Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; : e2310465, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38366001

RESUMEN

The modification of metal oxides with noble metals is one of the most effective means of improving gas-sensing performance of chemiresistors, but it is often accompanied by unintended side effects such as sensor resistance increases up to unmeasurable levels. Herein, a carbonization-oxidation method is demonstrated using ultrasonic spray pyrolysis technique to realize platinum (Pt) single atom (SA) substitutional doping into SnO2 (named PtSA-SnO2 ). The substitutional doping strategy can obviously enhance gas-sensing properties, and meanwhile decrease sensor resistance by two orders of magnitude (decreased from ≈850 to ≈2 MΩ), which are attributed to the tuning of band gap and fermi-level position, efficient single atom catalysis, and the raising of adsorption capability of formaldehyde, as validated by the state-of-the-art characterizations, such as spherical aberration-corrected scanning transmission electron microscopy (Cs -corrected STEM), in situ diffuse reflectance infrared Fourier transformed spectra (in situ DRIFT), CO temperature-programmed reduction (CO-TPR), and theoretical calculations. As a proof of concept, the developed PtSA-SnO2 sensor shows humidity-independent (30-70% relative humidity) gas-sensing performance in the selective detection of formaldehyde with high response, distinguishable selectivity (8< Sformaldehyde /Sinterferant <14), and ultra-low detection limit (10 ppb). This work presents a generalized and facile method to design high-performance metal oxides for chemical sensing of volatile organic compounds (VOCs).

2.
ACS Appl Mater Interfaces ; 11(9): 9600-9611, 2019 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-30724073

RESUMEN

Understanding the effect of substitutional doping on gas-sensing performances is essential for designing high-activity sensing nanomaterials. Herein, formaldehyde sensors based on gallium-doped In2O3 inverse opal (IO-(Ga xIn1- x)2O3) microspheres were purposefully prepared by a simple ultrasonic spray pyrolysis method combined with self-assembled sulfonated polystyrene sphere templates. The well-aligned inverse opal structure, with three different-sized pores, plays the dual role of accelerating the diffusion of gas molecules and providing more active sites. The Ga substitutional doping can alter the electronic energy level structure of (Ga xIn1- x)2O3, leading to the elevation of the Fermi level and the modulation of the band gap close to a suitable value (3.90 eV), hence, effectively optimizing the oxidative catalytic activity for preferential CH2O oxidation and increasing the amount of adsorbed oxygen. More importantly, the gas selectivity could be controlled by varying the energy level of adsorbed oxygen. Accordingly, the IO-(Ga0.2In0.8)2O3 microsphere sensor showed a high response toward formaldehyde with fast response and recovery speeds, and ultralow detection limit (50 ppb). Our findings finally offer implications for designing Fermi level-tailorable semiconductor nanomaterials for the control of selectivity and monitoring indoor air pollutants.

3.
Nanoscale ; 10(10): 4841-4851, 2018 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-29473925

RESUMEN

The lower gas sensitivity, humidity dependence of the gas sensing properties, and long recovery times of room-temperature gas sensors severely limit their applications. Herein, to address these issues, a series of 3D inverse opal (IO) In2O3-ZnO heterogeneous composite microspheres (HCMs) are fabricated by ultrasonic spray pyrolysis (USP) employing self-assembled sulfonated polystyrene (S-PS) spheres as a sacrificial template. The 3D IO In2O3-ZnO HCMs possess highly ordered 3D inverse opal structures and bimodal (meso-scale and macro-scale) pores, which can provide large accessible surface areas and rapid mass transfer, resulting in enhanced gas sensing characteristics. Furthermore, the 3D IO architecture and n-n heterojunctions can extend the photoabsorption range to the visible light area, effectively prolonging the lifetimes of photo-generated charge carriers, and can increase separation of visible light-generated charges. As a result, the as-prepared 3D IO In2O3-ZnO HCMs deliver excellent NO2 sensing performance under visible light irradiation at room temperature, such as high sensitivity (Rgas/Rair = 54.3 to 5 ppm NO2), low detection limit (250 ppb), fast recovery time (188 s), excellent selectivity and humidity independence. These enhanced photo-electronic gas sensing properties are attributed to the combination of highly ordered 3D IO microspheres and In2O3-ZnO heterogeneous composites.

4.
J Colloid Interface Sci ; 513: 760-766, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29222975

RESUMEN

In this work, ethanol gas sensor with high performance was fabricated successfully with hierarchical CoO/SnO2 heterojunction by two-steps hydrothermal method. The response value of CoO/SnO2 sensor is up to 145 at 250 °C when exposed to 100 ppm ethanol gas, which is much higher than that (13.5) of SnO2 sensor. These good sensing performances mainly attribute to the formation of the CoO/SnO2 heterojunction, which makes great variation of resistance in air and ethanol gas. Thus, the combination of n-type SnO2 and p-type CoO provides an effective strategy to design new ethanol gas sensors. The unique nanostructure also played an important role in detecting ethanol, due to its contribution in facilitating the transport rate of the ethanol gas molecules. Also, we provide a general two-step strategy for designing the heterojunction based on the SnO2 nanostructure.

5.
J Colloid Interface Sci ; 512: 740-749, 2018 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-29107925

RESUMEN

The great demand for gas sensors in practical applications has stimulated tremendous attention in this area due to its important significance in real life. A facile synthesis of WO3 nanoplates and their subsequent Sn doping strategy by using a hydrothermal method was investigated to enhance gas sensing performance for NO2 gas, one of the gases toxic to human beings and the environment. Various techniques were used to characterize all the products. The morphology characterizations demonstrated that all the samples exhibited a similar nanoplate structure with or without Sn doping. The gas sensing properties of the sensors based on different doping concentrations (0, 1, 2 and 5wt%) have been systematically investigated. The sensor based on the 2wt% Sn-doped WO3 nanoplates showed the maximum response to NO2 (55-100ppb NO2). Furthermore, the introduction of Sn ions into the sensing materials of WO3 resulted in shorter response and recovery times. This finding could be attributed to the increased number of oxygen vacancies on the surface of the sensing material and the resistance of the gas sensors. The results provide a new doping strategy to fabricate high performance NO2 gas sensors.

6.
J Colloid Interface Sci ; 528: 53-62, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-29807356

RESUMEN

Yolk-shell nanomaterials with controlled morphology have received great attention because of their promising applications in gas sensing. Here, we reported the facile synthesis of pure and 1-5 mol% Sn doped Co3O4 yolk-shell nanostructures by calcinating the Co based metal-organic framework (MOF, ZIF-67) prepared from hydrothermal method. The morphologies of the as-obtained samples were characterized by various experimental techniques. Furthermore, the gas sensing properties were systematically measured. Gas sensors based on 3 mol% Sn doped Co3O4 yolk-shell nanostructures exhibited extremely enhanced response to ethanol at 200 °C (Rg/Ra = 13.4-100 ppm at 200 °C) and low detection limit (Rg/Ra = 1.3-1 ppm ethanol at 200 °C). Most importantly, the gas response to 100 ppm ethanol is still maintained well after continuous measurement for 20 days.

7.
ACS Sens ; 2(5): 648-654, 2017 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-28723171

RESUMEN

Indium tungsten oxide ellipsoidal nanospheres were prepared with different In/W ratios by using a simple hydrothermal method without any surfactant for the first time. Sensors based on different In/W ratios samples were fabricated, and one of the samples exhibited better response to methanol compared with others. High content of defective oxygen (Ov) and proper output proportion of In to W might be the main reasons for the better gas sensing properties. The length of the nanosphere was about 150-200 nm, and the width was about 100 nm. Various techniques were applied to investigate the nanospheres. Sensing characteristics toward methanol were investigated. Significantly, the sensor exhibited ultrafast response to methanol. The response time to 400 ppm methanol was no more than 2 s and the recovery time was 9 s at 312 °C. Most importantly, the humidity almost had no effect on the response of the sensor fabricated here, which is hard to achieve in gas-sensing applications.

8.
J Colloid Interface Sci ; 483: 314-320, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27565963

RESUMEN

3D hierarchical flower-like WO3·0.33H2O nanostructures were synthesized via a facile solvothermal method without using any template or surfactant. After annealed at high temperature, the as-prepared WO3·0.33H2O would partly or fully transform into monoclinic WO3 with the morphology almost unchanged. Gas sensing properties of the sensor based on these flower-like nanostructures with the relationship of annealing temperature were also investigated systematically. The experiment results indicate the sensor shows highest response to NO2 when the annealing temperature is 500°C. At the same time, the detection limit can be as low as ∼5ppb level. Thus, the novel flower-like nanostructures might be a promising material for designing NO2 gas sensor with high performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA