Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Eur J Immunol ; 53(8): e2350449, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37134263

RESUMEN

ER aminopeptidase 1 (ERAP1) is an ER-resident aminopeptidase that excises N-terminal residues of peptides that then bind onto Major Histocompatibility Complex I molecules (MHC-I) and indirectly modulates adaptive immune responses. ERAP1 contains an allosteric regulatory site that accommodates the C-terminus of at least some peptide substrates, raising questions about its exact influence on antigen presentation and the potential of allosteric inhibition for cancer immunotherapy. We used an inhibitor that targets this regulatory site to study its effect on the immunopeptidome of a human cancer cell line. The immunopeptidomes of allosterically inhibited and ERAP1 KO cells contain high-affinity peptides with sequence motifs consistent with the cellular HLA class I haplotypes but are strikingly different in peptide composition. Compared to KO cells, allosteric inhibition did not affect the length distribution of peptides and skewed the peptide repertoire both in terms of sequence motifs and HLA allele utilization, indicating significant mechanistic differences between the two ways of disrupting ERAP1 function. These findings suggest that the regulatory site of ERAP1 plays distinct roles in antigenic peptide selection, which should be taken into consideration when designing therapeutic interventions targeting the cancer immunopeptidome.


Asunto(s)
Aminopeptidasas , Péptidos , Humanos , Aminopeptidasas/genética , Presentación de Antígeno , Antígenos , Antígenos de Histocompatibilidad Menor/genética , Antígenos de Histocompatibilidad Menor/metabolismo
2.
Cancer Immunol Immunother ; 68(8): 1245-1261, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31222486

RESUMEN

The efficacy of cancer immunotherapy, including treatment with immune-checkpoint inhibitors, often is limited by ineffective presentation of antigenic peptides that elicit T-cell-mediated anti-tumor cytotoxic responses. Manipulation of antigen presentation pathways is an emerging approach for enhancing the immunogenicity of tumors in immunotherapy settings. ER aminopeptidase 1 (ERAP1) is an intracellular enzyme that trims peptides as part of the system that generates peptides for binding to MHC class I molecules (MHC-I). We hypothesized that pharmacological inhibition of ERAP1 in cells could regulate the cellular immunopeptidome. To test this hypothesis, we treated A375 melanoma cells with a recently developed potent ERAP1 inhibitor and analyzed the presented MHC-I peptide repertoire by isolating MHC-I, eluting bound peptides, and identifying them using capillary chromatography and tandem mass spectrometry (LC-MS/MS). Although the inhibitor did not reduce cell-surface MHC-I expression, it induced qualitative and quantitative changes in the presented peptidomes. Specifically, inhibitor treatment altered presentation of about half of the total 3204 identified peptides, including about one third of the peptides predicted to bind tightly to MHC-I. Inhibitor treatment altered the length distribution of eluted peptides without change in the basic binding motifs. Surprisingly, inhibitor treatment enhanced the average predicted MHC-I binding affinity, by reducing presentation of sub-optimal long peptides and increasing presentation of many high-affinity 9-12mers, suggesting that baseline ERAP1 activity in this cell line is destructive for many potential epitopes. Our results suggest that chemical inhibition of ERAP1 may be a viable approach for manipulating the immunopeptidome of cancer.


Asunto(s)
Aminopeptidasas/metabolismo , Antígenos de Neoplasias/metabolismo , Antineoplásicos/farmacología , Vacunas contra el Cáncer/inmunología , Epítopos de Linfocito T/metabolismo , Inmunoterapia/métodos , Melanoma/tratamiento farmacológico , Antígenos de Histocompatibilidad Menor/metabolismo , Péptidos/metabolismo , Inhibidores de Proteasas/farmacología , Linfocitos T Citotóxicos/inmunología , Aminopeptidasas/antagonistas & inhibidores , Presentación de Antígeno , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/inmunología , Línea Celular Tumoral , Citotoxicidad Inmunológica , Epítopos de Linfocito T/genética , Epítopos de Linfocito T/inmunología , Antígenos HLA/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Inmunogenicidad Vacunal , Activación de Linfocitos , Terapia Molecular Dirigida , Péptidos/genética , Péptidos/inmunología , Unión Proteica
3.
Bioorg Med Chem ; 27(24): 115177, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31711716

RESUMEN

The oxytocinase subfamily of M1 aminopeptidases consists of three members, ERAP1, ERAP2 and IRAP that play several important biological roles, including key functions in the generation of antigenic peptides that drive human immune responses. They represent emerging targets for pharmacological manipulation of the immune system, albeit lack of selective inhibitors is hampering these efforts. Most of the previously explored small-molecule binders target the active site of the enzymes via strong interactions with the catalytic zinc(II) atom and, while achieving increased potency, they suffer in selectivity. Continuing our earlier efforts on weaker zinc(II) binding groups (ZBG), like the 3,4-diaminobenzoic acid derivatives (DABA), we herein synthesized and biochemically evaluated analogues of nine potentially weak ZBGs, based on differential substitutions of functionalized pyridinone- and pyridinethione-scaffolds, nicotinic-, isonicotinic-, aminobenzoic- and hydrazinobenzoic-acids. Crystallographic analysis of two analogues in complex with a metalloprotease (MMP-12) revealed unexpected binding topologies, consistent with the observed affinities. Our results suggest that the potency of the compounds as inhibitors of ERAP1, ERAP2 and IRAP is primarily driven by the occupation of active-site specificity pockets and their proper orientation within the enzymes.


Asunto(s)
Aminopeptidasas/antagonistas & inhibidores , Proteína Antagonista del Receptor de Interleucina 1/antagonistas & inhibidores , Zinc/química , Aminopeptidasas/metabolismo , Sitios de Unión , Diseño de Fármacos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/inmunología , Antígenos de Histocompatibilidad Menor/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad , Zinc/metabolismo
4.
Curr Opin Immunol ; 83: 102337, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37216842

RESUMEN

Antigen (Ag)-trimming aminopeptidases belong to the oxytocinase subfamily of M1 metallopeptidases. In humans, this subfamily contains the endoplasmic reticulum aminopeptidases 1 and 2 (ERAP1 and 2) and the insulin-responsive aminopeptidase (IRAP, synonym oxytocinase), an endosomal enzyme. The ability of these enzymes to trim antigenic precursors and to generate major histocompatibility class-I ligands has been demonstrated extensively for ERAP1, less for ERAP2, which is absent in rodents, and exclusively in the context of cross-presentation for IRAP. During 20 years of research on these aminopeptidases, their enzymatic function has been very well characterized and their genetic association with autoimmune diseases, cancers, and infections is well established. The mechanisms by which these proteins are associated to human diseases are not always clear. This review discusses the Ag-trimming-independent functions of the oxytocinase subfamily of M1 aminopeptidases and the new questions raised by recent publications on IRAP and ERAP2.


Asunto(s)
Aminopeptidasas , Cistinil Aminopeptidasa , Humanos , Aminopeptidasas/genética , Aminopeptidasas/metabolismo , Cistinil Aminopeptidasa/genética , Antígenos , Antígenos de Histocompatibilidad Menor/genética
5.
iScience ; 26(7): 107055, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37360697

RESUMEN

Cell surface receptor internalization can either terminate signaling or activate alternative endosomal signaling pathways. We investigated here whether endosomal signaling is involved in the function of the human receptors for Fc immunoglobulin fragments (FcRs): FcαRI, FcγRIIA, and FcγRI. All these receptors were internalized after their cross-linking with receptor-specific antibodies, but their intracellular trafficking was different. FcαRI was targeted directly to lysosomes, while FcγRIIA and FcγRI were internalized in particular endosomal compartments described by the insulin esponsive minoeptidase (IRAP), where they recruited signaling molecules, such as the active form of the kinase Syk, PLCγ and the adaptor LAT. Destabilization of FcγR endosomal signaling in the absence of IRAP compromised cytokine secretion downstream FcγR activation and macrophage ability to kill tumor cells by antibody-dependent cell-mediated cytotoxicity (ADCC). Our results indicate that FcγR endosomal signaling is required for the FcγR-driven inflammatory reaction and possibly for the therapeutic action of monoclonal antibodies.

6.
Biomed J ; 45(2): 310-320, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34592497

RESUMEN

Antigen T cell receptors (TCR) recognize antigenic peptides displayed by the major histocompatibility complex (pMHC) and play a critical role in T cell activation. The levels of TCR complexes at the cell surface, where signaling is initiated, depend on the balance between TCR synthesis, recycling and degradation. Cell surface TCR interaction with pMHC leads to receptor clustering and formation of a tight T cell-APC contact, the immune synapse, from which the activated TCR is internalized. While TCR internalization from the immune synapse has been initially considered to arrest TCR signaling, recent evidence support the hypothesis that the internalized receptor continues to signal from specialized endosomes. Here, we review the molecular mechanisms of TCR endocytosis and recycling, both in steady state and after T cell activation. We then discuss the experimental evidence in favor of endosomal TCR signaling and its possible consequences on T cell activation.


Asunto(s)
Activación de Linfocitos , Receptores de Antígenos de Linfocitos T , Antígenos , Endocitosis , Humanos , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T
7.
Front Immunol ; 13: 1029759, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36389775

RESUMEN

The function of intracellular trafficking in immune-complex triggered inflammation remains poorly understood. Here, we investigated the role of Insulin-Regulated Amino Peptidase (IRAP)-positive endosomal compartments in Fc receptor (FcR)-induced inflammation. Less severe FcγR-triggered arthritis, active systemic anaphylaxis and FcεRI-triggered passive systemic anaphylaxis were observed in IRAP-deficient versus wild-type mice. In mast cells FcεRI stimulation induced rapid plasma membrane recruitment of IRAP-positive endosomes. IRAP-deficient cells exhibited reduced secretory responses, calcium signaling and activating SykY519/520 phosphorylation albeit receptor tyrosine phosphorylation on ß and γ subunits was not different. By contrast, in the absence of IRAP, SHP1-inactivating phosphorylation on Ser591 that controls Syk activity was decreased. Ex-vivo cell profiling after FcγR-triggered anaphylaxis confirmed decreased phosphorylation of both SykY519/520 and SHP-1S591 in IRAP-deficient neutrophils and monocytes. Thus, IRAP-positive endosomal compartments, in promoting inhibition of SHP-1 during FcR signaling, control the extent of phosphorylation events at the plasma membrane and contribute to setting the intensity of immune-complex triggered inflammatory diseases.


Asunto(s)
Anafilaxia , Insulina , Animales , Ratones , Insulina/farmacología , Aminopeptidasas/metabolismo , Cistinil Aminopeptidasa , Receptores Fc , Receptores de IgG/genética , Receptores de IgE , Complejo Antígeno-Anticuerpo , Inflamación
8.
J Med Chem ; 65(14): 10098-10117, 2022 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-35833347

RESUMEN

The oxytocinase subfamily of M1 zinc aminopeptidases comprises emerging drug targets, including the ER-resident aminopeptidases 1 and 2 (ERAP1 and ERAP2) and insulin-regulated aminopeptidase (IRAP); however, reports on clinically relevant inhibitors are limited. Here we report a new synthetic approach of high diastereo- and regioselectivity for functionalization of the α-hydroxy-ß-amino acid scaffold of bestatin. Stereochemistry and mechanism of inhibition were investigated by a high-resolution X-ray crystal structure of ERAP1 in complex with a micromolar inhibitor. By exploring the P1 side-chain functionalities, we achieve significant potency and selectivity, and we report a cell-active, low-nanomolar inhibitor of IRAP with >120-fold selectivity over homologous enzymes. X-ray crystallographic analysis of IRAP in complex with this inhibitor suggest that interactions with the GAMEN loop is an unappreciated key determinant for potency and selectivity. Overall, our results suggest that α-hydroxy-ß-amino acid derivatives may constitute useful chemical tools and drug leads for this group of aminopeptidases.


Asunto(s)
Aminopeptidasas , Insulina , Aminoácidos/farmacología , Aminopeptidasas/química , Cistinil Aminopeptidasa , Leucina/análogos & derivados
9.
Nat Commun ; 11(1): 2779, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32487999

RESUMEN

T cell receptor (TCR) activation is modulated by mechanisms such as TCR endocytosis, which is thought to terminate TCR signalling. Here we show that, upon internalization, TCR continues to signal from a set of specialized endosomes that are crucial for T cell functions. Mechanistically, TCR ligation leads to clathrin-mediated internalization of the TCR-CD3ζ complex, while maintaining CD3ζ signalling, in endosomal vesicles that contain the insulin responsive aminopeptidase (IRAP) and the SNARE protein Syntaxin 6. Destabilization of this compartment through IRAP deletion enhances plasma membrane expression of the TCR-CD3ζ complex, yet compromises overall CD3ζ signalling; moreover, the integrity of this compartment is also crucial for T cell activation and survival after suboptimal TCR activation, as mice engineered with a T cell-specific deletion of IRAP fail to develop efficient polyclonal anti-tumour responses. Our results thus reveal a previously unappreciated function of IRAP-dependent endosomal TCR signalling in T cell activation.


Asunto(s)
Cistinil Aminopeptidasa/metabolismo , Endosomas/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal/fisiología , Linfocitos T/metabolismo , Animales , Membrana Celular/metabolismo , Proliferación Celular , Clatrina/metabolismo , Cistinil Aminopeptidasa/genética , Modelos Animales de Enfermedad , Endocitosis/fisiología , Células HEK293 , Humanos , Interleucina-2/metabolismo , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Qa-SNARE/metabolismo , Transcriptoma
10.
J Med Chem ; 63(6): 3348-3358, 2020 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-32109056

RESUMEN

ER aminopeptidase 1 (ERAP1) is an intracellular enzyme that generates antigenic peptides and is an emerging target for cancer immunotherapy and the control of autoimmunity. ERAP1 inhibitors described previously target the active site and are limited in selectivity, minimizing their clinical potential. To address this, we targeted the regulatory site of ERAP1 using a high-throughput screen and discovered a small molecule hit that is highly selective for ERAP1. (4aR,5S,6R,8S,8aR)-5-(2-(Furan-3-yl)ethyl)-8-hydroxy-5,6,8a-trimethyl-3,4,4a,5,6,7,8,8a-octahydronaphthalene-1-carboxylic acid is a natural product found in Dodonaea viscosa that constitutes a submicromolar, highly selective, and cell-active modulator of ERAP1. Although the compound activates hydrolysis of small model substrates, it is a competitive inhibitor for physiologically relevant longer peptides. Crystallographic analysis confirmed that the compound targets the regulatory site of the enzyme that normally binds the C-terminus of the peptide substrate. Our findings constitute a novel starting point for the development of selective ERAP1 modulators that have potential for further clinical development.


Asunto(s)
Aminopeptidasas/antagonistas & inhibidores , Presentación de Antígeno/efectos de los fármacos , Diterpenos de Tipo Clerodano/farmacología , Epítopos/metabolismo , Péptidos/metabolismo , Inhibidores de Proteasas/farmacología , Sitio Alostérico , Aminopeptidasas/química , Aminopeptidasas/metabolismo , Animales , Dominio Catalítico , Cristalografía por Rayos X , Diterpenos de Tipo Clerodano/química , Diterpenos de Tipo Clerodano/metabolismo , Activadores de Enzimas/química , Activadores de Enzimas/metabolismo , Activadores de Enzimas/farmacología , Epítopos/química , Células HeLa , Humanos , Ratones , Antígenos de Histocompatibilidad Menor/química , Antígenos de Histocompatibilidad Menor/metabolismo , Péptidos/química , Inhibidores de Proteasas/química , Inhibidores de Proteasas/metabolismo , Unión Proteica , Proteolisis/efectos de los fármacos
11.
Curr Med Chem ; 26(15): 2715-2729, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-29446724

RESUMEN

Endoplasmic Reticulum aminopeptidase 1 and 2 are two homologous enzymes that help generate peptide ligands for presentation by Major Histocompatibility Class I molecules. Their enzymatic activity influences the antigenic peptide repertoire and indirectly controls adaptive immune responses. Accumulating evidence suggests that these two enzymes are tractable targets for the regulation of immune responses with possible applications ranging from cancer immunotherapy to treating inflammatory autoimmune diseases. Here, we review the state-of-the-art in the development of inhibitors of ERAP1 and ERAP2 as well as their potential and limitations for clinical applications.


Asunto(s)
Aminopeptidasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Aminopeptidasas/química , Aminopeptidasas/genética , Aminopeptidasas/fisiología , Animales , Autoinmunidad/fisiología , Dominio Catalítico , Línea Celular Tumoral , Diseño de Fármacos , Inhibidores Enzimáticos/química , Antígenos de Histocompatibilidad/inmunología , Antígenos de Histocompatibilidad/metabolismo , Humanos , Inmunidad Innata/fisiología , Antígenos de Histocompatibilidad Menor/química , Antígenos de Histocompatibilidad Menor/genética , Antígenos de Histocompatibilidad Menor/fisiología , Neoplasias/enzimología , Neoplasias/inmunología , Polimorfismo de Nucleótido Simple
12.
ACS Med Chem Lett ; 8(3): 333-337, 2017 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-28337326

RESUMEN

Endoplasmic reticulum aminopeptidase 2 assists with the generation of antigenic peptides for presentation onto Major Histocompatibility Class I molecules in humans. Recent evidence has suggested that the activity of ERAP2 may contribute to the generation of autoimmunity, thus making ERAP2 a possible pharmacological target for the regulation of adaptive immune responses. To better understand the structural elements of inhibitors that govern their binding affinity to the ERAP2 active site, we cocrystallized ERAP2 with a medium activity 3,4-diaminobenzoic acid inhibitor and a poorly active hydroxamic acid derivative. Comparison of these two crystal structures with a previously solved structure of ERAP2 in complex with a potent phosphinic pseudopeptide inhibitor suggests that engaging the substrate N-terminus recognition properties of the active site is crucial for inhibitor binding even in the absence of a potent zinc-binding group. Proper utilization of all five major pharmacophores is necessary, however, to optimize inhibitor potency.

13.
Mol Immunol ; 67(2 Pt B): 426-35, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26224046

RESUMEN

Endoplasmic Reticulum Aminopeptidase 1 (ERAP1) generates antigenic peptides for loading onto Major Histocompatibility Class I molecules (MHCI) and can regulate adaptive immune responses. During the last few years, many genetic studies have revealed strong associations between coding Single Nucleotide Polymorphisms (SNPs) in ERAP1 and common human diseases ranging from viral infections to cancer and autoimmunity. Functional studies have established that these SNPs affect enzyme activity resulting to changes in antigenic peptide processing, presentation by MHCI and cellular cytotoxic responses. These disease-associated polymorphisms are, however, located away from the enzyme's active site and are interspersed to different structural domains. As a result, the mechanism by which these SNPs can affect function remains largely elusive. ERAP1 utilizes a complex catalytic mechanism that involves a large conformational change between inactive and active forms and has the unique property to trim larger peptides more efficiently than smaller ones. We analyzed two of the most consistently discovered disease-associated polymorphisms, namely K528R and Q730E, for their effect on the ability of the enzyme to select substrates based on length and to undergo conformational changes. By utilizing enzymatic and computational analysis we propose that disease-associated SNPs can affect ERAP1 function by influencing: (i) substrate length selection and (ii) the conformational distribution of the protein ensemble. Our results provide novel insight on the mechanisms by which polymorphic variation distal from the active site of ERAP1 can translate to changes in function and contribute to immune system variability in humans.


Asunto(s)
Aminopeptidasas/genética , Polimorfismo de Nucleótido Simple/genética , Aminopeptidasas/química , Cristalografía por Rayos X , Electroforesis en Gel de Poliacrilamida , Fluorescencia , Humanos , Leucil Aminopeptidasa/metabolismo , Antígenos de Histocompatibilidad Menor , Modelos Moleculares , Simulación de Dinámica Molecular , Péptidos/metabolismo , Análisis de Componente Principal , Estructura Terciaria de Proteína , Especificidad por Sustrato
14.
J Innate Immun ; 7(3): 275-89, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25591727

RESUMEN

Endoplasmic reticulum aminopeptidase 1 (ERAP1) gene polymorphisms have been linked to several autoimmune diseases; however, the molecular mechanisms underlying these associations are not well understood. Recently, we demonstrated that ERAP1 regulates key aspects of the innate immune response. Previous studies show ERAP1 to be endoplasmic reticulum-localized and secreted during inflammation. Herein, we investigate the possible roles that ERAP1 polymorphic variants may have in modulating the innate immune responses of human peripheral blood mononuclear cells (hPBMCs) using two experimental methods: extracellular exposure of hPBMCs to ERAP1 variants and adenovirus (Ad)-based ERAP1 expression. We found that exposure of hPBMCs to ERAP1 variant proteins as well as ERAP1 overexpression by Ad5 vectors increased inflammatory cytokine and chemokine production, and enhanced immune cell activation. Investigating the molecular mechanisms behind these responses revealed that ERAP1 is able to activate innate immunity via multiple pathways, including the NLRP3 (NOD-like receptor, pyrin domain-containing 3) inflammasome. Importantly, these responses varied if autoimmune disease-associated variants of ERAP1 were examined in the assay systems. Unexpectedly, blocking ERAP1 cellular internalization augmented IL-1ß production. To our knowledge, this is the first report identifying ERAP1 as being involved in modulating innate responses of human immune cells, a finding that may explain why ERAP1 has been genetically associated with several autoimmune diseases.


Asunto(s)
Aminopeptidasas/inmunología , Enfermedades Autoinmunes/inmunología , Inmunidad Innata , Leucocitos Mononucleares/inmunología , Adenoviridae , Aminopeptidasas/genética , Animales , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/patología , Proteínas Portadoras/genética , Proteínas Portadoras/inmunología , Línea Celular , Humanos , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Leucocitos Mononucleares/patología , Ratones , Antígenos de Histocompatibilidad Menor , Proteína con Dominio Pirina 3 de la Familia NLR , Transducción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA