Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Am J Pathol ; 193(9): 1185-1194, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37611969

RESUMEN

Thyroid cancer is the most common malignant endocrine tumor. The key test to assess preoperative risk of malignancy is cytologic evaluation of fine-needle aspiration biopsies (FNABs). The evaluation findings can often be indeterminate, leading to unnecessary surgery for benign post-surgical diagnoses. We have developed a deep-learning algorithm to analyze thyroid FNAB whole-slide images (WSIs). We show, on the largest reported data set of thyroid FNAB WSIs, clinical-grade performance in the screening of determinate cases and indications for its use as an ancillary test to disambiguate indeterminate cases. The algorithm screened and definitively classified 45.1% (130/288) of the WSIs as either benign or malignant with risk of malignancy rates of 2.7% and 94.7%, respectively. It reduced the number of indeterminate cases (N = 108) by reclassifying 21.3% (N = 23) as benign with a resultant risk of malignancy rate of 1.8%. Similar results were reproduced using a data set of consecutive FNABs collected during an entire calendar year, achieving clinically acceptable margins of error for thyroid FNAB classification.


Asunto(s)
Aprendizaje Profundo , Neoplasias de la Tiroides , Humanos , Citología , Neoplasias de la Tiroides/diagnóstico , Algoritmos
2.
Mod Pathol ; 36(6): 100129, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36931041

RESUMEN

We examined the performance of deep learning models on the classification of thyroid fine-needle aspiration biopsies using microscope images captured in 2 ways: with a high-resolution scanner and with a mobile phone camera. Our training set consisted of images from 964 whole-slide images captured with a high-resolution scanner. Our test set consisted of 100 slides; 20 manually selected regions of interest (ROIs) from each slide were captured in 2 ways as mentioned above. Applying a baseline machine learning algorithm trained on scanner ROIs resulted in performance deterioration when applied to the smartphone ROIs (97.8% area under the receiver operating characteristic curve [AUC], CI = [95.4%, 100.0%] for scanner images vs 89.5% AUC, CI = [82.3%, 96.6%] for mobile images, P = .019). Preliminary analysis via histogram matching showed that the baseline model was overly sensitive to slight color variations in the images (specifically, to color differences between mobile and scanner images). Adding color augmentation during training reduces this sensitivity and narrows the performance gap between mobile and scanner images (97.6% AUC, CI = [95.0%, 100.0%] for scanner images vs 96.0% AUC, CI = [91.8%, 100.0%] for mobile images, P = .309), with both modalities on par with human pathologist performance (95.6% AUC, CI = [91.6%, 99.5%]) for malignancy prediction (P = .398 for pathologist vs scanner and P = .875 for pathologist vs mobile). For indeterminate cases (pathologist-assigned Bethesda category of 3, 4, or 5), color augmentations confer some improvement (88.3% AUC, CI = [73.7%, 100.0%] for the baseline model vs 96.2% AUC, CI = [90.9%, 100.0%] with color augmentations, P = .158). In addition, we found that our model's performance levels off after 15 ROIs, a promising indication that ROI data collection would not be time-consuming for our diagnostic system. Finally, we showed that the model has sensible Bethesda category (TBS) predictions (increasing risk malignancy rate with predicted TBS category, with 0% malignancy for predicted TBS 2 and 100% malignancy for TBS 6).


Asunto(s)
Citología , Neoplasias de la Tiroides , Humanos , Teléfono Inteligente , Neoplasias de la Tiroides/diagnóstico , Neoplasias de la Tiroides/patología , Aprendizaje Automático
3.
Arch Pathol Lab Med ; 146(7): 872-878, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34669924

RESUMEN

CONTEXT.­: The use of whole slide images (WSIs) in diagnostic pathology presents special challenges for the cytopathologist. Informative areas on a direct smear from a thyroid fine-needle aspiration biopsy (FNAB) smear may be spread across a large area comprising blood and dead space. Manually navigating through these areas makes screening and evaluation of FNA smears on a digital platform time-consuming and laborious. We designed a machine learning algorithm that can identify regions of interest (ROIs) on thyroid fine-needle aspiration biopsy WSIs. OBJECTIVE.­: To evaluate the ability of the machine learning algorithm and screening software to identify and screen for a subset of informative ROIs on a thyroid FNA WSI that can be used for final diagnosis. DESIGN.­: A representative slide from each of 109 consecutive thyroid fine-needle aspiration biopsies was scanned. A cytopathologist reviewed each WSI and recorded a diagnosis. The machine learning algorithm screened and selected a subset of 100 ROIs from each WSI to present as an image gallery to the same cytopathologist after a washout period of 117 days. RESULTS.­: Concordance between the diagnoses using WSIs and those using the machine learning algorithm-generated ROI image gallery was evaluated using pairwise weighted κ statistics. Almost perfect concordance was seen between the 2 methods with a κ score of 0.924. CONCLUSIONS.­: Our results show the potential of the screening software as an effective screening tool with the potential to reduce cytopathologist workloads.


Asunto(s)
Programas Informáticos , Glándula Tiroides , Algoritmos , Biopsia con Aguja Fina/métodos , Humanos , Aprendizaje Automático , Glándula Tiroides/diagnóstico por imagen , Glándula Tiroides/patología
4.
PLoS One ; 16(9): e0257426, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34559842

RESUMEN

The ability to automatically detect and classify populations of cells in tissue sections is paramount in a wide variety of applications ranging from developmental biology to pathology. Although deep learning algorithms are widely applied to microscopy data, they typically focus on segmentation which requires extensive training and labor-intensive annotation. Here, we utilized object detection networks (neural networks) to detect and classify targets in complex microscopy images, while simplifying data annotation. To this end, we used a RetinaNet model to classify genetically labeled neurons and glia in the brains of Mosaic Analysis with Double Markers (MADM) mice. Our initial RetinaNet-based model achieved an average precision of 0.90 across six classes of cells differentiated by MADM reporter expression and their phenotype (neuron or glia). However, we found that a single RetinaNet model often failed when encountering dense and saturated glial clusters, which show high variability in their shape and fluorophore densities compared to neurons. To overcome this, we introduced a second RetinaNet model dedicated to the detection of glia clusters. Merging the predictions of the two computational models significantly improved the automated cell counting of glial clusters. The proposed cell detection workflow will be instrumental in quantitative analysis of the spatial organization of cellular populations, which is applicable not only to preparations in neuroscience studies, but also to any tissue preparation containing labeled populations of cells.


Asunto(s)
Neuroglía , Neuronas , Animales , Encéfalo , Diferenciación Celular , Ratones
5.
BMC Ecol Evol ; 21(1): 60, 2021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33882818

RESUMEN

BACKGROUND: Lemurs once rivalled the diversity of rest of the primate order despite thier confinement to the island of Madagascar. We test the adaptive radiation model of Malagasy lemur diversity using a novel combination of phylogenetic comparative methods and geometric methods for quantifying tooth shape. RESULTS: We apply macroevolutionary model fitting approaches and disparity through time analysis to dental topography metrics associated with dietary adaptation, an aspect of mammalian ecology which appears to be closely related to diversification in many clades. Metrics were also reconstructed at internal nodes of the lemur tree and these reconstructions were combined to generate dietary classification probabilities at internal nodes using discriminant function analysis. We used these reconstructions to calculate rates of transition toward folivory per million-year intervals. Finally, lower second molar shape was reconstructed at internal nodes by modelling the change in shape of 3D meshes using squared change parsimony along the branches of the lemur tree. Our analyses of dental topography metrics do not recover an early burst in rates of change or a pattern of early partitioning of subclade disparity. However, rates of change in adaptations for folivory were highest during the Oligocene, an interval of possible forest expansion on the island. CONCLUSIONS: There was no clear phylogenetic signal of bursts of morphological evolution early in lemur history. Reconstruction of the molar morphologies corresponding to the ancestral nodes of the lemur tree suggest that this may have been driven by a shift toward defended plant resources, however. This suggests a response to the ecological opportunity offered by expanding forests, but not necessarily a classic adaptive radiation initiated by dispersal to Madagascar.


Asunto(s)
Lemur , Strepsirhini , Animales , Dieta , Madagascar , Filogenia
6.
Med Image Anal ; 67: 101814, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33049578

RESUMEN

We consider machine-learning-based thyroid-malignancy prediction from cytopathology whole-slide images (WSI). Multiple instance learning (MIL) approaches, typically used for the analysis of WSIs, divide the image (bag) into patches (instances), which are used to predict a single bag-level label. These approaches perform poorly in cytopathology slides due to a unique bag structure: sparsely located informative instances with varying characteristics of abnormality. We address these challenges by considering multiple types of labels: bag-level malignancy and ordered diagnostic scores, as well as instance-level informativeness and abnormality labels. We study their contribution beyond the MIL setting by proposing a maximum likelihood estimation (MLE) framework, from which we derive a two-stage deep-learning-based algorithm. The algorithm identifies informative instances and assigns them local malignancy scores that are incorporated into a global malignancy prediction. We derive a lower bound of the MLE, leading to an improved training strategy based on weak supervision, that we motivate through statistical analysis. The lower bound further allows us to extend the proposed algorithm to simultaneously predict multiple bag and instance-level labels from a single output of a neural network. Experimental results demonstrate that the proposed algorithm provides competitive performance compared to several competing methods, achieves (expert) human-level performance, and allows augmentation of human decisions.


Asunto(s)
Interpretación de Imagen Asistida por Computador , Neoplasias de la Tiroides , Algoritmos , Humanos , Aprendizaje Automático , Redes Neurales de la Computación
7.
Cancer Cytopathol ; 128(4): 287-295, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32012493

RESUMEN

BACKGROUND: The Bethesda System for Reporting Thyroid Cytopathology (TBSRTC) comprises 6 categories used for the diagnosis of thyroid fine-needle aspiration biopsy (FNAB). Each category has an associated risk of malignancy, which is important in the management of a thyroid nodule. More accurate predictions of malignancy may help to reduce unnecessary surgery. A machine learning algorithm (MLA) was developed to evaluate thyroid FNAB via whole slide images (WSIs) to predict malignancy. METHODS: Files were searched for all thyroidectomy specimens with preceding FNAB over 8 years. All cytologic and surgical pathology diagnoses were recorded and correlated for each nodule. One representative slide from each case was scanned to create a WSI. An MLA was designed to identify follicular cells and predict the malignancy of the final pathology. The test set comprised cases blindly reviewed by a cytopathologist who assigned a TBSRTC category. The area under the receiver operating characteristic curve was used to assess the MLA performance. RESULTS: Nine hundred eight FNABs met the criteria. The MLA predicted malignancy with a sensitivity and specificity of 92.0% and 90.5%, respectively. The areas under the curve for the prediction of malignancy by the cytopathologist and the MLA were 0.931 and 0.932, respectively. CONCLUSIONS: The performance of the MLA in predicting thyroid malignancy from FNAB WSIs is comparable to the performance of an expert cytopathologist. When the MLA and electronic medical record diagnoses are combined, the performance is superior to the performance of either alone. An MLA may be used as an adjunct to FNAB to assist in refining the indeterminate categories.


Asunto(s)
Adenocarcinoma Folicular/patología , Algoritmos , Aprendizaje Automático , Glándula Tiroides/patología , Neoplasias de la Tiroides/patología , Nódulo Tiroideo/patología , Adenocarcinoma Folicular/diagnóstico , Biopsia con Aguja Fina/métodos , Citodiagnóstico/métodos , Humanos , Patólogos/estadística & datos numéricos , Curva ROC , Reproducibilidad de los Resultados , Neoplasias de la Tiroides/diagnóstico , Nódulo Tiroideo/diagnóstico
9.
IEEE Trans Pattern Anal Mach Intell ; 32(5): 940-6, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20299716

RESUMEN

We consider the problem of registering two observations on an arbitrary object, where the two are related by a geometric affine transformation of their coordinate systems, and by a nonlinear mapping of their intensities. More generally, the framework is that of jointly estimating the geometric and radiometric deformations relating two observations on the same object. We show that the original high-dimensional, nonlinear, and nonconvex search problem of simultaneously recovering the geometric and radiometric deformations can be represented by an equivalent sequence of two linear systems. A solution of this sequence yields an exact, explicit, and efficient solution to the joint estimation problem.


Asunto(s)
Algoritmos , Inteligencia Artificial , Interpretación de Imagen Asistida por Computador/métodos , Modelos Lineales , Reconocimiento de Normas Patrones Automatizadas/métodos , Técnica de Sustracción , Simulación por Computador , Dinámicas no Lineales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA