Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Bioinformatics ; 12: 303, 2011 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-21791100

RESUMEN

BACKGROUND: The development of high-throughput experimentation has led to astronomical growth in biologically relevant lipids and lipid derivatives identified, screened, and deposited in numerous online databases. Unfortunately, efforts to annotate, classify, and analyze these chemical entities have largely remained in the hands of human curators using manual or semi-automated protocols, leaving many novel entities unclassified. Since chemical function is often closely linked to structure, accurate structure-based classification and annotation of chemical entities is imperative to understanding their functionality. RESULTS: As part of an exploratory study, we have investigated the utility of semantic web technologies in automated chemical classification and annotation of lipids. Our prototype framework consists of two components: an ontology and a set of federated web services that operate upon it. The formal lipid ontology we use here extends a part of the LiPrO ontology and draws on the lipid hierarchy in the LIPID MAPS database, as well as literature-derived knowledge. The federated semantic web services that operate upon this ontology are deployed within the Semantic Annotation, Discovery, and Integration (SADI) framework. Structure-based lipid classification is enacted by two core services. Firstly, a structural annotation service detects and enumerates relevant functional groups for a specified chemical structure. A second service reasons over lipid ontology class descriptions using the attributes obtained from the annotation service and identifies the appropriate lipid classification. We extend the utility of these core services by combining them with additional SADI services that retrieve associations between lipids and proteins and identify publications related to specified lipid types. We analyze the performance of SADI-enabled eicosanoid classification relative to the LIPID MAPS classification and reflect on the contribution of our integrative methodology in the context of high-throughput lipidomics. CONCLUSIONS: Our prototype framework is capable of accurate automated classification of lipids and facile integration of lipid class information with additional data obtained with SADI web services. The potential of programming-free integration of external web services through the SADI framework offers an opportunity for development of powerful novel applications in lipidomics. We conclude that semantic web technologies can provide an accurate and versatile means of classification and annotation of lipids.


Asunto(s)
Bases de Datos Factuales , Lípidos/química , Humanos , Metabolismo de los Lípidos , Lípidos/clasificación , Proteínas/metabolismo , Semántica
2.
BMC Genomics ; 11 Suppl 4: S24, 2010 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-21143808

RESUMEN

BACKGROUND: Mutation impact extraction is a hitherto unaccomplished task in state of the art mutation extraction systems. Protein mutations and their impacts on protein properties are hidden in scientific literature, making them poorly accessible for protein engineers and inaccessible for phenotype-prediction systems that currently depend on manually curated genomic variation databases. RESULTS: We present the first rule-based approach for the extraction of mutation impacts on protein properties, categorizing their directionality as positive, negative or neutral. Furthermore protein and mutation mentions are grounded to their respective UniProtKB IDs and selected protein properties, namely protein functions to concepts found in the Gene Ontology. The extracted entities are populated to an OWL-DL Mutation Impact ontology facilitating complex querying for mutation impacts using SPARQL. We illustrate retrieval of proteins and mutant sequences for a given direction of impact on specific protein properties. Moreover we provide programmatic access to the data through semantic web services using the SADI (Semantic Automated Discovery and Integration) framework. CONCLUSION: We address the problem of access to legacy mutation data in unstructured form through the creation of novel mutation impact extraction methods which are evaluated on a corpus of full-text articles on haloalkane dehalogenases, tagged by domain experts. Our approaches show state of the art levels of precision and recall for Mutation Grounding and respectable level of precision but lower recall for the task of Mutant-Impact relation extraction. The system is deployed using text mining and semantic web technologies with the goal of publishing to a broad spectrum of consumers.


Asunto(s)
Algoritmos , Biología Computacional/métodos , Mutación , Semántica , Bases de Datos de Proteínas , Almacenamiento y Recuperación de la Información/métodos , Mutación Puntual , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , Publicaciones , Alineación de Secuencia/métodos , Homología de Secuencia de Aminoácido
3.
J Biomed Semantics ; 2 Suppl 5: S11, 2011 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-22166494

RESUMEN

BACKGROUND: Competitions in text mining have been used to measure the performance of automatic text processing solutions against a manually annotated gold standard corpus (GSC). The preparation of the GSC is time-consuming and costly and the final corpus consists at the most of a few thousand documents annotated with a limited set of semantic groups. To overcome these shortcomings, the CALBC project partners (PPs) have produced a large-scale annotated biomedical corpus with four different semantic groups through the harmonisation of annotations from automatic text mining solutions, the first version of the Silver Standard Corpus (SSC-I). The four semantic groups are chemical entities and drugs (CHED), genes and proteins (PRGE), diseases and disorders (DISO) and species (SPE). This corpus has been used for the First CALBC Challenge asking the participants to annotate the corpus with their text processing solutions. RESULTS: All four PPs from the CALBC project and in addition, 12 challenge participants (CPs) contributed annotated data sets for an evaluation against the SSC-I. CPs could ignore the training data and deliver the annotations from their genuine annotation system, or could train a machine-learning approach on the provided pre-annotated data. In general, the performances of the annotation solutions were lower for entities from the categories CHED and PRGE in comparison to the identification of entities categorized as DISO and SPE. The best performance over all semantic groups were achieved from two annotation solutions that have been trained on the SSC-I.The data sets from participants were used to generate the harmonised Silver Standard Corpus II (SSC-II), if the participant did not make use of the annotated data set from the SSC-I for training purposes. The performances of the participants' solutions were again measured against the SSC-II. The performances of the annotation solutions showed again better results for DISO and SPE in comparison to CHED and PRGE. CONCLUSIONS: The SSC-I delivers a large set of annotations (1,121,705) for a large number of documents (100,000 Medline abstracts). The annotations cover four different semantic groups and are sufficiently homogeneous to be reproduced with a trained classifier leading to an average F-measure of 85%. Benchmarking the annotation solutions against the SSC-II leads to better performance for the CPs' annotation solutions in comparison to the SSC-I.

4.
J Am Med Inform Assoc ; 17(4): 446-53, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20595313

RESUMEN

OBJECTIVE: To determine whether a factorized version of the complement naïve Bayes (FCNB) classifier can reduce the time spent by experts reviewing journal articles for inclusion in systematic reviews of drug class efficacy for disease treatment. DESIGN: The proposed classifier was evaluated on a test collection built from 15 systematic drug class reviews used in previous work. The FCNB classifier was constructed to classify each article as containing high-quality, drug class-specific evidence or not. Weight engineering (WE) techniques were added to reduce underestimation for Medical Subject Headings (MeSH)-based and Publication Type (PubType)-based features. Cross-validation experiments were performed to evaluate the classifier's parameters and performance. MEASUREMENTS: Work saved over sampling (WSS) at no less than a 95% recall was used as the main measure of performance. RESULTS: The minimum workload reduction for a systematic review for one topic, achieved with a FCNB/WE classifier, was 8.5%; the maximum was 62.2% and the average over the 15 topics was 33.5%. This is 15.0% higher than the average workload reduction obtained using a voting perceptron-based automated citation classification system. CONCLUSION: The FCNB/WE classifier is simple, easy to implement, and produces significantly better results in reducing the workload than previously achieved. The results support it being a useful algorithm for machine-learning-based automation of systematic reviews of drug class efficacy for disease treatment.


Asunto(s)
Técnicas de Apoyo para la Decisión , Quimioterapia , Medicina Basada en la Evidencia/clasificación , Almacenamiento y Recuperación de la Información/clasificación , Literatura de Revisión como Asunto , Algoritmos , Automatización , Teorema de Bayes , Eficiencia , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA