Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 70(3): 553-564.e9, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29681497

RESUMEN

Nucleoside-containing metabolites such as NAD+ can be incorporated as 5' caps on RNA by serving as non-canonical initiating nucleotides (NCINs) for transcription initiation by RNA polymerase (RNAP). Here, we report CapZyme-seq, a high-throughput-sequencing method that employs NCIN-decapping enzymes NudC and Rai1 to detect and quantify NCIN-capped RNA. By combining CapZyme-seq with multiplexed transcriptomics, we determine efficiencies of NAD+ capping by Escherichia coli RNAP for ∼16,000 promoter sequences. The results define preferred transcription start site (TSS) positions for NAD+ capping and define a consensus promoter sequence for NAD+ capping: HRRASWW (TSS underlined). By applying CapZyme-seq to E. coli total cellular RNA, we establish that sequence determinants for NCIN capping in vivo match the NAD+-capping consensus defined in vitro, and we identify and quantify NCIN-capped small RNAs (sRNAs). Our findings define the promoter-sequence determinants for NCIN capping with NAD+ and provide a general method for analysis of NCIN capping in vitro and in vivo.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , NAD/metabolismo , Regiones Promotoras Genéticas/genética , Caperuzas de ARN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Endorribonucleasas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica/genética , Nucleótidos/genética , Sitio de Iniciación de la Transcripción/fisiología , Transcripción Genética/genética , Transcriptoma/genética
2.
Nucleic Acids Res ; 52(12): 7305-7320, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38842936

RESUMEN

The SorC family of transcriptional regulators plays a crucial role in controlling the carbohydrate metabolism and quorum sensing. We employed an integrative approach combining X-ray crystallography and cryo-electron microscopy to investigate architecture and functional mechanism of two prototypical representatives of two sub-classes of the SorC family: DeoR and CggR from Bacillus subtilis. Despite possessing distinct DNA-binding domains, both proteins form similar tetrameric assemblies when bound to their respective DNA operators. Structural analysis elucidates the process by which the CggR-regulated gapA operon is derepressed through the action of two effectors: fructose-1,6-bisphosphate and newly confirmed dihydroxyacetone phosphate. Our findings provide the first comprehensive understanding of the DNA binding mechanism of the SorC-family proteins, shedding new light on their functional characteristics.


Asunto(s)
Bacillus subtilis , Proteínas Bacterianas , Microscopía por Crioelectrón , Modelos Moleculares , Proteínas Represoras , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Unión Proteica , Multimerización de Proteína , ADN/química , ADN/metabolismo , Sitios de Unión , Regulación Bacteriana de la Expresión Génica , ADN Bacteriano/metabolismo , ADN Bacteriano/química , ADN Bacteriano/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Operón/genética , Fructosadifosfatos
3.
Nucleic Acids Res ; 52(8): 4604-4626, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38348908

RESUMEN

Bacteria have evolved structured RNAs that can associate with RNA polymerase (RNAP). Two of them have been known so far-6S RNA and Ms1 RNA but it is unclear if any other types of RNAs binding to RNAP exist in bacteria. To identify all RNAs interacting with RNAP and the primary σ factors, we have established and performed native RIP-seq in Bacillus subtilis, Corynebacterium glutamicum, Streptomyces coelicolor, Mycobacterium smegmatis and the pathogenic Mycobacterium tuberculosis. Besides known 6S RNAs in B. subtilis and Ms1 in M. smegmatis, we detected MTS2823, a homologue of Ms1, on RNAP in M. tuberculosis. In C. glutamicum, we discovered novel types of structured RNAs that associate with RNAP. Furthermore, we identified other species-specific RNAs including full-length mRNAs, revealing a previously unknown landscape of RNAs interacting with the bacterial transcription machinery.


Asunto(s)
Proteínas Bacterianas , ARN Polimerasas Dirigidas por ADN , ARN Bacteriano , Factor sigma , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , Regulación Bacteriana de la Expresión Génica , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Mycobacterium smegmatis/enzimología , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Conformación de Ácido Nucleico , ARN Bacteriano/metabolismo , ARN Bacteriano/genética , ARN no Traducido , Factor sigma/metabolismo , Factor sigma/genética , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo , Transcripción Genética
4.
J Biol Chem ; 300(6): 107339, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705388

RESUMEN

During sporulation, Bacillus subtilis forms an asymmetric septum, dividing the cell into two compartments, a mother cell and a forespore. The site of asymmetric septation is linked to the membrane where FtsZ and SpoIIE initiate the formation of the Z-ring and the E-ring, respectively. These rings then serve as a scaffold for the other cell division and peptidoglycan synthesizing proteins needed to build the septum. However, despite decades of research, not enough is known about how the asymmetric septation site is determined. Here, we identified and characterized the interaction between SpoIIE and RefZ. We show that these two proteins transiently colocalize during the early stages of asymmetric septum formation when RefZ localizes primarily from the mother cell side of the septum. We propose that these proteins and their interplay with the spatial organization of the chromosome play a role in controlling asymmetric septum positioning.


Asunto(s)
Bacillus subtilis , Proteínas Bacterianas , Esporas Bacterianas , Bacillus subtilis/metabolismo , Bacillus subtilis/fisiología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Esporas Bacterianas/metabolismo , División Celular , Proteínas del Citoesqueleto/metabolismo , Proteínas del Citoesqueleto/genética
5.
EMBO J ; 39(3): e102500, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-31840842

RESUMEN

RNase J1 is the major 5'-to-3' bacterial exoribonuclease. We demonstrate that in its absence, RNA polymerases (RNAPs) are redistributed on DNA, with increased RNAP occupancy on some genes without a parallel increase in transcriptional output. This suggests that some of these RNAPs represent stalled, non-transcribing complexes. We show that RNase J1 is able to resolve these stalled RNAP complexes by a "torpedo" mechanism, whereby RNase J1 degrades the nascent RNA and causes the transcription complex to disassemble upon collision with RNAP. A heterologous enzyme, yeast Xrn1 (5'-to-3' exonuclease), is less efficient than RNase J1 in resolving stalled Bacillus subtilis RNAP, suggesting that the effect is RNase-specific. Our results thus reveal a novel general principle, whereby an RNase can participate in genome-wide surveillance of stalled RNAP complexes, preventing potentially deleterious transcription-replication collisions.


Asunto(s)
Bacillus subtilis/enzimología , Exorribonucleasas/metabolismo , ARN Mensajero/metabolismo , Bacillus subtilis/genética , Proteínas Bacterianas/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Regulación Bacteriana de la Expresión Génica , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Mensajero/genética , Transcripción Genética
6.
J Bacteriol ; 205(10): e0011223, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37728605

RESUMEN

Sigma factors bind and direct the RNA polymerase core to specific promoter sequences, and alternative sigma factors direct transcription of different regulons of genes. Here, we study the pBS32 plasmid-encoded sigma factor SigN of Bacillus subtilis to determine how it contributes to DNA damage-induced cell death. We find that SigN causes cell death when expressed at high levels and does so in the absence of its regulon suggesting it is intrinsically toxic. One way toxicity was relieved was by curing the pBS32 plasmid, which eliminated a positive feedback loop that led to SigN hyper-accumulation. Another way toxicity was relieved was through mutating the chromosomally encoded transcriptional repressor protein AbrB, thereby derepressing a potent antisense transcript that antagonized SigN expression. SigN efficiently competed with the vegetative sigma factor SigA in vitro, and SigN accumulation in the absence of positive feedback reduced SigA-dependent transcription suggesting that toxicity may be due to competitive inhibition of one or more essential transcripts. Why B. subtilis encodes a toxic sigma factor is unclear but SigN may function in host-inhibition during lytic conversion, as phage lysogen genes are also encoded on pBS32. IMPORTANCE Alternative sigma factors activate entire regulons of genes to improve viability in response to environmental stimuli. The pBS32 plasmid-encoded alternative sigma factor SigN of Bacillus subtilis however, is activated by the DNA damage response and leads to cellular demise. Here we find that SigN impairs viability by hyper-accumulating and outcompeting the vegetative sigma factor for the RNA polymerase core. Why B. subtilis retains a plasmid with a deleterious alternative sigma factor is unknown.


Asunto(s)
Bacillus subtilis , Factor sigma , Factor sigma/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Inmunoglobulina A Secretora/genética , Transcripción Genética , Regulación Bacteriana de la Expresión Génica
7.
Proteins ; 91(9): 1276-1287, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37350110

RESUMEN

σ factors are essential parts of bacterial RNA polymerase (RNAP) as they allow to recognize promotor sequences and initiate transcription. Domain 1.1 of vegetative σ factors occupies the primary channel of RNAP and also prevents binding of the σ factor to promoter DNA alone. Here, we show that domain 1.1 of Bacillus subtilis σ A exists in more structurally distinct variants in dynamic equilibrium. The major conformation at room temperature is represented by a previously reported well-folded structure solved by nuclear magnetic resonance (NMR), but 4% of the protein molecules are present in a less thermodynamically favorable state. We show that this population increases with temperature and we predict its significant elevation at higher but still biologically relevant temperatures. We characterized the minor state of the domain 1.1 using specialized methods of NMR. We found that, in contrast to the major state, the detected minor state is partially unfolded. Its propensity to form secondary structure elements is especially decreased for the first and third α helices, while the second α helix and ß strand close to the C-terminus are more stable. We also analyzed thermal unfolding of the domain 1.1 and performed functional experiments with full length σ A and its shortened version lacking domain 1.1 ( σ A _ Δ 1.1 ). The results revealed that while full length σ A increases transcription activity of RNAP with increasing temperature, transcription with σ A _ Δ 1.1 remains constant. In summary, this study reveals conformational dynamics of domain 1.1 and provides a basis for studies of its interaction with RNAP and effects on transcription regulation.


Asunto(s)
Bacillus subtilis , ARN Polimerasas Dirigidas por ADN , Desplegamiento Proteico , Factor sigma , Temperatura , Amidas/metabolismo , Bacillus subtilis/enzimología , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , Modelos Moleculares , Dominios Proteicos , Protones , Factor sigma/química , Factor sigma/metabolismo
8.
Nucleic Acids Res ; 49(18): 10221-10234, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34551438

RESUMEN

During the first step of gene expression, RNA polymerase (RNAP) engages DNA to transcribe RNA, forming highly stable complexes. These complexes need to be dissociated at the end of transcription units or when RNAP stalls during elongation and becomes an obstacle ('sitting duck') to further transcription or replication. In this review, we first outline the mechanisms involved in these processes. Then, we explore in detail the torpedo mechanism whereby a 5'-3' RNA exonuclease (torpedo) latches itself onto the 5' end of RNA protruding from RNAP, degrades it and upon contact with RNAP, induces dissociation of the complex. This mechanism, originally described in Eukaryotes and executed by Xrn-type 5'-3' exonucleases, was recently found in Bacteria and Archaea, mediated by ß-CASP family exonucleases. We discuss the mechanistic aspects of this process across the three kingdoms of life and conclude that 5'-3' exoribonucleases (ß-CASP and Xrn families) involved in the ancient torpedo mechanism have emerged at least twice during evolution.


Asunto(s)
Archaea/genética , Bacterias/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , ADN/metabolismo , Eucariontes/genética , Exorribonucleasas/metabolismo , Unión Proteica , Transcripción Genética
9.
Nucleic Acids Res ; 49(12): 7088-7102, 2021 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-34157109

RESUMEN

RNA turnover is essential in all domains of life. The endonuclease RNase Y (rny) is one of the key components involved in RNA metabolism of the model organism Bacillus subtilis. Essentiality of RNase Y has been a matter of discussion, since deletion of the rny gene is possible, but leads to severe phenotypic effects. In this work, we demonstrate that the rny mutant strain rapidly evolves suppressor mutations to at least partially alleviate these defects. All suppressor mutants had acquired a duplication of an about 60 kb long genomic region encompassing genes for all three core subunits of the RNA polymerase-α, ß, ß'. When the duplication of the RNA polymerase genes was prevented by relocation of the rpoA gene in the B. subtilis genome, all suppressor mutants carried distinct single point mutations in evolutionary conserved regions of genes coding either for the ß or ß' subunits of the RNA polymerase that were not tolerated by wild type bacteria. In vitro transcription assays with the mutated polymerase variants showed a severe decrease in transcription efficiency. Altogether, our results suggest a tight cooperation between RNase Y and the RNA polymerase to establish an optimal RNA homeostasis in B. subtilis cells.


Asunto(s)
Bacillus subtilis/enzimología , Bacillus subtilis/genética , Endorribonucleasas/fisiología , ARN Mensajero/metabolismo , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Endorribonucleasas/genética , Evolución Molecular , Eliminación de Gen , Duplicación de Gen , Genes Bacterianos , Homeostasis , Mutación , Supresión Genética , Transcripción Genética , Transcriptoma
10.
PLoS Genet ; 16(3): e1008275, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32176689

RESUMEN

Bacillus subtilis cells are well suited to study how bacteria sense and adapt to proteotoxic stress such as heat, since temperature fluctuations are a major challenge to soil-dwelling bacteria. Here, we show that the alarmones (p)ppGpp, well known second messengers of nutrient starvation, are also involved in the heat stress response as well as the development of thermo-resistance. Upon heat-shock, intracellular levels of (p)ppGpp rise in a rapid but transient manner. The heat-induced (p)ppGpp is primarily produced by the ribosome-associated alarmone synthetase Rel, while the small alarmone synthetases RelP and RelQ seem not to be involved. Furthermore, our study shows that the generated (p)ppGpp pulse primarily acts at the level of translation, and only specific genes are regulated at the transcriptional level. These include the down-regulation of some translation-related genes and the up-regulation of hpf, encoding the ribosome-protecting hibernation-promoting factor. In addition, the alarmones appear to interact with the activity of the stress transcription factor Spx during heat stress. Taken together, our study suggests that (p)ppGpp modulates the translational capacity at elevated temperatures and thereby allows B. subtilis cells to respond to proteotoxic stress, not only by raising the cellular repair capacity, but also by decreasing translation to concurrently reduce the protein load on the cellular protein quality control system.


Asunto(s)
Bacillus subtilis/genética , Proteínas Bacterianas/genética , Respuesta al Choque Térmico/genética , Ligasas/genética , Regulación Bacteriana de la Expresión Génica/genética
11.
Chemistry ; 28(31): e202200911, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35355345

RESUMEN

5-(ß-d-Glucopyranosyloxymethyl)-2'-deoxyuridine and -cytidine 5'-O-triphosphates were prepared and used for polymerase-mediated (primer extension or PCR) synthesis of DNA containing glucosylated 5-hydroxymethyluracil (5hmU) or 5-hydroxymethyluracil (5hmC). The presence of any glucosylated pyrimidines fully protected DNA from cleavage by type II restriction endonucleases. On the other hand, while the presence of glucosylated 5hmU completely inhibited transcription by bacterial (Escherichia coli) RNA polymerase, the DNA containing the corresponding glucosylated 5hmC allowed a similar level of transcription as natural DNA. This suggests different roles of these hypermodified bases in the epigenetic regulation of transcription in bacteriophages or kinetoplastid parasites. Consequently, enzymatic glucosylation of 5hmC-containing DNA can be used for tuning of transcription activity.


Asunto(s)
ADN , Epigénesis Genética , ARN Polimerasas Dirigidas por ADN , Reacción en Cadena de la Polimerasa
12.
Nature ; 535(7612): 444-7, 2016 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-27383794

RESUMEN

The chemical nature of the 5' end of RNA is a key determinant of RNA stability, processing, localization and translation efficiency, and has been proposed to provide a layer of 'epitranscriptomic' gene regulation. Recently it has been shown that some bacterial RNA species carry a 5'-end structure reminiscent of the 5' 7-methylguanylate 'cap' in eukaryotic RNA. In particular, RNA species containing a 5'-end nicotinamide adenine dinucleotide (NAD+) or 3'-desphospho-coenzyme A (dpCoA) have been identified in both Gram-negative and Gram-positive bacteria. It has been proposed that NAD+, reduced NAD+ (NADH) and dpCoA caps are added to RNA after transcription initiation, in a manner analogous to the addition of 7-methylguanylate caps. Here we show instead that NAD+, NADH and dpCoA are incorporated into RNA during transcription initiation, by serving as non-canonical initiating nucleotides (NCINs) for de novo transcription initiation by cellular RNA polymerase (RNAP). We further show that both bacterial RNAP and eukaryotic RNAP II incorporate NCIN caps, that promoter DNA sequences at and upstream of the transcription start site determine the efficiency of NCIN capping, that NCIN capping occurs in vivo, and that NCIN capping has functional consequences. We report crystal structures of transcription initiation complexes containing NCIN-capped RNA products. Our results define the mechanism and structural basis of NCIN capping, and suggest that NCIN-mediated 'ab initio capping' may occur in all organisms.


Asunto(s)
Coenzima A/metabolismo , NAD/metabolismo , Caperuzas de ARN/metabolismo , Iniciación de la Transcripción Genética , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , ARN Polimerasas Dirigidas por ADN/metabolismo , Datos de Secuencia Molecular , Nucleótidos/química , Nucleótidos/metabolismo , Regiones Promotoras Genéticas/genética , Caperuzas de ARN/química , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sitio de Iniciación de la Transcripción
13.
Mol Microbiol ; 111(2): 514-533, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30480837

RESUMEN

Spx is a Bacillus subtilis transcription factor that interacts with the alpha subunits of RNA polymerase. It can activate the thiol stress response regulon and interfere with the activation of many developmental processes. Here, we show that Spx is a central player orchestrating the heat shock response by up-regulating relevant stress response genes as revealed by comparative transcriptomic experiments. Moreover, these experiments revealed the potential of Spx to inhibit transcription of translation-related genes. By in vivo and in vitro experiments, we confirmed that Spx can inhibit transcription from rRNA. This inhibition depended mostly on UP elements and the alpha subunits of RNA polymerase. However, the concurrent up-regulation activity of stress genes by Spx, but not the inhibition of translation related genes, was essential for mediating stress response and antibiotic tolerance under the applied stress conditions. The observed inhibitory activity might be compensated in vivo by additional stress response processes interfering with translation. Nevertheless, the impact of Spx on limiting translation becomes apparent under conditions with high cellular Spx levels. Interestingly, we observed a subpopulation of stationary phase cells that contains raised Spx levels, which may contribute to growth inhibition and a persister-like behaviour of this subpopulation during outgrowth.


Asunto(s)
Bacillus subtilis/efectos de los fármacos , Bacillus subtilis/efectos de la radiación , Regulación Bacteriana de la Expresión Génica , Respuesta al Choque Térmico , Estrés Oxidativo , Estrés Fisiológico , Factores de Transcripción/metabolismo , Bacillus subtilis/enzimología , Perfilación de la Expresión Génica , Biosíntesis de Proteínas , Transcripción Genética
14.
Mol Microbiol ; 111(2): 354-372, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30427073

RESUMEN

Ms1 is a sRNA recently found in mycobacteria and several other actinobacterial species. Ms1 interacts with the RNA polymerase (RNAP) core devoid of sigma factors, which differs from 6S RNA that binds to RNAP holoenzymes containing the primary sigma factor. Here we show that Ms1 is the most abundant non-rRNA transcript in stationary phase in Mycobacterium smegmatis. The accumulation of Ms1 stems from its high-level synthesis combined with decreased degradation. We identify the Ms1 promoter, PMs1 , and cis-acting elements important for its activity. Furthermore, we demonstrate that PNPase (an RNase) contributes to the differential accumulation of Ms1 during growth. Then, by comparing the transcriptomes of wt and ΔMs1 strains from stationary phase, we reveal that Ms1 affects the intracellular level of RNAP. The absence of Ms1 results in decreased levels of the mRNAs encoding ß and ß' subunits of RNAP, which is also reflected at the protein level. Thus, the ΔMs1 strain has a smaller pool of RNAPs available when the transcriptional demand increases. This contributes to the inability of the ΔMs1 strain to rapidly react to environmental changes during outgrowth from stationary phase.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , Mycobacterium smegmatis/enzimología , Mycobacterium smegmatis/metabolismo , ARN Bacteriano/metabolismo , ARN Pequeño no Traducido/metabolismo , Eliminación de Gen , Perfilación de la Expresión Génica , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/crecimiento & desarrollo , ARN Pequeño no Traducido/genética
15.
PLoS Pathog ; 14(10): e1007377, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30346988

RESUMEN

Extrachromosomal hereditary elements such as organelles, viruses, and plasmids are important for the cell fitness and survival. Their transcription is dependent on host cellular RNA polymerase (RNAP) or intrinsic RNAP encoded by these elements. The yeast Kluyveromyces lactis contains linear cytoplasmic DNA virus-like elements (VLEs, also known as linear plasmids) that bear genes encoding putative non-canonical two-subunit RNAP. Here, we describe the architecture and identify the evolutionary origin of this transcription machinery. We show that the two RNAP subunits interact in vivo, and this complex interacts with another two VLE-encoded proteins, namely the mRNA capping enzyme and a putative helicase. RNAP, mRNA capping enzyme and the helicase also interact with VLE-specific DNA in vivo. Further, we identify a promoter sequence element that causes 5' mRNA polyadenylation of VLE-specific transcripts via RNAP slippage at the transcription initiation site, and structural elements that precede the termination sites. As a result, we present a first model of the yeast virus-like element transcription initiation and intrinsic termination. Finally, we demonstrate that VLE RNAP and its promoters display high similarity to poxviral RNAP and promoters of early poxviral genes, respectively, thereby pointing to their evolutionary origin.


Asunto(s)
Evolución Molecular , Proteínas Fúngicas/genética , Kluyveromyces/genética , Regiones Promotoras Genéticas , Elementos de Respuesta , Transcripción Genética , Virus/genética , Secuencia de Bases , Citoplasma , ARN Polimerasas Dirigidas por ADN/metabolismo , Regulación Fúngica de la Expresión Génica , Conformación de Ácido Nucleico , Poliadenilación , Estabilidad del ARN , Homología de Secuencia
16.
J Bacteriol ; 201(4)2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30478083

RESUMEN

Bacterial RNA polymerase (RNAP) is essential for gene expression and as such is a valid drug target. Hence, it is imperative to know its structure and dynamics. Here, we present two as-yet-unreported forms of Mycobacterium smegmatis RNAP: core and holoenzyme containing σA but no other factors. Each form was detected by cryo-electron microscopy in two major conformations. Comparisons of these structures with known structures of other RNAPs reveal a high degree of conformational flexibility of the mycobacterial enzyme and confirm that region 1.1 of σA is directed into the primary channel of RNAP. Taken together, we describe the conformational changes of unrestrained mycobacterial RNAP.IMPORTANCE We describe here three-dimensional structures of core and holoenzyme forms of mycobacterial RNA polymerase (RNAP) solved by cryo-electron microscopy. These structures fill the thus-far-empty spots in the gallery of the pivotal forms of mycobacterial RNAP and illuminate the extent of conformational dynamics of this enzyme. The presented findings may facilitate future designs of antimycobacterial drugs targeting RNAP.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/química , Holoenzimas/química , Mycobacterium smegmatis/enzimología , Microscopía por Crioelectrón , ARN Polimerasas Dirigidas por ADN/ultraestructura , Holoenzimas/ultraestructura , Conformación Proteica
17.
J Am Chem Soc ; 141(42): 16817-16828, 2019 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-31550880

RESUMEN

Electrostatic interactions play important roles in the functional mechanisms exploited by intrinsically disordered proteins (IDPs). The atomic resolution description of long-range and local structural propensities that can both be crucial for the function of highly charged IDPs presents significant experimental challenges. Here, we investigate the conformational behavior of the δ subunit of RNA polymerase from Bacillus subtilis whose unfolded domain is highly charged, with 7 positively charged amino acids followed by 51 acidic amino acids. Using a specifically designed analytical strategy, we identify transient contacts between the two regions using a combination of NMR paramagnetic relaxation enhancements, residual dipolar couplings (RDCs), chemical shifts, and small-angle scattering. This strategy allows the resolution of long-range and local ensemble averaged structural contributions to the experimental RDCs, and reveals that the negatively charged segment folds back onto the positively charged strand, compacting the conformational sampling of the protein while remaining highly flexible in solution. Mutation of the positively charged region abrogates the long-range contact, leaving the disordered domain in an extended conformation, possibly due to local repulsion of like-charges along the chain. Remarkably, in vitro studies show that this mutation also has a significant effect on transcription activity, and results in diminished cell fitness of the mutated bacteria in vivo. This study highlights the importance of accurately describing electrostatic interactions for understanding the functional mechanisms of IDPs.


Asunto(s)
Bacillus subtilis/enzimología , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Electricidad Estática , Secuencia de Aminoácidos , Modelos Moleculares , Conformación Proteica
18.
J Bacteriol ; 200(17)2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29914988

RESUMEN

The σI sigma factor from Bacillus subtilis is a σ factor associated with RNA polymerase (RNAP) that was previously implicated in adaptation of the cell to elevated temperature. Here, we provide a comprehensive characterization of this transcriptional regulator. By transcriptome sequencing (RNA-seq) of wild-type (wt) and σI-null strains at 37°C and 52°C, we identified ∼130 genes affected by the absence of σI Further analysis revealed that the majority of these genes were affected indirectly by σI The σI regulon, i.e., the genes directly regulated by σI, consists of 16 genes, of which eight (the dhb and yku operons) are involved in iron metabolism. The involvement of σI in iron metabolism was confirmed phenotypically. Next, we set up an in vitro transcription system and defined and experimentally validated the promoter sequence logo that, in addition to -35 and -10 regions, also contains extended -35 and -10 motifs. Thus, σI-dependent promoters are relatively information rich in comparison with most other promoters. In summary, this study supplies information about the least-explored σ factor from the industrially important model organism B. subtilisIMPORTANCE In bacteria, σ factors are essential for transcription initiation. Knowledge about their regulons (i.e., genes transcribed from promoters dependent on these σ factors) is the key for understanding how bacteria cope with the changing environment and could be instrumental for biotechnologically motivated rewiring of gene expression. Here, we characterize the σI regulon from the industrially important model Gram-positive bacterium Bacillus subtilis We reveal that σI affects expression of ∼130 genes, of which 16 are directly regulated by σI, including genes encoding proteins involved in iron homeostasis. Detailed analysis of promoter elements then identifies unique sequences important for σI-dependent transcription. This study thus provides a comprehensive view on this underexplored component of the B. subtilis transcription machinery.


Asunto(s)
Bacillus subtilis/genética , ARN Polimerasas Dirigidas por ADN/genética , Regulación Bacteriana de la Expresión Génica , Regiones Promotoras Genéticas , Factor sigma/genética , Transcripción Genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Hierro/metabolismo , Operón , Regulón , Transcriptoma
19.
J Biol Chem ; 292(28): 11610-11617, 2017 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-28539362

RESUMEN

Bacterial RNA polymerase (RNAP) requires σ factors to recognize promoter sequences. Domain 1.1 of primary σ factors (σ1.1) prevents their binding to promoter DNA in the absence of RNAP, and when in complex with RNAP, it occupies the DNA-binding channel of RNAP. Currently, two 3D structures of σ1.1 are available: from Escherichia coli in complex with RNAP and from T. maritima solved free in solution. However, these two structures significantly differ, and it is unclear whether this difference is due to an altered conformation upon RNAP binding or to differences in intrinsic properties between the proteins from these two distantly related species. Here, we report the solution structure of σ1.1 from the Gram-positive bacterium Bacillus subtilis We found that B. subtilis σ1.1 is highly compact because of additional stabilization not present in σ1.1 from the other two species and that it is more similar to E. coli σ1.1. Moreover, modeling studies suggested that B. subtilis σ1.1 requires minimal conformational changes for accommodating RNAP in the DNA channel, whereas T. maritima σ1.1 must be rearranged to fit therein. Thus, the mesophilic species B. subtilis and E. coli share the same σ1.1 fold, whereas the fold of σ1.1 from the thermophile T. maritima is distinctly different. Finally, we describe an intriguing similarity between σ1.1 and δ, an RNAP-associated protein in B. subtilis, bearing implications for the so-far unknown binding site of δ on RNAP. In conclusion, our results shed light on the conformational changes of σ1.1 required for its accommodation within bacterial RNAP.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , ADN Bacteriano/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Modelos Moleculares , Factor sigma/metabolismo , Thermotoga maritima/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Isótopos de Carbono , Secuencia Conservada , ADN Bacteriano/química , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/genética , Isótopos de Nitrógeno , Conformación de Ácido Nucleico , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Conformación Proteica , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica , Subunidades de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Factor sigma/química , Factor sigma/genética , Homología Estructural de Proteína
20.
Chemistry ; 24(33): 8311-8314, 2018 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-29655191

RESUMEN

Copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click reaction in the major groove of DNA containing 5-ethynyluracil (UE ) with azides was used for turning off sequence-specific protein-DNA interactions. The concept was first demonstrated on switching off cleavage of short modified DNA by restriction endonuclease BamHI-HF. Finally, DNA template containing UE was used for in vitro transcription with E. coli RNA polymerase and the transcription was turned off by CuAAC with 3-azidopropane-1,2-diol or 3-azido-7-hydroxycoumarin.


Asunto(s)
Alquinos/química , Azidas/química , Cumarinas/química , ARN Polimerasas Dirigidas por ADN/química , ADN/química , Escherichia coli/química , ARN Bacteriano/química , Catálisis , Química Clic , Cobre , Reacción de Cicloadición , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Bacteriano/metabolismo , Uracilo/análogos & derivados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA