Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Small ; 19(42): e2303238, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37330652

RESUMEN

Graphene and related 2D material (GRM) thin films consist of 3D assembly of billions of 2D nanosheets randomly distributed and interacting via van der Waals forces. Their complexity and the multiscale nature yield a wide variety of electrical characteristics ranging from doped semiconductor to glassy metals depending on the crystalline quality of the nanosheets, their specific structural organization ant the operating temperature. Here, the charge transport (CT) mechanisms are studied that are occurring in GRM thin films near the metal-insulator transition (MIT) highlighting the role of defect density and local arrangement of the nanosheets. Two prototypical nanosheet types are compared, i.e., 2D reduced graphene oxide and few-layer-thick electrochemically exfoliated graphene flakes, forming thin films with comparable composition, morphology and room temperature conductivity, but different defect density and crystallinity. By investigating their structure, morphology, and the dependence of their electrical conductivity on temperature, noise and magnetic-field, a general model is developed describing the multiscale nature of CT in GRM thin films in terms of hopping among mesoscopic bricks, i.e., grains. The results suggest a general approach to describe disordered van der Waals thin films.

2.
Chemistry ; 29(4): e202202440, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36260641

RESUMEN

New covalently modified GO-guanidine materials have been realized in a gram-scale synthesis and purified by an innovative microfiltration. The use of these composites in the fixation of CO2 into cyclic carbonates is demonstrated. Mild operating conditions, high yields (up to 85 %), wide scope (15 examples) and recoverability/reusability (up to 5 cycles) of the material account for the efficiency of the protocol. Dedicated control experiments shed light on the activation modes exerted by GO-l-arginine during the ring-opening/closing synthetic sequence.

3.
Chemistry ; 29(60): e202301854, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37548167

RESUMEN

We report on the synthesis of ß-cyclodextrin (ßCD) modified graphene oxide (GO) nanosheets, having different sized alkyl linkers (GO-Cn -ßCD) and their exploitation as sorbent of per- and polyfluoroalkyl substances (PFAS) from drinking water. ßCD were functionalized with a pending amino group, and the resulting precursors grafted to GO nanosheets by epoxide ring opening reaction. Loading of ßCD units in the range 12 %-36 % was estimated by combined XPS and elemental analysis. Adsorption tests on perfluorobutanoic acid (PFBA), a particularly persistent PFAS selected as case study, revealed a strong influence of the alkyl linker length on the adsorption efficiency, with the hexyl linker derivative GO-C6 -ßCD outperforming both pristine GO and granular activated carbon (GAC), the standard sorbent benchmark. Molecular dynamic simulations ascribed this evidence to the favorable orientation of the ßCD unit on the surface of GO which enables a strong contaminant molecules retention.

4.
Langmuir ; 39(35): 12430-12451, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37608587

RESUMEN

The physico-chemical properties of native oxide layers, spontaneously forming on crystalline Si wafers in air, can be strictly correlated to the dopant type and doping level. In particular, our investigations focused on oxide layers formed upon air exposure in a clean room after Si wafer production, with dopant concentration levels from ≈1013 to ≈1019 cm-3. In order to determine these correlations, we studied the surface, the oxide bulk, and its interface with Si. The surface was investigated using the contact angle, thermal desorption, and atomic force microscopy measurements which provided information on surface energy, cleanliness, and morphology, respectively. Thickness was measured with ellipsometry and chemical composition with X-ray photoemission spectroscopy. Electrostatic charges within the oxide layer and at the Si interface were studied with Kelvin probe microscopy. Some properties such as thickness, showed an abrupt change, while others, including silanol concentration and Si intermediate-oxidation states, presented maxima at a critical doping concentration of ≈2.1 × 1015 cm-3. Additionally, two electrostatic contributions were found to originate from silanols present on the surface and the net charge distributed within the oxide layer. Lastly, surface roughness was also found to depend upon dopant concentration, showing a minimum at the same critical dopant concentration. These findings were reproduced for oxide layers regrown in a clean room after chemical etching of the native ones.

5.
Nano Lett ; 22(6): 2202-2208, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35230103

RESUMEN

In the context of graphene-based composite applications, a complete understanding of charge conduction in multilayer reduced graphene oxides (rGO) is highly desirable. However, these rGO compounds are characterized by multiple and different sources of disorder depending on the chemical method used for their synthesis. Most importantly, the precise role of interlayer interaction in promoting or jeopardizing electronic flow remains unclear. Here, thanks to the development of a multiscale computational approach combining first-principles calculations with large-scale transport simulations, the transport scaling laws in multilayer rGO are unraveled, explaining why diffusion worsens with increasing film thickness. In contrast, contacted films are found to exhibit an opposite trend when the mean free path becomes shorter than the channel length, since conduction becomes predominantly driven by interlayer hopping. These predictions are favorably compared with experimental data and open a road toward the optimization of graphene-based composites with improved electrical conduction.


Asunto(s)
Grafito , Electrónica , Grafito/química , Óxidos/química
6.
Chemistry ; 28(26): e202200333, 2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35319124

RESUMEN

We present an environmentally benign methodology for the covalent functionalization (arylation) of reduced graphene oxide (rGO) nanosheets with arylazo sulfones. A variety of tagged aryl units were conveniently accommodated at the rGO surface via visible-light irradiation of suspensions of carbon nanostructured materials in aqueous media. Mild reaction conditions, absence of photosensitizers, functional group tolerance and high atomic fractions (XPS analysis) represent some of the salient features characterizing the present methodology. Control experiments for the mechanistic elucidation (Raman analysis) and chemical nanomanipulation of the tagged rGO surfaces are also reported.

7.
Faraday Discuss ; 227: 274-290, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33300505

RESUMEN

Commercial hollow fiber filters for micro- and ultrafiltration are based on size exclusion and do not allow the removal of small molecules such as antibiotics. Here, we demonstrate that a graphene oxide (GO) layer can be firmly immobilized either inside or outside polyethersulfone-polyvinylpyrrolidone hollow fiber (Versatile PES®, hereafter PES) modules and that the resulting core-shell fibers inherits the microfiltration ability of the pristine PES fibers and the adsorption selectivity of GO. GO nanosheets were deposited on the fiber surface by filtration of a GO suspension through a PES cartridge (cut-off 0.1-0.2 µm), then fixed by thermal annealing at 80 °C, rendering the GO coating stably fixed and unsoluble. The filtration cut-off, retention selectivity and efficiency of the resulting inner and outer modified hollow fibers (HF-GO) were tested by performing filtration on water and bovine plasma spiked with bovine serum albumin (BSA, 66 kDa, ≈15 nm size), monodisperse polystyrene nanoparticles (52 nm and 303 nm sizes), with two quinolonic antibiotics (ciprofloxacin and ofloxacin) and rhodamine B (RhB). These tests showed that the microfiltration capability of PES was retained by HF-GO, and in addition the GO coating can capture the molecular contaminants while letting through BSA and smaller polystyrene nanoparticles. Combined XRD, molecular modelling and adsorption experiments show that the separation mechanism does not rely only on physical size exclusion, but involves intercalation of solute molecules between the GO layers.

8.
Anal Chem ; 92(13): 9330-9337, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32483968

RESUMEN

Electrolyte gated organic transistors can operate as powerful ultrasensitive biosensors, and efforts are currently devoted to devising strategies for reducing the contribution of hardly avoidable, nonspecific interactions to their response, to ultimately harness selectivity in the detection process. We report a novel lab-on-a-chip device integrating a multigate electrolyte gated organic field-effect transistor (EGOFET) with a 6.5 µL microfluidics set up capable to provide an assessment of both the response reproducibility, by enabling measurement in triplicate, and of the device selectivity through the presence of an internal reference electrode. As proof-of-concept, we demonstrate the efficient operation of our pentacene based EGOFET sensing platform through the quantification of tumor necrosis factor alpha with a detection limit as low as 3 pM. Sensing of inflammatory cytokines, which also include TNFα, is of the outmost importance for monitoring a large number of diseases. The multiplexable organic electronic lab-on-chip provides a statistically solid, reliable, and selective response on microliters sample volumes on the minutes time scale, thus matching the relevant key-performance indicators required in point-of-care diagnostics.


Asunto(s)
Técnicas Biosensibles/métodos , Factor de Necrosis Tumoral alfa/análisis , Aptámeros de Péptidos/química , Aptámeros de Péptidos/metabolismo , Infecciones Bacterianas/metabolismo , Infecciones Bacterianas/patología , Técnicas Biosensibles/instrumentación , Electrodos , Oro/química , Humanos , Dispositivos Laboratorio en un Chip , Límite de Detección , Transistores Electrónicos , Factor de Necrosis Tumoral alfa/metabolismo
9.
Chemistry ; 26(46): 10427-10432, 2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-32346922

RESUMEN

The site-selective allylative and allenylative dearomatization of indoles with alcohols was performed under carbocatalytic regime in the presence of graphene oxide (GO, 10 wt % loading) as the promoter. Metal-free conditions, absence of stoichiometric additive, environmentally friendly conditions (H2 O/CH3 CN, 55 °C, 6 h), broad substrate scope (33 examples, yield up to 92 %) and excellent site- and stereoselectivity characterize the present methodology. Moreover, a covalent activation model exerted by GO functionalities was corroborated by spectroscopic, experimental and computational evidences. Recovering and regeneration of the GO catalyst through simple acidic treatment was also documented.

10.
J Nanosci Nanotechnol ; 18(2): 1290-1295, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29448576

RESUMEN

In this study we describe a simple and fast procedure for the covalent functionalization of pristine graphene with a pyrene-terminated alkylazide, transformed in a highly reactive radical by thermal activation. The functionalized graphene sheets showed enhanced dispersibility in organic solvents compared to the pristine ones, thus enhancing their solution processability and compatibility with solvents or polymers. The relative improvement of solubility estimated form the absorption spectra was ≈60% in CHCl3 and ≈1200% in THF. The obtained materials were characterized by optical absorption spectroscopy, photoemission spectroscopy, infrared spectroscopy and X-rays photoelectron spectroscopy. The presence of the pyrene photoemitting chromophore in the grafting unit allowed to monitor the successful grafting and to confirm the effectiveness of the alkylazide to improve graphene solubility even when present in small amounts on the graphene surface.

11.
Nanoscale ; 16(14): 7123-7133, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38501609

RESUMEN

Filters made of graphene oxide (GO) are promising for purification of water and selective sieving of specific ions; while some results indicate the ionic radius as the discriminating factor in the sieving efficiency, the exact mechanism of sieving is still under debate. Furthermore, most of the reported GO filters are planar coatings with a simple geometry and an area much smaller than commercial water filters. Here, we show selective transport of different ions across GO coatings deposited on standard hollow fiber filters with an area >10 times larger than typical filters reported. Thanks to the fabrication procedure, we obtained a uniform coating on such complex geometry with no cracks or holes. Monovalent ions like Na+ and K+ can be transported through these filters by applying a low electric voltage, while divalent ions are blocked. By combining transport and adsorption measurements with molecular dynamics simulations and spectroscopic characterization, we unravel the ion sieving mechanism and demonstrate that it is mainly due to the interactions of the ions with the carboxylate groups present on the GO surface at neutral pH.

12.
ChemSusChem ; 17(5): e202301673, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38227427

RESUMEN

The "on-demand" capture and utilization of CO2 is effectively realized with a readily accessible dual function organic composite. The covalent and controlled derivatization of graphene oxide (GO) surface with naturally occurring arginine led to a "smart" material capable of capturing (chemisorption) CO2 from high-purity flue-gas as well as low-concentration streams (i. e. direct air capture) and concomitant chemical activation toward the incorporation into cyclic carbonates. The overall integrated CO2 capture and conversion (ICCC) strategy has been fully elucidated mechanistically via dedicated computational, spectroscopic and thermal analyses.

13.
ACS Appl Mater Interfaces ; 15(32): 38857-38866, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37550051

RESUMEN

Although two-dimensional nanosheets like graphene could be ideal atomic coatings to prevent corrosion, it is still controversial whether they are actually effective due to the presence of parasitic effects such as galvanic corrosion. Here, we reported a reduced graphene oxide (RGO) coating strategy to protect sintered Cu metal powders from corrosion by addressing the common galvanic corrosion issue of graphene. A layer of silane molecules, namely, (3-aminopropyl)triethoxysilane (APTES), is deposited between the surface of Cu particles and the graphene oxide (GO), acting as a primer to enhance adhesion and as an insulating interlayer to prevent the direct contact of the Cu with conductive RGO, mitigating the galvanic corrosion. Due to this core-shell coating, the RGO uniformly distributes in the Cu matrix after sintering, avoiding aggregation of RGO, which takes place in conventional GO-Cu composites. The dual coating of GO and silane results in bulk samples with improved anticorrosion properties, as demonstrated by galvanostatic polarization tests using Tafel analysis. Our development not only provides an efficient synthesis method to controllably coat GO on the surface of Cu but also suggests an alternative strategy to avoid the galvanic corrosion effect of graphene to improve the anticorrosion performance of metal.

14.
RSC Adv ; 12(25): 15834-15847, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35733657

RESUMEN

The carbocatalyzed synthesis of 2,3-disubstituted quinolines is disclosed. This process involved a three-component Povarov reaction of anilines, aldehydes and electron-enriched enol ethers, which gave the substrate for the subsequent oxidation. Graphene oxide (GO) was exploited as a heterogeneous, metal-free and sustainable catalyst for both transformations. The multicomponent reaction proceeded under simple and mild reaction conditions, exhibited good functional group tolerance, and could be easily scaled up to the gram level. A selection of tetrahydroquinolines obtained was subsequently aromatized to quinolines. The multistep synthesis could also be performed as a one-pot procedure. Investigation of the real active sites of GO was carried out by performing control experiments and a by full characterization of the carbon material by X-ray photoelectron spectroscopy (XPS) and solid-state nuclear magnetic resonance (ssNMR).

15.
Dalton Trans ; 51(28): 10787-10798, 2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35726732

RESUMEN

Electroreduction of carbon dioxide represents an appealing strategy to rethink a waste product as a valuable feedstock for the formation of value-added compounds. Among the metal electrodes able to catalyze such processes, copper plays a central role due to its rich chemistry. Strategies aimed at tuning Cu selectivity comprise nanostructuring and alloying/post-functionalization with heterometals. In this contribution, we report on straightforward electrochemical methods for the formation of nanostructured Cu-In interfaces. The latter were fully characterized and then used as cathodes for CO2 electroreduction in aqueous environment, leading to the selective production of syngas, whose composition varies upon changing the applied bias and indium content. In particular, gaseous mixtures compatible with the synthesis of methanol or aldehydes (i.e. respectively with 1 : 2 and 1 : 1 CO/H2 ratios) are produced at low (i.e. -0.62 V vs. RHE) applied bias with >3.5 mA cm-2 current densities (in absolute value). Even if the proposed cathodes undergo structural modifications upon prolonged exposure to CO2 reduction conditions, their catalytic activity can be restored by introducing an additional In(III) precursor to the electrolytic solution.

16.
Chem Commun (Camb) ; 58(70): 9766-9769, 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-35959981

RESUMEN

Lysine-covalently modified graphene oxide (GO-Lys) was prepared by an innovative procedure. Lysine brushes promote enhanced adsorption of bisphenol A, benzophenone-4 and carbamazepine contaminants from tap water, with a removal capacity beyond the state of the art.


Asunto(s)
Grafito , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Cinética , Lisina , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos
17.
Nanoscale Adv ; 3(2): 353-358, 2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36131734

RESUMEN

Monoatomic nanosheets can form 2-dimensional channels with tunable chemical properties, for ion storage and filtering applications. Here, we demonstrate transport of K+, Na+, and Li+ cations and F- and Cl- anions on the centimeter scale in graphene oxide membranes (GOMs), triggered by an electric bias. Besides ion transport, the GOM channels foster also the aggregation of the selected ions in salt crystals, whose composition is not the same as that of the pristine salt present in solution, highlighting the difference between the chemical environment in the 2D channels and in bulk solutions.

18.
Chem Commun (Camb) ; 57(31): 3765-3768, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33730139

RESUMEN

Microwave (MW) accelerated synthesis combined with microfiltration (MF) on commercial hollow fiber modules enables fast and scalable preparation of highly pure modified graphene oxide nanosheets. The MW-MF procedure is demonstrated on polyethylenimine (PEI) modified GO, and the so-obtained GOPEI is used for simultaneous removal of arsenic and lead from water.

19.
ACS Appl Mater Interfaces ; 13(49): 58301-58308, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34851625

RESUMEN

Methylammonium lead tribromide (MAPbBr3) perovskite single crystals demonstrate to be excellent direct X-ray and gamma-ray detectors with outstanding sensitivity and low limit of detection. Despite this, thorough studies on the photophysical effects of exposure to high doses of ionizing radiation on this material are still lacking. In this work, we present our findings regarding the effects of controlled X-ray irradiation on the optoelectronic properties of MAPbBr3 single crystals. Irradiation is carried out in air with an imaging X-ray tube, simulating real-life application in a medical facility. By means of surface photovoltage spectroscopy, we find that X-ray exposure quenches free excitons in the material and introduces new bound excitonic species. Despite this drastic effect, the crystals recover after 1 week of storage in dark and low humidity conditions. By means of X-ray photoelectron spectroscopy, we find that the origin of the new bound excitonic species is the formation of bromine vacancies, leading to local changes in the dielectric response of the material. The recovery effect is attributed to vacancy filling by atmospheric oxygen and water.

20.
ACS Nano ; 15(2): 2654-2667, 2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33464821

RESUMEN

Large area van der Waals (vdW) thin films are assembled materials consisting of a network of randomly stacked nanosheets. The multiscale structure and the two-dimensional (2D) nature of the building block mean that interfaces naturally play a crucial role in the charge transport of such thin films. While single or few stacked nanosheets (i.e., vdW heterostructures) have been the subject of intensive works, little is known about how charges travel through multilayered, more disordered networks. Here, we report a comprehensive study of a prototypical system given by networks of randomly stacked reduced graphene oxide 2D nanosheets, whose chemical and geometrical properties can be controlled independently, permitting to explore percolated networks ranging from a single nanosheet to some billions with room-temperature resistivity spanning from 10-5 to 10-1 Ω·m. We systematically observe a clear transition between two different regimes at a critical temperature T*: Efros-Shklovskii variable-range hopping (ES-VRH) below T* and power law behavior above. First, we demonstrate that the two regimes are strongly correlated with each other, both depending on the charge localization length ξ, calculated by the ES-VRH model, which corresponds to the characteristic size of overlapping sp2 domains belonging to different nanosheets. Thus, we propose a microscopic model describing the charge transport as a geometrical phase transition, given by the metal-insulator transition associated with the percolation of quasi-one-dimensional nanofillers with length ξ, showing that the charge transport behavior of the networks is valid for all geometries and defects of the nanosheets, ultimately suggesting a generalized description on vdW and disordered thin films.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA