RESUMEN
We tested the hypothesis that leaf age affects photosynthetic induction, because conductance to CO2 diffusion usually decreases with increasing leaf age. Photosynthetic inductions, primarily determined by the light modulation of Rubisco activity and stomatal opening, were investigated in both young and mature leaves, as defined by leaf plastochron index (LPI), from three poplar clones: Populus alba L., P. nigra L. and P. x euramericana (Dode) Guinier. In all clones, maximum assimilation rates (A max), maximum stomatal conductance (G Smax) and dark respiration rates (RD) were higher in young leaves (LPI = 3-5) than in mature leaves (LPI = 10-14), and A max decreased from P. alba via P. x euramericana to P. nigra. The clones with high photosynthetic capacity had low induction states 60 s after leaf illumination (IS60; indicating a slow initial induction phase), and required less time to reach 90% photosynthetic induction (T90). In contrast, the clone with the lowest photosynthetic capacity (P. nigra) exhibited high IS60 (high initial induction state) but a long induction time (high T90). A comparison of mature leaves with young leaves revealed significantly (P < 0.01) lower IS60 values in mature leaves of P. nigra only, and significantly higher T90 values in mature leaves of P. alba only. In all clones, young leaves exhibited a lower percentage of maximum transient stomatal limitation during photosynthetic induction (4-9%) compared with mature leaves (16-30%). Transient biochemical limitation, assessed on the basis of the time constants of Rubisco activation (tau), was significantly higher in mature leaves than in young leaves of P. alba; whereas there were no significant differences in tau between young and mature leaves of the other poplar clones. Thus, our hypothesis that leaf age affects photosynthetic induction was confirmed at the level of transient stomatal limitation, which was significantly higher in mature leaves than in young leaves in all clones. For the induction parameters IS60, T90 and tau, photosynthetic induction was more clone-specific and was dependent on leaf age only in some cases, an observation that may apply to other tree species.
Asunto(s)
Fotosíntesis , Populus/metabolismo , Dióxido de Carbono/metabolismo , Clonación de Organismos , Luz , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Estomas de Plantas/metabolismo , Populus/genética , Populus/crecimiento & desarrollo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Factores de TiempoRESUMEN
We examined the principal differences in photosynthetic characteristics between sun and shade foliage and determined the relative importance of biochemical and stomatal limitations during photosynthetic induction. Temperate-zone broadleaf and conifer tree species, ranging widely in shade tolerance, were investigated from one locality in the Czech Republic. The study species included strongly shade-tolerant Abies alba Mill. and Tilia cordata Mill., less shade-tolerant Fagus sylvatica L. and Acer pseudoplatanus L. and sun-demanding Picea abies (L.) Karst. In the fully activated photosynthetic state, sun foliage of all species had significantly higher maximum CO(2) assimilation rates, maximum stomatal conductance and maximum rates of carboxylation than shade foliage. Compared with shade leaves, sun leaves had significantly higher nocturnal stomatal conductances. In all species, shade foliage tended to have higher induction states 60 s after leaf illumination than sun foliage. Sun and shade foliage did not differ in the rate of disappearance of the transient biochemical limitation during the induction phase. Longer time periods were required to reach 90% photosynthetic induction and 90% stomatal induction in sun foliage than in shade foliage of the less shade-tolerant F. sylvatica and A. pseudoplatanus and in sun-demanding P. abies; however, in sun foliage of the strongly shade-tolerant species T. cordata and A. alba, the time needed for photosynthetic induction was similar to, or less than, that for shade foliage. Shade but not sun needles of P. abies and A. alba had significantly slower induction kinetics than the broadleaf tree species. Among species, the sun-demanding P. abies exhibited the shortest stomatal induction times in both sun and shade leaves. Independently of shade tolerance ranking, the transient stomatal and total limitations that characterize photosynthetic induction were relieved significantly earlier in shade foliage than in sun foliage. Sun foliage generally exhibited a hyperbolic photosynthetic induction response, whereas a sigmoidal induction response was more frequent in shade foliage. The different relative proportions of transient biochemical and stomatal limitations during photosynthetic induction in sun and shade foliage indicate an essential role of stomata in photosynthetic limitation during induction, mainly in shade foliage, with a consequent influence on the shape of the photosynthetic induction curve.
Asunto(s)
Aclimatación/fisiología , Ecosistema , Luz , Fotosíntesis/fisiología , Hojas de la Planta/metabolismo , Árboles/metabolismo , Abies/metabolismo , Abies/fisiología , Acer/metabolismo , Acer/fisiología , Dióxido de Carbono/metabolismo , República Checa , Fagus/metabolismo , Fagus/fisiología , Cinética , Picea/metabolismo , Picea/fisiología , Hojas de la Planta/fisiología , Tilia/metabolismo , Tilia/fisiología , Factores de Tiempo , Árboles/fisiologíaRESUMEN
Remotely sensed passive chlorophyll fluorescence emission has a potential to become one of the major global-scale reporter signals on vegetation performance and stress. In contrast to the actively probed parameters such as maximal (FM') or minimal (F0') emission, the steady-state chlorophyll fluorescence, Chl-FS, (FM' > Chl-FS > F0') has not been adequately studied. Using fluorescence imaging of leaves, we explored the modulation of Chl-FS by actinic irradiance and by temperature in laboratory, as well as the changes that occurred in three coniferous and broadleaf plant species grown in field. The experiments revealed that Chl-FS is largely insensitive to the incident irradiance once this is above early morning or late evening levels. The characteristic, pre-noon measured Chl-FS correlated positively with the CO2 assimilation rate when measured in field during the year. It was low and stable in the cold winter months and steeply increased with the spring onset. The high values of the characteristic Chl-FS persisted throughout the vegetation season and rapidly decreased in the fall. The seasonal Chl-FS transitions coincided with the last spring frosts or the first fall frosts that persisted for several consecutive nights. The transitions were marked by an elevated variability of the Chl-FS signal. We propose that the signal variability occurring during the transition periods can be used to detect from satellites the beginning and the end of the photosynthetic activity in evergreen canopies of the temperate zone.