this maladaptive process. Here, we report that hypoxia-inducible factor 2α (HIF2α) expression is increased in the lung tissues of PAH patients, and HIF2α overexpressed pericytes result in greater contractility and an impaired endothelial-pericyte interaction. Using single-cell RNAseq and hypoxia-induced pulmonary hypertension (PH) models, we show that HIF2α is a major molecular regulator for the transformation of pericytes into SMC-like cells. Pericyte-selective HIF2α overexpression in mice exacerbates PH and right ventricular hypertrophy. Temporal cellular lineage tracing shows that HIF2α overexpressing reporter NG2+ cells (pericyte-selective) relocate from capillaries to arterioles and co-express SMA. This novel insight into the crucial role of NG2+ pericytes in pulmonary vascular remodeling via HIF2α signaling suggests a potential drug target for PH.
Asunto(s)
Hipertensión Pulmonar , Remodelación Vascular , Ratones , Humanos , Animales , Pericitos/metabolismo , Células Endoteliales/metabolismo , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/metabolismo , Hipoxia/genética , Hipoxia/metabolismo , PulmónRESUMEN
Pulmonary arterial hypertension (PAH) is a serious, progressive, and often fatal disease that is in urgent need of improved therapies that treat it. One of the remaining therapeutic challenges is the increasingly recognized skeletal muscle dysfunction that interferes with exercise tolerance. Here we report that in the adult rat Sugen/hypoxia (SU/Hx) model of severe pulmonary hypertension (PH), there is highly significant, almost 50%, decrease in exercise endurance, and this is associated with a 25% increase in the abundance of type II muscle fiber markers, thick sarcomeric aggregates and an increase in the levels of FoxO1 in the soleus (a predominantly type I fiber muscle), with additional alterations in the transcriptomic profiles of the diaphragm (a mixed fiber muscle) and the extensor digitorum longus (a predominantly Type II fiber muscle). In addition, soleus atrophy may contribute to impaired exercise endurance. Studies in L6 rat myoblasts have showed that myotube differentiation is associated with increased FoxO1 levels and type II fiber markers, while the inhibition of FoxO1 leads to increased type I fiber markers. We conclude that the formation of aggregates and a FoxO1-mediated shift in the skeletal muscle fiber-type specification may underlie skeletal muscle dysfunction in an experimental study of PH.
Asunto(s)
Hipertensión Pulmonar , Condicionamiento Físico Animal , Animales , Fibras Musculares de Contracción Rápida , Fibras Musculares Esqueléticas , Músculo Esquelético/fisiología , RatasRESUMEN
Cyclase-associated proteins are highly conserved proteins that have a role in the regulation of actin dynamics. Higher eukaryotes have two isoforms, CAP1 and CAP2. To study the in vivo function of CAP2, we generated mice in which the CAP2 gene was inactivated by a gene-trap approach. Mutant mice showed a decrease in body weight and had a decreased survival rate. Further, they developed a severe cardiac defect marked by dilated cardiomyopathy (DCM) associated with drastic reduction in basal heart rate and prolongations in atrial and ventricular conduction times. Moreover, CAP2-deficient myofibrils exhibited reduced cooperativity of calcium-regulated force development. At the microscopic level, we observed disarrayed sarcomeres with development of fibrosis. We analyzed CAP2's role in actin assembly and found that it sequesters G-actin and efficiently fragments filaments. This activity resides completely in its WASP homology domain. Thus CAP2 is an essential component of the myocardial sarcomere and is essential for physiological functioning of the cardiac system, and a deficiency leads to DCM and various cardiac defects.
Asunto(s)
Cardiomiopatía Dilatada/metabolismo , Proteínas Portadoras/metabolismo , Actinas/metabolismo , Secuencia de Aminoácidos , Animales , Calcio/metabolismo , Cardiomiopatía Dilatada/patología , Proteínas Portadoras/química , Proteínas Portadoras/genética , Femenino , Fibrosis , Corazón/anatomía & histología , Corazón/fisiopatología , Frecuencia Cardíaca/fisiología , Heterocigoto , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Datos de Secuencia Molecular , Fenotipo , Estructura Terciaria de Proteína , Sarcómeros/metabolismoRESUMEN
Lymphangioleiomyomatosis (LAM) is a rare progressive disease, characterized by mutations in the tuberous sclerosis complex genes (TSC1 or TSC2) and hyperactivation of mechanistic target of rapamycin complex 1 (mTORC1). Here, we report that E26 transformation-specific (ETS) variant transcription factor 2 (ETV2) is a critical regulator of Tsc2-deficient cell survival. ETV2 nuclear localization in Tsc2-deficient cells is mTORC1-independent and is enhanced by spleen tyrosine kinase (Syk) inhibition. In the nucleus, ETV2 transcriptionally regulates poly(ADP-ribose) polymerase 1 binding protein (PARPBP) mRNA and protein expression, partially reversing the observed down-regulation of PARPBP expression induced by mTORC1 blockade during treatment with both Syk and mTORC1 inhibitors. In addition, silencing Etv2 or Parpbp in Tsc2-deficient cells induced ER stress and increased cell death in vitro and in vivo. We also found ETV2 expression in human cells with loss of heterozygosity for TSC2, lending support to the translational relevance of our findings. In conclusion, we report a novel ETV2 signaling axis unique to Syk inhibition that promotes a cytocidal response in Tsc2-deficient cells and therefore maybe a potential alternative therapeutic target in LAM.
Asunto(s)
Linfangioleiomiomatosis , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Proteínas de Unión al ADN/genética , Estrés del Retículo Endoplásmico , Humanos , Linfangioleiomiomatosis/tratamiento farmacológico , Linfangioleiomiomatosis/genética , Linfangioleiomiomatosis/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Factores de Transcripción/genética , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismoRESUMEN
Tuberous sclerosis complex (TSC) is caused by mutations of either the TSC1 or TSC2 tumor suppressor gene. TSC causes tumors of the brain, heart, kidney, skin and lymphangioleiomyomatosis (LAM). Here we report that the TSC2 protein physically binds to high-density lipoprotein binding protein (HDLBP), also called vigilin, a core stress granule (SG) protein, and that TSC2 localizes to SGs. SGs contain mRNAs and translation initiation complexes, and regulate gene expression by sequestering specific transcripts, thereby serving a cytoprotective role. TSC2 has never before been shown to localize to SGs and knocking down vigilin impacts SG translocation of TSC2. TSC2-deficient cells showed a striking increase in the number of SGs after thermal shock and arsenite treatment relative to Tsc2-expressing cells. Our findings also show that murine kidney lysates from a model of TSC have increased levels of SG components including G3BP1 and Caprin1. G3BP1 and Caprin are elevated in renal angiomyolipomas (a renal tumor common in patients with TSC) compared with control normal kidney. G3BP1 is also elevated in TSC-associated subependymal giant cell astrocytomas. We found that genetic inhibition of G3BP1 inhibits the proliferation of TSC2-deficient cells in vitro. Finally, in a mouse model of TSC, genetic inhibition of SGs suppresses cell growth, suggesting that targeting SGs may have efficacy in the therapy of TSC. IMPLICATIONS: This study demonstrates that TSC2 physically interacts with HDLBP/vigilin, a component of SGs, that TSC2 localizes to SG and that TSC2-deficient cells have more SGs, suggesting that SGs represent a novel therapeutic target in TSC.
Asunto(s)
Proteínas de Unión al ARN/metabolismo , Gránulos de Estrés/metabolismo , Proteína 2 del Complejo de la Esclerosis Tuberosa/metabolismo , Angiomiolipoma/metabolismo , Angiomiolipoma/patología , Animales , Línea Celular , Línea Celular Tumoral , Células HEK293 , Células HeLa , Humanos , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Linfangioleiomiomatosis/metabolismo , Linfangioleiomiomatosis/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , ARN Mensajero/metabolismo , Gránulos de Estrés/patología , Proteínas Supresoras de Tumor/metabolismoRESUMEN
Background: Right ventricular (RV) performance is a key determinant of mortality in pulmonary arterial hypertension (PAH). RV failure is characterized by metabolic dysregulation with unbalanced anaerobic glycolysis, oxidative phosphorylation, and fatty acid oxidation (FAO). We previously found that acetazolamide (ACTZ) treatment modulates the pulmonary inflammatory response and ameliorates experimental PAH. Objective: To evaluate the effect of ACTZ treatment on RV function and metabolic profile in experimental PAH. Design/Methods: In the Sugen 5416/hypoxia (SuHx) rat model of severe PAH, RV transcriptomic analysis was performed by RNA-seq, and top metabolic targets were validated by RT-PCR. We assessed the effect of therapeutic administration of ACTZ in the drinking water on hemodynamics by catheterization [right and left ventricular systolic pressure (RVSP and LVSP, respectively)] and echocardiography [pulmonary artery acceleration time (PAAT), RV wall thickness in diastole (RVWT), RV end-diastolic diameter (RVEDD), tricuspid annular plane systolic excursion (TAPSE)] and on RV hypertrophy (RVH) by Fulton's index (FI) and RV-to-body weight (BW) ratio (RV/BW). We also examined myocardial histopathology and expression of metabolic markers in RV tissues. Results: There was a distinct transcriptomic signature of RVH in the SuHx model of PAH, with significant downregulation of metabolic enzymes involved in fatty acid transport, beta oxidation, and glucose oxidation compared to controls. Treatment with ACTZ led to a pattern of gene expression suggestive of restored metabolic balance in the RV with significantly increased beta oxidation transcripts. In addition, the FAO transcription factor peroxisome proliferator-activated receptor gamma coactivator 1-alpha (Pgc-1α) was significantly downregulated in untreated SuHx rats compared to controls, and ACTZ treatment restored its expression levels. These metabolic changes were associated with amelioration of the hemodynamic and echocardiographic markers of RVH in the ACTZ-treated SuHx animals and attenuation of cardiomyocyte hypertrophy and RV fibrosis. Conclusion: Acetazolamide treatment prevents the development of PAH, RVH, and fibrosis in the SuHx rat model of severe PAH, improves RV function, and restores the RV metabolic profile.
RESUMEN
Lymphangioleiomyomatosis is a rare destructive lung disease affecting primarily women and is the primary lung manifestation of tuberous sclerosis complex (TSC). In lymphangioleiomyomatosis, biallelic loss of TSC1/2 leads to hyperactivation of mTORC1 and inhibition of autophagy. To determine how the metabolic vulnerabilities of TSC2-deficient cells can be targeted, we performed a high-throughput screen utilizing the "Repurposing" library at the Broad Institute of MIT and Harvard (Cambridge, MA), with or without the autophagy inhibitor chloroquine. Ritanserin, an inhibitor of diacylglycerol kinase alpha (DGKA), was identified as a selective inhibitor of proliferation of Tsc2-/- mouse embryonic fibroblasts (MEF), with no impact on Tsc2+/+ MEFs. DGKA is a lipid kinase that metabolizes diacylglycerol to phosphatidic acid, a key component of plasma membranes. Phosphatidic acid levels were increased 5-fold in Tsc2-/- MEFs compared with Tsc2+/+ MEFs, and treatment of Tsc2-/- MEFs with ritanserin led to depletion of phosphatidic acid as well as rewiring of phospholipid metabolism. Macropinocytosis is known to be upregulated in TSC2-deficient cells. Ritanserin decreased macropinocytic uptake of albumin, limited the number of lysosomes, and reduced lysosomal activity in Tsc2-/- MEFs. In a mouse model of TSC, ritanserin treatment decreased cyst frequency and volume, and in a mouse model of lymphangioleiomyomatosis, genetic downregulation of DGKA prevented alveolar destruction and airspace enlargement. Collectively, these data indicate that DGKA supports macropinocytosis in TSC2-deficient cells to maintain phospholipid homeostasis and promote proliferation. Targeting macropinocytosis with ritanserin may represent a novel therapeutic approach for the treatment of TSC and lymphangioleiomyomatosis. SIGNIFICANCE: This study identifies macropinocytosis and phospholipid metabolism as novel mechanisms of metabolic homeostasis in mTORC1-hyperactive cells and suggest ritanserin as a novel therapeutic strategy for use in mTORC1-hyperactive tumors, including pancreatic cancer. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/8/2086/F1.large.jpg.
Asunto(s)
Diacilglicerol Quinasa/antagonistas & inhibidores , Neoplasias Pulmonares/tratamiento farmacológico , Linfangioleiomiomatosis/tratamiento farmacológico , Pinocitosis/efectos de los fármacos , Ritanserina/farmacología , Proteína 2 del Complejo de la Esclerosis Tuberosa/deficiencia , Esclerosis Tuberosa/tratamiento farmacológico , Angiolipoma/genética , Animales , Autofagia/efectos de los fármacos , Proliferación Celular , Cloroquina/farmacología , Diacilglicerol Quinasa/genética , Diacilglicerol Quinasa/metabolismo , Regulación hacia Abajo , Sinergismo Farmacológico , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Expresión Génica , Neoplasias Renales/genética , Neoplasias Pulmonares/etiología , Neoplasias Pulmonares/patología , Linfangioleiomiomatosis/etiología , Linfangioleiomiomatosis/patología , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Ratones Desnudos , Nutrientes/metabolismo , Ácidos Fosfatidicos/metabolismo , Fosfolípidos/metabolismo , Pinocitosis/fisiología , Esclerosis Tuberosa/complicacionesRESUMEN
Actin remodeling is crucial for dendritic spine development, morphology and density. CAP2 is a regulator of actin dynamics through sequestering G-actin and severing F-actin. In a mouse model, ablation of CAP2 leads to cardiovascular defects and delayed wound healing. This report investigates the role of CAP2 in the brain using Cap2(gt/gt) mice. Dendritic complexity, the number and morphology of dendritic spines were altered in Cap2(gt/gt) with increased number of excitatory synapses. This was accompanied by increased F-actin content and F-actin accumulation in cultured Cap2(gt/gt) neurons. Moreover, reduced surface GluA1 was observed in mutant neurons under basal condition and after induction of chemical LTP. Additionally, we show an interaction between CAP2 and n-cofilin, presumably mediated through the C-terminal domain of CAP2 and dependent on cofilin Ser3 phosphorylation. In vivo, the consequences of this interaction were altered phosphorylated cofilin levels and formation of cofilin aggregates in the neurons. Thus, our studies identify a novel role of CAP2 in neuronal development and neuronal actin dynamics.
RESUMEN
Cyclase associated protein (CAP) is a highly conserved protein with roles in actin dynamics and many cellular processes. Two isoforms exist in higher eukaryotes, CAP1 and CAP2. CAP1 is ubiquitously expressed whereas CAP2 shows restricted tissue distribution. In mice, ablation of CAP2 leads to development of cardiomyopathy. CAP2 is expressed in skin. In human skin its expression is increased in wounds. To elucidate the role of CAP2 in skin upon injury, we studied the wound healing in CAP2 deficient mice and found altered wound healing response presumably resulting from reduced levels of α-SMA, decreased macrophage infiltration and slower neovascularization. In vitro cultured Cap2 deficient keratinocytes showed reduced velocity and a delay in scratch closure. The analysis of primary mutant fibroblasts also showed reduced velocity and less contractibility. They had extended protrusions and more focal adhesions. In addition the F-actin content was increased keeping the total actin content unaltered. Mutant fibroblasts furthermore exhibited an altered response during recovery from drug-induced disruption of the actin cytoskeleton. Interestingly, CAP1 was upregulated in knockout unwounded skin and in wounds which might partially compensate for the loss of CAP2. Taken together, our studies reveal a role for CAP2 in wound healing which may be based on its function as a regulator of the actin cytoskeleton.