RESUMEN
Metabolic syndrome (MS) results from excessive consumption of high-calorie foods and sedentary lifestyles. Clinically, insulin resistance, abdominal obesity, hyperglycemia, dyslipidemia, and hypertension are observed. MS has been considered a risk factor in the development of dementia. In the brain, a metabolically impaired environment generates oxidative stress and excessive production of pro-inflammatory cytokines that deteriorate the morphology and neuronal function in the hippocampus, leading to cognitive impairment. Therapeutic alternatives suggest that phenolic compounds can be part of the treatment for neuropathies and metabolic diseases. In recent years, the use of Gallic Acid (GA) has demonstrated antioxidant and anti-inflammatory effects that contribute to neuroprotection and memory improvement in animal models. However, the effect of GA on hippocampal neurodegeneration and memory impairment under MS conditions is still unclear. In this work, we administered GA (20 mg/kg) for 60 days to rats with MS. The results show that GA treatment improved zoometric and biochemical parameters, as well as the recognition memory, in animals with MS. Additionally, GA administration increased hippocampal dendritic spines and decreased oxidative stress and inflammation. Our results show that GA treatment improves metabolism: reducing the oxidative and inflammatory environment that facilitates the recovery of the neuronal morphology in the hippocampus of rats with MS. Consequently, the recognition of objects by these animals, suggesting that GA could be used therapeutically in metabolic disorders that cause dementia.
Asunto(s)
Ácido Gálico/farmacología , Hipocampo/efectos de los fármacos , Síndrome Metabólico/metabolismo , Reconocimiento en Psicología/efectos de los fármacos , Animales , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Catalasa/efectos de los fármacos , Catalasa/metabolismo , Dendritas/efectos de los fármacos , Dendritas/patología , Hipocampo/metabolismo , Hipocampo/patología , Inflamación/metabolismo , Insulina/sangre , Interleucina-1beta/efectos de los fármacos , Interleucina-1beta/metabolismo , Memoria/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Ratas , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Factor de Necrosis Tumoral alfa/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
We study mixtures of amphiphilic Janus and homogeneous hydrophobic particles trapped at an air/water interface. In contrast to an expected monolayer formation, bilayers of colloidal particles are produced. Despite their strong interfacial adsorption, Janus particles form the upper layer. They are not placed on top of the other particles but rather shifted about one-third of the particle diameter. To understand the mechanism of bilayer formation, particle behaviour at the surface and in the bulk of the spreading solvent is considered. The vertical shift and the bilayer formation are assisted by the momentous formation of two interfaces during spreading.
RESUMEN
Correction for 'Polymer-enforced crystallization of a eutectic binary hard sphere mixture' by Anna Kozina et al., Soft Matter, 2012, 8, 627-630.
RESUMEN
In this work the crystallization kinetics of colloidal binary mixtures with attractive interaction potential (Asakura-Oosawa) has been addressed. Parameters such as fraction of crystals, linear crystal dimension and crystal packing have been quantified in order to understand how the crystal formation is driven in terms of the depth of the attractive potential and the composition of the binary mixture (described by the number ratio). It was found that inside the eutectic triangle, crystallization is mainly governed by nucleation and the crystal packing is close to the close-packing of hard spheres. Moving out from the eutectic triangle towards small component results in the crystallization of small spheres. Enrichment of the eutectic mixture with large component results in the crystallization of both large and small spheres, however, the kinetics are completely different from those of the eutectic composition. Crosslinked polystyrene microgels with nearly hard sphere interactions were used as model systems. Attraction was introduced by addition of linear polystyrene. The time evolution of crystallization has been followed by static light scattering.
RESUMEN
Aggregation pathway of amyloid-ß (25-35) in water affects the oxidative stress in the brain observed after administration of aggregated peptide in animals in vivo. Our studies on peptide aggregation ex situ prior to injection suggest that from the onset of peptide incubation in aqueous media, all samples exhibit the formation of fibril-like aggregates, characterized by a significant amount of ß-sheets. This induces significant oxidative stress in vivo as observed for up to 60 min of peptide aggregation time. As the aggregation advances, the fibril-like aggregates become longer and intertwined, while the amount of ß-sheets does not change significantly. An injection of such large, thick, and entangled aggregates in the animal brain results in a drastic increase in oxidative stress. This may be related to the number of activated microglia that initiate a sequence of inflammatory responses in the presence of large, highly interconnected fibrils.
Asunto(s)
Péptidos beta-Amiloides , Encéfalo , Estrés Oxidativo , Fragmentos de Péptidos , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/metabolismo , Fragmentos de Péptidos/metabolismo , Agregado de Proteínas , Masculino , Agregación Patológica de Proteínas/metabolismo , RatonesRESUMEN
Colloidal suspensions of monodisperse spherical particles have been extensively studied since one of the main advantages of these systems is their similarity to atomic ones. This property has been used successfully in basic science to understand the equilibrium and non-equilibrium behavior of model colloids and to correlate them with their atomic counterparts. In contrast, suspensions used in technological processes are usually more complex. Nevertheless, for their effective applications, it is crucial to understand their properties, such as the microstructure, dynamics, and flow behavior, as well as the mechanisms underlying their self-organization. The first step towards this knowledge is switching from monodisperse suspensions to moderately complex ones, namely binary mixtures. Therefore, the present review aims to summarize the current knowledge about the phase behavior of binary mixtures of spherical colloids with different inter-particle interactions, such as nearly hard spheres, electrostatic repulsion/attraction, depletion attraction, and attraction due to DNA hybridization. A comparison of experimental work with theoretical predictions is described for binary suspensions studied in three and two dimensions. Several open questions are outlined in the conclusions.
Asunto(s)
Coloides , ADN , Coloides/química , Tamaño de la Partícula , SuspensionesRESUMEN
Rifampicin is one of the most commonly used antibiotics for treating tuberculosis, but shows low bioavailability and requires long-term administration, and hence its use may result in severe side effects. Encapsulation of rifampicin in polymeric reservoirs allows it to be administered locally and improves its pharmacological action. High rifampicin loading is crucial for obtaining an adequate therapeutic effect. Generally, the drug loading is a complex function of reservoir fabrication parameters. In the current work, we systematically varied the drug (rifampicin), polymer (PLGA) and dispersed phase contents as well as the solvent evaporation rate, particle size and number of particle washing cycles to characterize the challenges involved in encapsulating rifampicin. Physical insight into the low encapsulation efficiencies was provided, as well as an optimization of fabrication conditions to achieve higher drug loading levels. The particle solidification stage was found in the current work to be the most crucial step, where a significant amount of rifampicin was lost enhanced by its solubility in the aqueous medium. Increases in polymer concentration, solvent evaporation rate and particle size each significantly improved the drug loading by hindering of solvent-assisted escape of the drug. Based on our observation of the drug loading being extremely sensitive to the particle recovery and washing procedure after the solvent evaporation, most of the encapsulated rifampicin was concluded to be located on or very near the reservoir surface. Encapsulation could be significantly improved by fabricating multiple emulsions, especially double w/o/w emulsions, but the resultant particles were relatively large and porous, which might be a drawback for drug administration.
Asunto(s)
Ácido Láctico , Ácido Poliglicólico , Emulsiones , Microesferas , Tamaño de la Partícula , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Rifampin , SolventesRESUMEN
The use of ultrasound to generate mini-emulsions (50 nm to 1 µm in diameter) and nanoemulsions (mean droplet diameter < 200 nm) is of great relevance in drug delivery, particle synthesis and cosmetic and food industries. Therefore, it is desirable to develop new strategies to obtain new formulations faster and with less reagent consumption. Here, we present a polydimethylsiloxane (PDMS)-based microfluidic device that generates oil-in-water or water-in-oil mini-emulsions in continuous flow employing ultrasound as the driving force. A Langevin piezoelectric attached to the same glass slide as the microdevice provides enough power to create mini-emulsions in a single cycle and without reagents pre-homogenization. By introducing independently four different fluids into the microfluidic platform, it is possible to gradually modify the composition of oil, water and two different surfactants, to determine the most favorable formulation for minimizing droplet diameter and polydispersity, employing less than 500 µL of reagents. It was found that cavitation bubbles are the most important mechanism underlying emulsions formation in the microchannels and that degassing of the aqueous phase before its introduction to the device can be an important factor for reduction of droplet polydispersity. This idea is demonstrated by synthetizing solid polymeric particles with a narrow size distribution starting from a mini-emulsion produced by the device.
Asunto(s)
Hidrodinámica , Dispositivos Laboratorio en un Chip , Ondas Ultrasónicas , Dimetilpolisiloxanos/química , Emulsiones , Nylons/química , Aceites/química , Tensoactivos/química , Agua/químicaRESUMEN
HYPOTHESIS: The anisotropic nature of colloidal particles results in orientation-dependent interactions that organize the particles into peculiar structures different from those formed by isotropic colloids. Particles with a hydrophilic hemisphere are expected to assemble in hydrophobic solvents due to the contribution of hydrophobic interactions as observed for molecular amphiphiles. EXPERIMENTS: Asymmetrically decorated silica-based Janus particles are dispersed in an apolar solvent, chloroform, and their structure and dynamics are studied by light scattering and compared with computer simulations. FINDINGS: Gelation of amphiphilic Janus particles with asymmetric surface decoration is observed in a hydrophobic medium. The influence of particle asymmetry on gel structure and dynamics is discussed. Unlike particles with long-range repulsive interactions in water, these systems rapidly form rather compact structures that are nevertheless more ramified than those made of isotropic hydrophobic particles. Comparison with computer simulations allows visualization of the gel and reveals a contribution of asymmetric short-range attractions and cross-term repulsions to the net effective interaction potential.
RESUMEN
HYPOTHESIS: Colloids at fluid interfaces organize according to inter-particle interactions. The main contributions to an effective interaction potential are expected to be electrostatic dipole-dipole repulsion and capillary attraction due to fluid interface deformation. When these interactions are weak, a secondary minimum in the particle pair interaction potential is expected. EXPERIMENTS: Clean bare silica particles were deposited at an oil/water interface and their organization as well as dynamics were observed under a light microscope and analyzed in terms of radial distribution function and mean squared displacement. FINDINGS: Weak long-range competing interactions between colloids at an oil/water interface result in cluster formation. The clusters have a liquid-like structure and grow with increasing particle packing fraction. System 'ergodicity' suggests near-equilibrium assembly, which is confirmed by free particle dynamics outside the clusters. The interplay between dipole-dipole repulsion and capillary attraction responsible for the cluster formation is reflected in a secondary minimum of the effective interaction potential predicted theoretically but inaccessible experimentally from collective particle properties prior to this work.
RESUMEN
Chromophores susceptible to light-induced trans-cis isomerization embedded in cylindrical micelles can modify micelles and their light-responsive performance. A small chromophore (4-(phenylazo)benzoate ion) is embedded in cylindrical micelles made of cetyltrimethylammonium bromide (CTAB) and sodium salicylate (NaSal) in water. The microstructure is examined by scanning electron microscopy (SEM) and nuclear magnetic resonance (NMR). Rheological behavior and the length scales of the micellar network are determined by rheology and microrheology. The chromophore substantially modifies the micelles even without UV irradiation. The larger is the chromophore concentration, the smaller is the micellar length. Additional length scales of the micellar network do not substantially vary even when NaCl is added. Chromophore incorporation also modifies the rheology of the micellar solution, although gradient shear banding is preserved. Viscosity decreases as the chromophore concentration increases, and viscoelastic spectra are modified, but when they are correctly rescaled, they can be superimposed. The addition of the chromophore makes the fluids more Maxwellian, particularly when NaCl is also added. When the chromophore is incorporated into the micelles, there is a response after UV irradiation, although it does not produce a significant rheological change.
RESUMEN
Xanthan is an extracellular polysaccharide of polyanionic nature widely used in industrial processes as flow modifier. Its characterization in dilute solutions is complicated by the strong tendency to aggregation. We explore the possibility to obtain dilute xanthan solutions without aggregates. We applied some steps of the sample preparation procedures from previous works on xanthan, such as ultrasonication, heating and micro filtration. The influence of this type of treatment on the observed properties of xanthan 0.1M NaCl aqueous solutions is studied. Renaturalization of xanthan solutions above the overlap concentration does not break the aggregates but, on the opposite, produces the ones that are more resistant to ultrasound. Ultrasonication breaks only large aggregates and at long sonication times brings the risk of the single chain degradation. The best results are provided by a procedure that combines a short ultrasonication time followed by micro filtration but it is impossible to obtain a solution completely free of small aggregates by conventional sample preparation methods. Nevertheless, a significant reduction of large aggregates results in a linear concentration dependence of xanthan reduced viscosity, which allows more confident determination of the intrinsic viscosity. Another advantage of large aggregates removal is a possibility of physical interpretation of xanthan molecular parameters by static light scattering, taking into account its association tendency.