Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Neuroimage ; 293: 120633, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38704057

RESUMEN

Video games are a valuable tool for studying the effects of training and neural plasticity on the brain. However, the underlying mechanisms related to plasticity-associated brain structural changes and their impact on brain dynamics are unknown. Here, we used a semi-empirical whole-brain model to study structural neural plasticity mechanisms linked to video game expertise. We hypothesized that video game expertise is associated with neural plasticity-mediated changes in structural connectivity that manifest at the meso­scale level, resulting in a more segregated functional network topology. To test this hypothesis, we combined structural connectivity data of StarCraft II video game players (VGPs, n = 31) and non-players (NVGPs, n = 31), with generic fMRI data from the Human Connectome Project and computational models, to generate simulated fMRI recordings. Graph theory analysis on simulated data was performed during both resting-state conditions and external stimulation. VGPs' simulated functional connectivity was characterized by a meso­scale integration, with increased local connectivity in frontal, parietal, and occipital brain regions. The same analyses at the level of structural connectivity showed no differences between VGPs and NVGPs. Regions that increased their connectivity strength in VGPs are known to be involved in cognitive processes crucial for task performance such as attention, reasoning, and inference. In-silico stimulation suggested that differences in FC between VGPs and NVGPs emerge in noisy contexts, specifically when the noisy level of stimulation is increased. This indicates that the connectomes of VGPs may facilitate the filtering of noise from stimuli. These structural alterations drive the meso­scale functional changes observed in individuals with gaming expertise. Overall, our work sheds light on the mechanisms underlying structural neural plasticity triggered by video game experiences.


Asunto(s)
Encéfalo , Conectoma , Imagen por Resonancia Magnética , Plasticidad Neuronal , Juegos de Video , Humanos , Plasticidad Neuronal/fisiología , Conectoma/métodos , Masculino , Adulto , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Adulto Joven , Femenino , Red Nerviosa/fisiología , Red Nerviosa/diagnóstico por imagen , Modelos Neurológicos
2.
bioRxiv ; 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38077041

RESUMEN

Video games are a valuable tool for studying the effects of training and neural plasticity on the brain. However, the underlaying mechanisms related to plasticity-induced brain structural changes and their impact in brain dynamics are unknown. Here, we used a semi-empirical whole-brain model to study structural neural plasticity mechanisms linked to video game expertise. We hypothesized that video game expertise is associated with neural plasticity-mediated changes in structural connectivity that manifest at the meso-scale level, resulting in a more segregated functional network topology. To test this hypothesis, we combined structural connectivity data of StarCraft II video game players (VGPs, n = 31) and non-players (NVGPs, n = 31), with generic fMRI data from the Human Connectome Project and computational models, with the aim of generating simulated fMRI recordings. Graph theory analysis on simulated data was performed during both resting-state conditions and external stimulation. VGPs' simulated functional connectivity was characterized by a meso-scale integration, with increased local connectivity in frontal, parietal and occipital brain regions. The same analyses at the level of structural connectivity showed no differences between VGPs and NVGPs. Regions that increased their connectivity strength in VGPs are known to be involved in cognitive processes crucial for task performance such as attention, reasoning, and inference. In-silico stimulation suggested that differences in FC between VGPs and NVGPs emerge in noisy contexts, specifically when the noisy level of stimulation is increased. This indicates that the connectomes of VGPs may facilitate the filtering of noise from stimuli. These structural alterations drive the meso-scale functional changes observed in individuals with gaming expertise. Overall, our work sheds light into the mechanisms underlying structural neural plasticity triggered by video game experiences.

3.
Front Psychol ; 13: 818036, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35548501

RESUMEN

The aim of this study is to evaluate the psychometric properties of the Polish version of the Dispositional Flow Scale-2 (DFS-2) and Flow State Scale-2 (FSS-2), for use with Polish adults and young adults. Currently, there are no tools that would allow us to study flow among Polish speakers. At the same time, due to the great interest in flow and its potential importance for effectiveness, cooperation, and learning, it is worth ensuring that reliable validated measurement questionnaires are available for people studying the Polish population. Study participants completed 856 questionnaires, of which 496 individuals (with an average age of 36.31 years) participated in the DFS-2 study and 360 individuals (with an average age of 33.46 years) participated in the FSS-2 study. The maximum likelihood estimator (MLR) was selected for the CFA analysis. Model fit was assessed using: χ2, comparative fit index (CFI), Tucker-Lewis index (TLI), and standardized root mean square of residuals (SRMR), and root mean square of approximation error (RMSEA). For both questionnaires, formative first-level models with nine factors and second-level models with nine factors loaded on a higher-order flow factor were compared using the Satorra-Bentler Scaled difference χ2 test. The ω coefficient was used to estimate the reliability of the FFS-2 and DFS-2 models tested in the CFA method. Confirmatory factor analysis of both DFS-2 structural models showed satisfactory model fit. Most of the fit indices for the hierarchical 2nd order FSS-2 model presented satisfactory values, except for SRMR. Both DFS-2 and FSS-2 factors tested in the analysis showed good reliability (ω ≥ 0.7). Our findings confirmed the reliability and validity of the Polish versions of DFS-2 and FSS-2 scales. The scales are reliable when applied to Polish adults and young adults.

4.
Front Neurosci ; 16: 834954, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35937888

RESUMEN

It is known that the outcomes of complex video game (VG) skill acquisition are correlated with individual differences in demographic and behavioral variables, such as age, intelligence and visual attention. However, empirical studies of the relationship between neuroanatomical features and success in VG training have been few and far between. The present review summarizes existing literature on gray matter (GM) and white matter correlates of complex VG skill acquisition as well as explores its relationship with neuroplasticity. In particular, since age can be an important factor in the acquisition of new cognitive skills, we present studies that compare different age groups (young and old adults). Our review reveals that GM in subcortical brain areas predicts complex VG learning outcomes in young subjects, whereas in older subjects the same is true of cortical frontal areas. This may be linked to age-related compensatory mechanisms in the frontal areas, as proposed by The Scaffolding Theory of Aging and Cognition. In the case of plasticity, there is no such relationship - in the group of younger and older adults there are changes after training in both cortical and subcortical areas. We also summarize best practices in research on predictors of VG training performance and outline promising areas of research in the study of complex video game skill acquisition.

5.
Sci Rep ; 12(1): 20741, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36456870

RESUMEN

In recent years the association between video games, cognition, and the brain has been actively investigated. However, it is still unclear how individual predispositions, such as brain structure characteristics, play a role in the process of acquiring new skills, such as video games. The aim of this preliminary study was to investigate whether acquisition of cognitive-motor skills from the real-time strategy video game (StarCraft II) is associated with pre-training measures of brain white matter integrity. Results show that higher white matter integrity in regions (anterior limb of internal capsule, cingulum/hippocampus) and tracts (inferior longitudinal fasciculus) related with motoric functions, set shifting and visual decision making was associated with better Star Craft II performance. The presented findings inline with previous results and suggest that structural brain predispositions of individuals are related to the video game skill acquisition. Our study highlights the importance of neuroimaging studies that focus on white matter in predicting the outcomes of intervention studies and has implications for understanding the neural basis of the skill learning process.


Asunto(s)
Juegos de Video , Sustancia Blanca , Humanos , Sustancia Blanca/diagnóstico por imagen , Aprendizaje , Encéfalo/diagnóstico por imagen , Destreza Motora
6.
J Behav Addict ; 10(1): 55-64, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33570504

RESUMEN

BACKGROUND AND AIMS: Even though the Compulsive Sexual Behavior Disorder (CSBD) was added to the ICD-11 under the impulse control category in 2019, its neural mechanisms are still debated. Researchers have noted its similarity both to addiction and to Obssesive-Compulsive Disorder (OCD). The aim of our study was to address this question by investigating the pattern of anatomical brain abnormalities among CSBD patients. METHODS: Reviewing 39 publications on Diffusion Tensor Imaging (DTI) we have identified main abnormalities specific for addictions and OCD. Than we have collected DTI data from 36 heterosexual males diagnosed with CSBD and 31 matched healthy controls. These results were then compared to the addiction and OCD patterns. RESULTS: Compared to controls, CSBD individuals showed significant fractional anisotropy (FA) reduction in the superior corona radiata tract, the internal capsule tract, cerebellar tracts and occipital gyrus white matter. Interestingly, all these regions were also identified in previous studies as shared DTI correlates in both OCD and addiction. DISCUSSION AND CONCLUSIONS: Results of our study suggest that CSBD shares similar pattern of abnormalities with both OCD and addiction. As one of the first DTI study comparing structural brain differences between CSBD, addictions and OCD, although it reveals new aspects of CSBD, it is insufficient to determine whether CSBD resembles more an addiction or OCD. Further research, especially comparing directly individuals with all three disorders may provide more conclusive results.


Asunto(s)
Conducta Adictiva/psicología , Encéfalo/diagnóstico por imagen , Imagen de Difusión Tensora , Trastorno Obsesivo Compulsivo/psicología , Conducta Sexual/psicología , Sustancia Blanca/ultraestructura , Adulto , Anisotropía , Conducta Adictiva/fisiopatología , Humanos , Clasificación Internacional de Enfermedades , Masculino , Trastorno Obsesivo Compulsivo/fisiopatología
7.
Ann N Y Acad Sci ; 1492(1): 42-57, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33372699

RESUMEN

It is unclear why some people learn faster than others. We performed two independent studies in which we investigated the neural basis of real-time strategy (RTS) gaming and neural predictors of RTS game skill acquisition. In the first (cross-sectional) study, we found that experts in the RTS game StarCraft® II (SC2) had a larger lenticular nucleus volume (LNV) than non-RTS players. We followed a cross-validation procedure where we used the volume of regions identified in the first study to predict the quality of learning a new, complex skill (SC2) in a sample of individuals who were naive to RTS games (a second (training) study). Our findings provide new insights into how the LNV, which is associated with motor as well as cognitive functions, can be utilized to predict successful skill learning and be applied to a much broader context than just video games, such as contributing to optimizing cognitive training interventions.


Asunto(s)
Cuerpo Estriado/anatomía & histología , Cuerpo Estriado/fisiología , Juegos de Video/psicología , Adulto , Cognición/fisiología , Sistemas de Computación , Cuerpo Estriado/diagnóstico por imagen , Estudios Transversales , Humanos , Aprendizaje/fisiología , Imagen por Resonancia Magnética , Masculino , Destreza Motora/fisiología , Neuroimagen , Solución de Problemas/fisiología , Desempeño Psicomotor/fisiología , Análisis y Desempeño de Tareas , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA