Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Neurochem ; 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38485468

RESUMEN

Parkinson's disease (PD) is a complex neurodegenerative disorder characterized by motor and non-motor symptoms. Motor symptoms include bradykinesia, resting tremors, muscular rigidity, and postural instability, while non-motor symptoms include cognitive impairments, mood disturbances, sleep disturbances, autonomic dysfunction, and sensory abnormalities. Some of these symptoms may be influenced by the proper hippocampus functioning, including adult neurogenesis. Doublecortin (DCX) is a microtubule-associated protein that plays a pivotal role in the development and differentiation of migrating neurons. This study utilized postmortem human brain tissue of PD and age-matched control individuals to investigate DCX expression in the context of adult hippocampal neurogenesis. Our findings demonstrate a significant reduction in the number of DCX-expressing cells within the subgranular zone (SGZ), as well as a decrease in the nuclear area of these DCX-positive cells in postmortem brain tissue obtained from PD cases, suggesting an impairment in the adult hippocampal neurogenesis. Additionally, we found that the nuclear area of DCX-positive cells correlates with pH levels. In summary, we provide evidence supporting that the process of hippocampal adult neurogenesis is likely to be compromised in PD patients before cognitive dysfunction, shedding light on potential mechanisms contributing to the neuropsychiatric symptoms observed in affected individuals. Understanding these mechanisms may offer novel insights into the pathophysiology of PD and possible therapeutic avenues.

2.
Acta Neuropathol ; 147(1): 40, 2024 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-38353753

RESUMEN

The amyloid cascade hypothesis states that Aß aggregates induce pathological changes in tau, leading to neurofibrillary tangles (NFTs) and cell death. A caveat with this hypothesis is the spatio-temporal divide between plaques and NFTs. This has been addressed by the inclusion of soluble Aß and tau species in the revised amyloid cascade hypothesis. Nevertheless, despite the potential for non-plaque Aß to contribute to tau pathology, few studies have examined relative correlative strengths between total Aß, plaque Aß and intracellular Aß with tau pathology within a single tissue cohort. Employing frozen and fixed frontal cortex grey and white matter tissue from non-AD controls (Con; n = 39) and Alzheimer's disease (AD) cases (n = 21), biochemical and immunohistochemical (IHC) measures of Aß and AT-8 phosphorylated tau were assessed. Biochemical native-state dot blots from crude tissue lysates demonstrated robust correlations between total Aß and AT-8 tau, when considered as a combined cohort (Con and AD) and when as Con and AD cases, separately. In contrast, no associations between Aß plaques and AT-8 were reported when using IHC measurements in either Con or AD cases. However, when intracellular Aß was measured via the Aß specific antibody MOAB-2, a correlative relationship with AT-8 tau was reported in non-AD controls but not in AD cases. Collectively the data suggests that accumulating intracellular Aß may influence AT-8 pathology, early in AD-related neuropathological change. Despite the lower levels of phospho-tau and Aß in controls, the robust correlative relationships observed suggest a physiological association of Aß production and tau phosphorylation, which may be modified during disease. This study is supportive of a revised amyloid cascade hypothesis and demonstrates regional associative relationships between tau pathology and intracellular Aß, but not extracellular Aß plaques.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Neuropatología , Ovillos Neurofibrilares , Proteínas Amiloidogénicas , Anticuerpos , Placa Amiloide
3.
Brain ; 145(4): 1257-1263, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-34999780

RESUMEN

Krabbe disease is an infantile neurodegenerative disorder resulting from pathogenic variants in the GALC gene that causes accumulation of the toxic sphingolipid psychosine. GALC variants are also associated with Lewy body diseases, an umbrella term for age-associated neurodegenerative diseases in which the protein α-synuclein aggregates into Lewy bodies. To explore whether α-synuclein in Krabbe disease has pathological similarities to that in Lewy body disease, we performed an observational post-mortem study of Krabbe disease brain tissue (n = 4) compared to infant controls (n = 4) and identified widespread accumulations of α-synuclein. To determine whether α-synuclein in Krabbe disease brain displayed disease-associated pathogenic properties we evaluated its seeding capacity using the real-time quaking-induced conversion assay in two cases for which frozen tissue was available and strikingly identified aggregation into fibrils similar to those observed in Lewy body disease, confirming the prion-like capacity of Krabbe disease-derived α-synuclein. These observations constitute the first report of prion-like α-synuclein in the brain tissue of infants and challenge the putative view that α-synuclein pathology is merely an age-associated phenomenon, instead suggesting it results from alterations to biological pathways, such as sphingolipid metabolism. Our findings have important implications for understanding the mechanisms underlying Lewy body formation in Lewy body disease.


Asunto(s)
Leucodistrofia de Células Globoides , Enfermedad por Cuerpos de Lewy , Priones , Sinucleinopatías , Encéfalo/patología , Humanos , Enfermedad por Cuerpos de Lewy/metabolismo , Priones/metabolismo , Esfingolípidos/metabolismo , alfa-Sinucleína/metabolismo
4.
Am J Geriatr Psychiatry ; 30(9): 964-975, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35283023

RESUMEN

OBJECTIVES: The objective of this study was to investigate the expression of genes in Alzheimer's disease (AD) and dementia with Lewy bodies (DLB), both at the mild cognitive impairment (MCI) and dementia stages, to improve our understanding of disease pathophysiology and investigate the potential for diagnostic and prognostic biomarkers based on mRNA expression. DESIGN: Cross-sectional observational study. SETTING: University research center. PARTICIPANTS: People with MCI with Lewy bodies (MCI-LB, n=55), MCI-AD (n=19), DLB (n=38), AD (n=24) and a cognitively unimpaired comparison group (n=28). MEASUREMENTS: Ribonucleic acid sequencing of whole blood. Differentially expressed genes (DEGs) were identified and gene set enrichment analysis was carried out. RESULTS: Compared with the cognitively unimpaired group, there were 22 DEGs in MCI-LB/DLB and 61 DEGs in MCI-AD/AD. DEGS were also identified when comparing the two disease groups. Expression of ANP32A was associated with more rapid cognitive decline in MCI-AD/AD. Gene set enrichment analysis identified downregulation in gene sets including MYC targets and oxidative phosphorylation in MCI-LB/DLB; upregulation of immune and inflammatory responses in MCI-AD/AD; and upregulation of interferon-α and -γ responses in MCI-AD/AD compared with MCI-LB/DLB. CONCLUSION: This study identified multiple DEGs in MCI-LB/DLB and MCI-AD/AD. One of these DEGs, ANP32A, may be a prognostic marker in AD. Genes related to mitochondrial function were downregulated in MCI-LB/DLB. Previously reported upregulation of genes associated with inflammation and immune responses in MCI-AD/AD was confirmed in this cohort. Differences in interferon responses between MCI-AD/AD and MCI-LB/DLB suggest that there are key differences in peripheral immune responses between these diseases.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedad por Cuerpos de Lewy , Enfermedad de Alzheimer/metabolismo , Disfunción Cognitiva/diagnóstico , Estudios Transversales , Humanos , Enfermedad por Cuerpos de Lewy/metabolismo , Proteínas Nucleares/metabolismo , ARN Mensajero/genética , Proteínas de Unión al ARN
5.
Acta Neuropathol ; 141(4): 511-526, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33515275

RESUMEN

Accumulation of the protein α-synuclein into insoluble intracellular deposits termed Lewy bodies (LBs) is the characteristic neuropathological feature of LB diseases, such as Parkinson's disease (PD), Parkinson's disease dementia (PDD) and dementia with LB (DLB). α-Synuclein aggregation is thought to be a critical pathogenic event in the aetiology of LB disease, based on genetic analyses, fundamental studies using model systems, and the observation of LB pathology in post-mortem tissue. However, some monogenic disorders not traditionally characterised as synucleinopathies, such as lysosomal storage disorders, iron storage disorders and mitochondrial diseases, appear disproportionately vulnerable to the deposition of LBs, perhaps suggesting the process of LB formation may be a result of processes perturbed as a result of these conditions. The present review discusses biological pathways common to monogenic disorders associated with LB formation, identifying catabolic processes, particularly related to lipid homeostasis, autophagy and mitochondrial function, as processes that could contribute to LB formation. These findings are discussed in the context of known mediators of α-synuclein aggregation, highlighting the potential influence of impairments to these processes in the aetiology of LB formation.


Asunto(s)
Hemocromatosis/patología , Cuerpos de Lewy/patología , Enfermedades por Almacenamiento Lisosomal/patología , Enfermedades Mitocondriales/patología , alfa-Sinucleína/metabolismo , Hemocromatosis/metabolismo , Humanos , Cuerpos de Lewy/metabolismo , Metabolismo de los Lípidos/fisiología , Enfermedades por Almacenamiento Lisosomal/metabolismo , Lisosomas/metabolismo , Lisosomas/patología , Mitocondrias/metabolismo , Mitocondrias/patología , Enfermedades Mitocondriales/metabolismo
6.
Acta Neuropathol ; 142(6): 937-950, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34608542

RESUMEN

Cerebral white matter lesions (WML) encompass axonal loss and demyelination and are assumed to be associated with small vessel disease (SVD)-related ischaemia. However, our previous study in the parietal lobe white matter revealed that WML in Alzheimer's disease (AD) are linked with degenerative axonal loss secondary to the deposition of cortical AD pathology. Furthermore, neuroimaging data suggest that pathomechanisms for the development of WML differ between anterior and posterior lobes with AD-associated degenerative mechanism driving posterior white matter disruption, and both AD-associated degenerative and vascular mechanisms contributed to anterior matter disruption. In this pilot study, we used human post-mortem brain tissue to investigate the composition and aetiology of frontal WML from AD and non-demented controls to determine if frontal WML are SVD-associated and to reveal any regional differences in the pathogenesis of WML. Frontal WML tissue sections from 40 human post-mortem brains (AD, n = 19; controls, n = 21) were quantitatively assessed for demyelination, axonal loss, cortical hyperphosphorylated tau (HPτ) and amyloid-beta (Aß) burden, and arteriolosclerosis as a measure of SVD. Biochemical assessment included Wallerian degeneration-associated protease calpain and the myelin-associated glycoprotein to proteolipid protein ratio as a measure of ante-mortem ischaemia. Arteriolosclerosis severity was found to be associated with and a significant predictor of frontal WML severity in both AD and non-demented controls. Interesting, frontal axonal loss was also associated with HPτ and calpain levels were associated with increasing Aß burden in the AD group, suggestive of an additional degenerative influence. To conclude, this pilot data suggest that frontal WML in AD may result from both increased arteriolosclerosis and AD-associated degenerative changes. These preliminary findings in combination with previously published data tentatively indicate regional differences in the aetiology of WML in AD, which should be considered in the clinical diagnosis of dementia subtypes: posterior WML maybe associated with degenerative mechanisms secondary to AD pathology, while anterior WML could be associated with both SVD-associated and degenerative mechanisms.


Asunto(s)
Enfermedad de Alzheimer/patología , Enfermedades de los Pequeños Vasos Cerebrales/patología , Lóbulo Frontal/patología , Sustancia Blanca/patología , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Arteriosclerosis Intracraneal/patología , Masculino , Proyectos Piloto
7.
Mov Disord ; 36(8): 1744-1758, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33939203

RESUMEN

Intracellular vesicular trafficking is essential for neuronal development, function, and homeostasis and serves to process, direct, and sort proteins, lipids, and other cargo throughout the cell. This intricate system of membrane trafficking between different compartments is tightly orchestrated by Ras analog in brain (RAB) GTPases and their effectors. Of the 66 members of the RAB family in humans, many have been implicated in neurodegenerative diseases and impairment of their functions contributes to cellular stress, protein aggregation, and death. Critically, RAB39B loss-of-function mutations are known to be associated with X-linked intellectual disability and with rare early-onset Parkinson's disease. Moreover, recent studies have highlighted altered RAB39B expression in idiopathic cases of several Lewy body diseases (LBDs). This review contextualizes the role of RAB proteins in LBDs and highlights the consequences of RAB39B impairment in terms of endosomal trafficking, neurite outgrowth, synaptic maturation, autophagy, as well as alpha-synuclein homeostasis. Additionally, the potential for therapeutic intervention is examined via a discussion of the recent progress towards the development of specific RAB modulators. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad por Cuerpos de Lewy , Enfermedad de Parkinson , Humanos , Cuerpos de Lewy/metabolismo , Enfermedad por Cuerpos de Lewy/genética , Enfermedad de Parkinson/genética , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
8.
J Neurochem ; 153(4): 433-454, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31957016

RESUMEN

Synucleinopathies are a group of disorders characterized by the accumulation of inclusions rich in the a-synuclein (aSyn) protein. This group of disorders includes Parkinson's disease, dementia with Lewy bodies (DLB), multiple systems atrophy, and pure autonomic failure (PAF). In addition, genetic alterations (point mutations and multiplications) in the gene encoding for aSyn (SNCA) are associated with familial forms of Parkinson's disease, the most common synucleinopathy. The Synuclein Meetings are a series that has been taking place every 2 years for about 12 years. The Synuclein Meetings bring together leading experts in the field of Synuclein and related human conditions with the goal of discussing and advancing the research. In 2019, the Synuclein meeting took place in Ofir, a city in the outskirts of Porto, Portugal. The meeting, entitled "Synuclein Meeting 2019: Where we are and where we need to go", brought together >300 scientists studying both clinical and molecular aspects of synucleinopathies. The meeting covered a many of the open questions in the field, in a format that prompted open discussions between the participants, and underscored the need for additional research that, hopefully, will lead to future therapies for a group of as of yet incurable disorders. Here, we provide a summary of the topics discussed in each session and highlight what we know, what we do not know, and what progress needs to be made in order to enable the field to continue to advance. We are confident this systematic assessment of where we stand will be useful to steer the field and contribute to filling knowledge gaps that may form the foundations for future therapeutic strategies, which is where we need to go.


Asunto(s)
Congresos como Asunto/tendencias , Sinucleinopatías/diagnóstico , Sinucleinopatías/metabolismo , alfa-Sinucleína/metabolismo , Animales , Biomarcadores/metabolismo , Humanos , Cuerpos de Inclusión/genética , Cuerpos de Inclusión/metabolismo , Cuerpos de Inclusión/patología , Mutación/fisiología , Portugal , Sinucleinopatías/genética
9.
J Neurochem ; 150(5): 535-565, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31004503

RESUMEN

Alpha-synuclein (α-Syn) is a central player in Parkinson's disease (PD) and in a spectrum of neurodegenerative diseases collectively known as synucleinopathies. The protein was first associated with PD just over 20 years ago, when it was found to (i) be a major component of Lewy bodies and (ii) to be also associated with familial forms of PD. The characterization of α-Syn pathology has been achieved through postmortem studies of human brains. However, the identification of toxic mechanisms associated with α-Syn was only achieved through the use of experimental models. In vitro models are highly accessible, enable relatively rapid studies, and have been extensively employed to address α-Syn-associated neurodegeneration. Given the diversity of models used and the outcomes of the studies, a cumulative and comprehensive perspective emerges as indispensable to pave the way for further investigations. Here, we subdivided in vitro models of α-Syn pathology into three major types: (i) models simulating α-Syn fibrillization and the formation of different aggregated structures in vitro, (ii) models based on the intracellular expression of α-Syn, reporting on pathogenic conditions and cellular dysfunctions induced, and (iii) models using extracellular treatment with α-Syn aggregated species, reporting on sites of interaction and their downstream consequences. In summary, we review the underlying molecular mechanisms discovered and categorize protective strategies, in order to pave the way for future studies and the identification of effective therapeutic strategies. This article is part of the Special Issue "Synuclein".


Asunto(s)
Sinucleinopatías/metabolismo , alfa-Sinucleína/metabolismo , Amiloide/metabolismo , Animales , Autofagia , Línea Celular , Membrana Celular/metabolismo , Endosomas/metabolismo , Humanos , Técnicas In Vitro , Cuerpos de Lewy/metabolismo , Lisosomas/metabolismo , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Neuronas/metabolismo , Neuronas/ultraestructura , Estrés Oxidativo , Agregación Patológica de Proteínas/tratamiento farmacológico , Agregación Patológica de Proteínas/prevención & control , Proteolisis , Transmisión Sináptica/fisiología , Sinucleinopatías/genética , Sinucleinopatías/patología , alfa-Sinucleína/antagonistas & inhibidores , alfa-Sinucleína/química , alfa-Sinucleína/genética
10.
Behav Pharmacol ; 28(2 and 3-Spec Issue): 161-178, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28252521

RESUMEN

Many vital interdependent cellular functions including proteostasis, lipogenesis and Ca homeostasis are executed by the endoplasmic reticulum (ER). Exogenous insults can impair ER performance: this must be rapidly corrected or cell death will ensue. Protective adaptations can boost the functional capacity of the ER and form the basis of the unfolded protein response (UPR). Activated in response to the accumulation of misfolded proteins, the UPR can halt protein translation while increasing protein-handling chaperones and the degradation of erroneous proteins through a conserved three-tier molecular cascade. However, prolonged activation of the UPR can result in the maladaptation of the system, resulting in the activation of inflammatory and apoptotic effectors. Recently, UPR and its involvement in neurodegenerative disease has attracted much interest and numerous potentially 'drugable' points of crosstalk are now emerging. Here, we summarize the functions of the ER and UPR, and highlight evidence for its potential role in the pathogenesis of Alzheimer's disease, before discussing several key targets with therapeutic potential.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Retículo Endoplásmico/fisiología , Respuesta de Proteína Desplegada/fisiología , Enfermedad de Alzheimer/tratamiento farmacológico , Animales , Humanos , Terapia Molecular Dirigida , Pliegue de Proteína , Proteínas/química , Proteínas/metabolismo
11.
Diabetologia ; 59(7): 1513-1523, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27138913

RESUMEN

AIMS: ß-Secretase 1 (BACE1) is a key enzyme in Alzheimer's disease pathogenesis that catalyses the amyloidogenic cleavage of amyloid precursor protein (APP). Recently, global Bace1 deletion was shown to protect against diet-induced obesity and diabetes, suggesting that BACE1 is a potential regulator of glucose homeostasis. Here, we investigated whether increased neuronal BACE1 is sufficient to alter systemic glucose metabolism, using a neuron-specific human BACE1 knockin mouse model (PLB4). METHODS: Glucose homeostasis and adiposity were determined by glucose tolerance tests and EchoMRI, lipid species were measured by quantitative lipidomics, and biochemical and molecular alterations were assessed by western blotting, quantitative PCR and ELISAs. Glucose uptake in the brain and upper body was measured via (18)FDG-PET imaging. RESULTS: Physiological and molecular analyses demonstrated that centrally expressed human BACE1 induced systemic glucose intolerance in mice from 4 months of age onward, alongside a fatty liver phenotype and impaired hepatic glycogen storage. This diabetic phenotype was associated with hypothalamic pathology, i.e. deregulation of the melanocortin system, and advanced endoplasmic reticulum (ER) stress indicated by elevated central C/EBP homologous protein (CHOP) signalling and hyperphosphorylation of its regulator eukaryotic translation initiation factor 2α (eIF2α). In vivo (18)FDG-PET imaging further confirmed brain glucose hypometabolism in these mice; this corresponded with altered neuronal insulin-related signalling, enhanced protein tyrosine phosphatase 1B (PTP1B) and retinol-binding protein 4 (RBP4) levels, along with upregulation of the ribosomal protein and lipid translation machinery. Increased forebrain and plasma lipid accumulation (i.e. ceramides, triacylglycerols, phospholipids) was identified via lipidomics analysis. CONCLUSIONS/INTERPRETATION: Our data reveal that neuronal BACE1 is a key regulator of metabolic homeostasis and provide a potential mechanism for the high prevalence of metabolic disturbance in Alzheimer's disease.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Neuronas/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Ácido Aspártico Endopeptidasas/genética , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Modelos Animales de Enfermedad , Glucosa/metabolismo , Intolerancia a la Glucosa/metabolismo , Intolerancia a la Glucosa/fisiopatología , Homeostasis , Humanos , Ratones , Obesidad/genética , Obesidad/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 1/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo
12.
Neurobiol Dis ; 91: 105-23, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26949217

RESUMEN

Models of Tau pathology related to frontotemporal dementia (FTD) are essential to determine underlying neurodegenerative pathologies and resulting tauopathy relevant behavioural changes. However, existing models are often limited in their translational value due to Tau overexpression, and the frequent occurrence of motor deficits which prevent comprehensive behavioural assessments. In order to address these limitations, a forebrain-specific (CaMKIIα promoter), human mutated Tau (hTauP301L+R406W) knock-in mouse was generated out of the previously characterised PLB1Triple mouse, and named PLB2Tau. After confirmation of an additional hTau species (~60kDa) in forebrain samples, we identified age-dependent progressive Tau phosphorylation which coincided with the emergence of FTD relevant behavioural traits. In line with the non-cognitive symptomatology of FTD, PLB2Tau mice demonstrated early emerging (~6months) phenotypes of heightened anxiety in the elevated plus maze, depressive/apathetic behaviour in a sucrose preference test and generally reduced exploratory activity in the absence of motor impairments. Investigations of cognitive performance indicated prominent dysfunctions in semantic memory, as assessed by social transmission of food preference, and in behavioural flexibility during spatial reversal learning in a home cage corner-learning task. Spatial learning was only mildly affected and task-specific, with impairments at 12months of age in the corner learning but not in the water maze task. Electroencephalographic (EEG) investigations indicated a vigilance-stage specific loss of alpha power during wakefulness at both parietal and prefrontal recording sites, and site-specific EEG changes during non-rapid eye movement sleep (prefrontal) and rapid eye movement sleep (parietal). Further investigation of hippocampal electrophysiology conducted in slice preparations indicated a modest reduction in efficacy of synaptic transmission in the absence of altered synaptic plasticity. Together, our data demonstrate that the transgenic PLB2Tau mouse model presents with a striking behavioural and physiological face validity relevant for FTD, driven by the low level expression of mutant FTD hTau.


Asunto(s)
Conducta Animal/fisiología , Demencia Frontotemporal/patología , Potenciación a Largo Plazo/genética , Memoria/fisiología , Proteínas tau/genética , Proteínas tau/metabolismo , Enfermedad de Alzheimer/metabolismo , Animales , Modelos Animales de Enfermedad , Demencia Frontotemporal/fisiopatología , Técnicas de Sustitución del Gen/métodos , Ratones Transgénicos , Ovillos Neurofibrilares/metabolismo , Plasticidad Neuronal/genética , Transmisión Sináptica/genética , Tauopatías/patología
13.
Acta Neuropathol ; 132(6): 875-895, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27770234

RESUMEN

Post-mortem investigations of human Alzheimer's disease (AD) have largely failed to provide unequivocal evidence in support of the original amyloid cascade hypothesis, which postulated deposition of ß-amyloid (Aß) aggregates to be the cause of a demented state as well as inductive to tau neurofibrillary tangles (NFTs). Conflicting evidence suggests, however, that Aß plaques and NFTs, albeit to a lesser extent, are present in a substantial subset of non-demented individuals. Hence, a range of soluble tau and Aß species has more recently been implicated as the disease-relevant toxic entities. Despite the incorporation of soluble proteins into a revised amyloid cascade hypothesis, a detailed characterization of these species in the context of human AD onset, progression and cognitive decline has been lacking. Here, lateral temporal lobe samples (Brodmann area 21) of 46 human cases were profiled via tau and Aß Western blot and native state dot blot protocols. Elevations in phospho-tau (antibodies: CP13, AT8 and PHF-1), pathological tau conformations (MC-1) and oligomeric tau (TOC1) agreed with medical diagnosis (non-AD cf. AD) and Braak stage classification (low, intermediate and high), alongside elevations in soluble Aß species (MOAB-2 and pyro-glu Aß) and a decline in levels of the amyloid precursor protein. Strong correlations were observed between individual Braak stages and multiple cognitive measures with all tau markers as well as total soluble Aß. In contrast to previous reports, SDS-stable Aß oligomers (*56) were not found to be reliable for all classifications and appeared likely to be a technical artefact. Critically, the robust predictive value of total soluble Aß was dependent on native state quantification. Elevations in tau and Aß within soluble fractions (Braak stage 2-3 cf. 0) were evident earlier than previously established in fibril-focused disease progression scales. Together, these data provide strong evidence that soluble forms of tau and Aß co-localise early in AD and are closely linked to disease progression and cognitive decline.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Encéfalo/metabolismo , Trastornos del Conocimiento/metabolismo , Placa Amiloide/metabolismo , Proteínas tau/metabolismo , Anciano , Anciano de 80 o más Años , Autopsia , Estudios de Cohortes , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Ovillos Neurofibrilares/metabolismo , Ovillos Neurofibrilares/patología , Pruebas Neuropsicológicas , Placa Amiloide/patología , Escalas de Valoración Psiquiátrica , Estadísticas no Paramétricas
14.
J Neurosci ; 34(32): 10710-28, 2014 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-25100603

RESUMEN

Key neuropathological hallmarks of Alzheimer's disease (AD) are elevated levels of amyloid ß-peptide (Aß) species generated via amyloid precursor protein (APP) endoproteolysis and cleavage by the rate-limiting ß-site enzyme 1 (BACE1). Because rodents do not develop amyloid pathologies, we here investigated whether AD-like endophenotypes can be created in mice by expression of human bace1. To avoid pitfalls of existing models, we introduced hbace1 via knock-in under the control of the CaMKII α promoter into the safe HPRT locus. We report amyloidogenic processing of murine APP in the hBACE1 mice (termed PLB4), resulting in the formation of toxic APP metabolites that accumulate intra- and extraneuronally in hippocampus and cortex. Pronounced accumulation of Aß*56 and Aß hexamers in the absence of plaque deposition was detected in brain tissue from symptomatic PLB4 mice. Heightened levels of inflammation (gliosis) also appeared in several AD-related brain regions (dentate gyrus, hippocampal area CA1, piriform and parietal cortices) at 6 and 12 months of age. Behaviorally, deficits in habituation to a novel environment and semantic-like memory (social transmission of food preference) were detected from 3 to 4 months of age. Impairments in spatial learning strategies in long-term reference (water maze) and working memory (Y-maze) tasks presented at 6 months, and were distinct from reductions in locomotor activity and anxiety. Overall, our data indicate for the first time that targeted, subtle forebrain-specific expression through single gene knock-in of hBACE1 is sufficient to generate AD-relevant cognitive impairments amid corresponding histopathologies, confirming human BACE as the key parameter in amyloid pathogenesis.


Asunto(s)
Enfermedad de Alzheimer , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Fenotipo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/fisiopatología , Secretasas de la Proteína Precursora del Amiloide/genética , Animales , Ácido Aspártico Endopeptidasas/genética , Ritmo Circadiano/genética , Adaptación a la Oscuridad/genética , Modelos Animales de Enfermedad , Preferencias Alimentarias/fisiología , Trastornos Neurológicos de la Marcha/etiología , Trastornos Neurológicos de la Marcha/genética , Genotipo , Humanos , Aprendizaje por Laberinto/fisiología , Trastornos de la Memoria/etiología , Trastornos de la Memoria/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora/fisiología , Conducta Espacial/fisiología
15.
Cell Mol Life Sci ; 70(14): 2585-601, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23407662

RESUMEN

Several genetically engineered models exist that mimic aspects of the pathological and cognitive hallmarks of Alzheimer's disease (AD). Here we report on a novel mouse model generated by targeted knock-in of transgenes containing mutated human amyloid precursor protein (APP) and microtubule-associated protein tau genes, inserted into the HPRT locus and controlled by the CaMKIIα regulatory element. These mice were crossed with an asymptomatic presenilin1A246E overexpressing line to generate PLB1Triple mice. Gene expression analysis and in situ hybridization confirmed stable, forebrain-specific, and gene-dose-dependent transgene expression. Brain tissue harvested from homozygous, heterozygous, and wild-type cohorts aged between 3 and 24 months was analyzed immunohistochemically and electrophysiologically. Homozygous PLB1Triple offspring presented with mostly intracellular cortical and hippocampal human APP/amyloid, first detected reliably at 6 months. Human tau was already uncovered at 3 months (phospho-tau at 6 months) and labeling intensifying progressively with age. Gene-dose dependence was confirmed in age-matched heterozygous females that accumulated less tau and amyloid protein. General excitability of hippocampal neurones was not altered in slices from PLB1Triple mice up to 12 months, but 2-year-old homozygous PLB1Triple mice had smaller synaptically evoked postsynaptic potentials compared with wild types. Synaptic plasticity (paired-pulse depression/facilitation and long-term potentiation) of synaptic CA1 pyramidal cell responses was deficient from 6 months of age. Long-term depression was not affected at any age or in any genotype. Therefore, despite comparatively subtle gene expression and protein build-up, PLB1Triple mice develop age-dependent progressive phenotypes, suggesting that aggressive protein accumulation is not necessary to reconstruct endophenotypes of AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Hipocampo/patología , Plasticidad Neuronal/fisiología , Transmisión Sináptica/fisiología , Envejecimiento , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Modelos Animales de Enfermedad , Electrofisiología , Femenino , Técnicas de Sustitución del Gen , Genotipo , Hipocampo/metabolismo , Humanos , Hipoxantina Fosforribosiltransferasa/genética , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fenotipo , Fosforilación , Regiones Promotoras Genéticas , ARN Mensajero/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
16.
Biomedicines ; 10(5)2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35625878

RESUMEN

Rab GTPases (Rabs) are small proteins that play crucial roles in vesicle transport and membrane trafficking. Owing to their widespread functions in several steps of vesicle trafficking, Rabs have been implicated in the pathogenesis of several disorders, including cancer, diabetes, and multiple neurodegenerative diseases. As treatments for neurodegenerative conditions are currently rather limited, the identification and validation of novel therapeutic targets, such as Rabs, is of great importance. This review summarises proof-of-concept studies, demonstrating that modulation of Rab GTPases in the context of Alzheimer's disease (AD) can ameliorate disease-related phenotypes, and provides an overview of the current state of the art for the pharmacological targeting of Rabs. Finally, we also discuss the barriers and challenges of therapeutically targeting these small proteins in humans, especially in the context of AD.

17.
Acta Neuropathol Commun ; 10(1): 98, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35794636

RESUMEN

Dementia with Lewy bodies (DLB) is pathologically defined by the cytoplasmic accumulation of alpha-synuclein (aSyn) within neurons in the brain. Predominately pre-synaptic, aSyn has been reported in various subcellular compartments in experimental models. Indeed, nuclear alpha-synuclein (aSynNuc) is evident in many models, the dysregulation of which is associated with altered DNA integrity, transcription and nuclear homeostasis. However, the presence of aSynNuc in human brain cells remains controversial, yet the determination of human brain aSynNuc and its pathological modification is essential for understanding synucleinopathies. Here, using a multi-disciplinary approach employing immunohistochemistry, immunoblot, and mass-spectrometry (MS), we confirm aSynNuc in post-mortem brain tissue obtained from DLB and control cases. Highly dependent on antigen retrieval methods, in optimal conditions, intra-nuclear pan and phospho-S129 positive aSyn puncta were observed in cortical neurons and non-neuronal cells in fixed brain sections and in isolated nuclear preparations in all cases examined. Furthermore, an increase in nuclear phospho-S129 positive aSyn immunoreactivity was apparent in DLB cases compared to controls, in both neuronal and non-neuronal cell types. Our initial histological investigations identified that aSynNuc is affected by epitope unmasking methods but present under optimal conditions, and this presence was confirmed by isolation of nuclei and a combined approach of immunoblotting and mass spectrometry, where aSynNuc was approximately tenfold less abundant in the nucleus than cytoplasm. Notably, direct comparison of DLB cases to aged controls identified increased pS129 and higher molecular weight species in the nuclei of DLB cases, suggesting putative pathogenic modifications to aSynNuc in DLB. In summary, using multiple approaches we provide several lines of evidence supporting the presence of aSynNuc in autoptic human brain tissue and, notably, that it is subject to putative pathogenic modifications in DLB that may contribute to the disease phenotype.


Asunto(s)
Cuerpos de Lewy , Enfermedad por Cuerpos de Lewy , alfa-Sinucleína , Anciano , Encéfalo/metabolismo , Encéfalo/patología , Núcleo Celular/metabolismo , Núcleo Celular/patología , Humanos , Cuerpos de Lewy/metabolismo , Cuerpos de Lewy/patología , Enfermedad por Cuerpos de Lewy/patología , alfa-Sinucleína/metabolismo
18.
Brain Pathol ; 31(1): 120-132, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32762091

RESUMEN

Loss of function mutations within the vesicular trafficking protein Ras analogy in brain 39B (RAB39B) are associated with rare X-linked Parkinson's disease (PD). Physiologically, RAB39B is localized to Golgi vesicles and recycling endosomes and is required for glutamatergic receptor maturation but also for alpha-Synuclein (aSyn) homeostasis and the inhibition of its aggregation. Despite evidence linking RAB39B to neurodegeneration, the involvement of the protein in idiopathic neurodegenerative diseases remains undetermined. Here, analysis of the spatial distribution and expression of RAB39B was conducted in post-mortem human brain tissue from cases of dementia with Lewy bodies (DLB, n = 10), Alzheimer's disease (AD, n = 12) and controls (n = 12). Assessment of cortical RAB39B immunoreactivity using tissue microarrays revealed an overall reduction in the area of RAB39B positive gray matter in DLB cases when compared to controls and AD cases. Strikingly, RAB39B co-localized with beta-amyloid (Aß) plaques in all cases examined and was additionally present in a subpopulation of Lewy bodies (LBs) in DLB. Biochemical measures of total RAB39B levels within the temporal cortex were unchanged between DLB, AD and controls. However, upon subcellular fractionation, a reduction of RAB39B in the cytoplasmic pool was found in DLB cases, alongside an increase of phosphorylated aSyn and Aß in whole tissue lysates. The reduction of cytoplasmic RAB39B is consistent with an impaired reserve capacity for RAB39B-associated functions, which in turn may facilitate LB aggregation and synaptic impairment. Collectively, our data support the involvement of RAB39B in the pathogenesis of DLB and the co-aggregation of RAB39B with Aß in plaques suggests that age-associated cerebral Aß pathology may be contributory to the loss of RAB39B. Thus RAB39B, its associated functional pathways and its entrapment in aggregates may be considered as future targets for therapeutic interventions to impede the overall pathological burden and cellular dysfunction in Lewy body diseases.


Asunto(s)
Cuerpos de Lewy/metabolismo , Enfermedad por Cuerpos de Lewy/metabolismo , Placa Amiloide/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Anciano , Anciano de 80 o más Años , Péptidos beta-Amiloides/metabolismo , Encéfalo/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad
19.
Mol Neurobiol ; 57(8): 3258-3272, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32514860

RESUMEN

The complex multifactorial nature of AD pathogenesis has been highlighted by evidence implicating additional neurodegenerative mechanisms, beyond that of amyloid-ß (Aß) and tau. To provide insight into cause and effect, we here investigated the temporal profile and associations of pathological changes in synaptic, endoplasmic reticulum (ER) stress and neuro-inflammatory markers. Quantifications were established via immunoblot and immunohistochemistry protocols in post-mortem lateral temporal cortex (n = 46). All measures were assessed according to diagnosis (non-AD vs. AD), neuropathological severity (low (Braak ≤ 2) vs. moderate (3-4) vs. severe (≥ 5)) and individual Braak stage, and were correlated with Aß and tau pathology and cognitive scores. Postsynaptic PSD-95, but not presynaptic synaptophysin, was decreased in AD cases and demonstrated a progressive decline across disease severity and Braak stage, yet not with cognitive scores. Of all investigated ER stress markers, only phospho-protein kinase RNA-like ER kinase (p-PERK) correlated with Braak stage and was increased in diagnosed AD cases. A similar relationship was observed for the astrocytic glial fibrillary acidic protein (GFAP); however, the associated aquaporin 4 and microglial Iba1 remained unchanged. Pathological alterations in these markers preferentially correlated with measures of tau over those related to Aß. Notably, GFAP also correlated strongly with Aß markers and with all assessments of cognition. Lateral temporal cortex-associated synaptic, ER stress and neuro-inflammatory pathologies are here determined as late occurrences in AD progression, largely associated with tau pathology. Moreover, GFAP emerged as the most robust indicator of disease progression, tau/Aß pathology, and cognitive impairment.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Encéfalo/patología , Estrés del Retículo Endoplásmico/fisiología , Proteínas tau/metabolismo , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/patología , Biomarcadores/metabolismo , Encéfalo/metabolismo , Cognición/fisiología , Disfunción Cognitiva/metabolismo , Femenino , Humanos , Inflamación/patología , Masculino
20.
Mol Neurobiol ; 57(1): 539-550, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31396860

RESUMEN

Diabetes and obesity have been implicated as risk factors for dementia. However, metabolic mechanisms and associated signalling pathways have not been investigated in detail in frontotemporal dementia. We therefore here characterised physiological, behavioural and molecular phenotypes of 3- and 8-month-old male tau knock-in (PLB2TAU) vs wild-type (PLBWT) mice. Homecage analysis suggested intact habituation but a dramatic reduction in exploratory activity in PLB2TAU mice. Deficits in motor strength were also observed. At 3 months, PLB2TAU mice displayed normal glucose handling but developed hyperglycaemia at 8 months, suggesting a progressive diabetic phenotype. Brain, liver and muscle tissue analyses confirmed tissue-specific deregulation of metabolic and homeostatic pathways. In brain, increased levels of phosphorylated tau and inflammation were detected alongside reduced ER regulatory markers, overall suggesting a downregulation in essential cellular defence pathways. We suggest that subtle neuronal expression of mutated human tau is sufficient to disturb systems metabolism and protein handling. Whether respective dysfunctions in tauopathy patients are also a consequence of tau pathology remains to be confirmed, but could offer new avenues for therapeutic interventions.


Asunto(s)
Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Técnicas de Sustitución del Gen , Inflamación/patología , Resistencia a la Insulina , Mutación/genética , Proteostasis , Proteínas tau/genética , Envejecimiento/patología , Animales , Conducta Animal , Biomarcadores/metabolismo , Peso Corporal , Encéfalo/patología , Ritmo Circadiano , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico/genética , Regulación de la Expresión Génica , Habituación Psicofisiológica , Humanos , Insulina/metabolismo , Masculino , Ratones Endogámicos C57BL , Actividad Motora , Fenotipo , Fosforilación , Biosíntesis de Proteínas , Transducción de Señal , Proteínas tau/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA