Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nanomedicine ; 59: 102750, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38734040

RESUMEN

The human pathogenic fungus Candida albicans damages epithelial cells during superficial infections. Here we use three-dimensional-sequential-confocal Raman spectroscopic imaging and atomic force microscopy to investigate the interaction of C. albicans wild type cells, the secreted C. albicans peptide toxin candidalysin and mutant cells lacking candidalysin with epithelial cells. The candidalysin is responsible for epithelial cell damage and exhibits in its deuterated form an identifiable Raman signal in a frequency region distinct from the cellular frequency region. Vibration modes at 2100-2200 cm-1 attributed to carbon­deuterium bending and at 477 cm-1, attributed to the nitrogen­deuterium out-of-plane bending, found around the nucleus, can be assigned to deuterated candidalysin. Atomic force microscopy visualized 100 nm deep lesions on the cell and force-distance curves indicate the higher adhesion on pore surrounding after incubation with candidalysin. Candidalysin targets the plasma membrane, but is also found inside of the cytosol of epithelial cells during C. albicans infection.


Asunto(s)
Candida albicans , Células Epiteliales , Microscopía de Fuerza Atómica , Espectrometría Raman , Candida albicans/metabolismo , Células Epiteliales/microbiología , Células Epiteliales/metabolismo , Microscopía de Fuerza Atómica/métodos , Espectrometría Raman/métodos , Humanos , Candidiasis/microbiología , Microscopía Confocal/métodos , Marcaje Isotópico , Imagenología Tridimensional , Deuterio/química
2.
Analyst ; 148(22): 5627-5635, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37842964

RESUMEN

Major drawbacks of direct mid-infrared spectroscopic imaging of single cells in an aqueous buffer are strong water absorption, low resolution typically above 10 µm, and Mie scattering effects. This study demonstrates how an indirect detection principle can overcome these drawbacks using the optical photothermal infrared (O-PTIR) technique for high-resolution discrete wavenumber imaging and fingerprint spectroscopy of cultivated cells as a model system in a simple liquid sample chamber. The O-PTIR spectra of six leukemia- and cancer-derived cell lines showed main IR bands near 1648, 1547, 1447, 1400, 1220, and 1088 cm-1. Five spectra of approximately 260 single cells per cell type were averaged, the O-PTIR data set was divided into leukemia-derived cells (THP-1, HL 60, Jurkat, and Raji) and cancer cells (HeLa and HepaRG), and partial least squares linear discriminant analysis (PLS-LDA) was applied in the spectral range 800-1800 cm-1 to train three classification models. A leukemia versus cancer cell model showed an accuracy of 90.0%, the HeLa versus HepaRG cell model had an accuracy of 95.4%, and the model for the distinction of leukemia cells had an accuracy of 75.4%. IR bands in linear discriminants (LDs) of the models were correlated with second derivative spectra that resolved more than 25 subbands. The IR and second derivative spectra of proteins, DNA, RNA and lipids were collected as references to confirm band assignments. O-PTIR images of single cells at a 200 nm step size were acquired at 1086, 1548, and 1746 cm-1 to visualize the nucleic acid, protein, and lipid distribution, respectively. Variations in subcellular features and in the lipid-to-protein and nucleic acid-to-protein ratios were identified that were consistent with biomolecular information in LDs. In conclusion, O-PTIR can provide high-quality spectra and images with submicron resolution of single cells in aqueous buffers that offer prospects in high-content screening applications.


Asunto(s)
Leucemia , Ácidos Nucleicos , Humanos , Espectrofotometría Infrarroja/métodos , Diagnóstico por Imagen , Agua/química , Lípidos
3.
Anal Bioanal Chem ; 415(25): 6257-6267, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37640827

RESUMEN

Advanced glycation end products (AGEs) form extracellular crosslinking with collagenous proteins, which contributes to the development of diabetic complications. In this study, AGEs-related pentosidine (PENT) crosslinks-induced structural and biochemical changes are studied using multimodal multiphoton imaging, Raman spectroscopy and atomic force microscopy (AFM). Decellularized equine pericardium (EP) was glycated with four ribose concentrations ranging between 5 and 200 mM and monitored for up to 30 days. Two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) microscopic imaging probed elastin and collagen fibers, respectively. The glycated EP showed a decrease in the SHG intensities associated with loss of non-centrosymmetry of collagen and an increase of TPEF intensities associated with PENT crosslinks upon glycation. TPEF signals from elastin fibers were unaffected. A three-dimensional reconstruction with SHG + TPEF z-stack images visualized the distribution of collagen and elastin within the EP volume matrix. In addition, Raman spectroscopy (RS) detected changes in collagen-related bands and discriminated glycated from untreated EP. Furthermore, AFM scans showed that the roughness increases and the D-unit structure of fibers remained unchanged during glycation. The PENT crosslinked-induced changes are discussed in the context of previous studies of glutaraldehyde- and genipin-induced crosslinking and collagenase-induced digestion of collagen. We conclude that TPEF, SHG, RS, and AFM are effective, label-free, and non-destructive methods to investigate glycated tissues, differentiate crosslinking processes, and characterize general collagen-associated and disease-related changes, in particular by their RS fingerprints.

4.
Anal Chem ; 94(3): 1575-1584, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35015512

RESUMEN

Tissue cross-linking represents an important and often used technique to enhance the mechanical properties of biomaterials. For the first time, we investigated biochemical and structural properties of genipin (GE) cross-linked equine pericardium (EP) using optical imaging techniques in tandem with quantitative atomic force microscopy (AFM). EP was cross-linked with GE at 37 °C, and its biochemical and biomechanical properties were observed at various time points up to 24 h. GE cross-linked EP was monitored by the normalized ratio between its second-harmonic generation (SHG) and two-photon autofluorescence emissions and remained unchanged for untreated EP; however, a decreasing ratio due to depleted SHG and elevated autofluorescence and a fluorescence band at 625 nm were found for GE cross-linked EP. The mean autofluorescence lifetime of GE cross-linked EP also decreased. The biochemical signature of GE cross-linker and shift in collagen bands were detected and quantified using shifted excitation Raman difference spectroscopy as an innovative approach for tackling artifacts with high fluorescence backgrounds. AFM images indicated a higher and increasing Young's modulus correlated with cross-linking, as well as collagen structural changes in GE cross-linked EP, qualitatively explaining the observed decrease in the second-harmonic signal. In conclusion, we obtained detailed information about the biochemical, structural, and biomechanical effects of GE cross-linked EP using a unique combination of optical and force microscopy techniques in a nondestructive and label-free manner.


Asunto(s)
Colágeno , Iridoides , Animales , Colágeno/química , Módulo de Elasticidad , Caballos , Iridoides/análisis , Pericardio
5.
Anal Chem ; 93(8): 3813-3821, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33596051

RESUMEN

We demonstrate the ability of nondestructive optical imaging techniques such as second-harmonic generation (SHG), two-photon fluorescence (TPF), fluorescence lifetime imaging (FLIM), and Raman spectroscopy (RS) to monitor biochemical and mechanical alterations in tissues upon collagen degradation. Decellularized equine pericardium (EP) was treated with 50 µg/mL bacterial collagenase at 37 °C for 8, 16, 24, and 32 h. The SHG ratio (defined as the normalized ratio between SHG and TPF signals) remained unchanged for untreated EP (stored in phosphate-buffered solution (PBS)), whereas treated EP showed a trend of a decreasing SHG ratio with increasing collagen degradation. In the fluorescence domain, treated EP experienced a red-shifted emission and the fluorescence lifetime had a trend of decreasing lifetime with increasing collagen digestion. RS monitors collagen degradation, the spectra had less intense Raman bands at 814, 852, 938, 1242, and 1270 cm-1. Non-negative least-squares (NNLS) modeling quantifies collagen loss and relative increase of elastin. The Young's modulus, derived from atomic force microscope-based nanoindentation experiments, showed a rapid decrease within the first 8 h of collagen degradation, whereas more gradual changes were observed for optical modalities. We conclude that optical imaging techniques like SHG, RS, and FLIM can monitor collagen degradation in a label-free manner and coarsely access mechanical properties in a nondestructive manner.


Asunto(s)
Colágeno , Imagen Óptica , Animales , Módulo de Elasticidad , Elastina , Caballos , Espectrometría Raman
6.
Analyst ; 146(22): 6760-6767, 2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34704561

RESUMEN

Shifted excitation Raman difference spectroscopy (SERDS) can be used as an instrumental baseline correction technique to retrieve Raman bands in highly fluorescent samples. Genipin (GE) cross-linked equine pericardium (EP) was used as a model system since a blue pigment is formed upon cross-linking, which results in a strong fluorescent background in the Raman spectra. EP was cross-linked with 0.25% GE solution for 0.5 h, 2 h, 4 h, 6 h, 12 h, and 24 h, and compared with corresponding untreated EP. Raman spectra were collected with three different excitation wavelengths. For the assessment of the SERDS technique, the preprocessed SERDS spectra of two excitation wavelengths (784 nm-786 nm) were compared with the mathematical baseline-corrected Raman spectra at 785 nm excitation using extended multiplicative signal correction, rubberband, the sensitive nonlinear iterative peak and polynomial fitting algorithms. Whereas each baseline correction gave poor quality spectra beyond 6 h GE crosslinking with wave-like artefacts, the SERDS technique resulted in difference spectra, that gave superior reconstructed spectra with clear collagen and resonance enhanced GE pigment bands with lower standard deviation. Key for this progress was an advanced difference optimization approach that is described here. Furthermore, the results of the SERDS technique were independent of the intensity calibration because the system transfer response was compensated by calculating the difference spectrum. We conclude that this SERDS strategy can be transferred to Raman studies on biological and non-biological samples with a strong fluorescence background at 785 nm and also shorter excitation wavelengths which benefit from more intense scattering intensities and higher quantum efficiencies of CCD detectors.


Asunto(s)
Artefactos , Espectrometría Raman , Algoritmos , Animales , Calibración , Colorantes , Caballos
7.
Anal Chem ; 92(15): 10659-10667, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32598134

RESUMEN

Bovine pericardium (BP) is a vascular biomaterial used in cardiovascular surgery that is typically cross-linked for masking antigenicity and enhance stability. There is a need for biochemical evaluation of the tissue properties prior to implantation to ensure that quality and reliability standards are met. Here, engineered antigen removed BP (ARBP) that was cross-linked with 0.2% and 0.6% glutaraldehyde (GA), and further calcified in vitro to simulate graft calcifications upon implantation was characterized nondestructively using fluorescence lifetime imaging (FLIm) to identify regions of interest which were then assessed by Raman spectroscopy. We observed that the tissue fluorescence lifetime shortened, and that Raman bands at 856, 935, 1282, and 1682 cm-1 decreased, and at 1032 and 1627 cm-1 increased with increasing GA cross-linking. Independent classification analysis based on fluorescence lifetime and on Raman spectra discriminated between GA-ARBP and untreated ARBP with an accuracy of 91% and 66%, respectively. Pearson's correlation analysis showed a strong correlation between pyridinium cross-links measured with high-performance liquid chromatography and fluorescence lifetime measured at 380-400 nm (R = -0.76, p = 0.00094), as well as Raman bands at 856 cm-1 for hydroxy-proline (R = -0.68, p = 0.0056) and at 1032 cm-1 for hydroxy-pyridinium (R = 0.74, p = 0.0016). Calcified areas of GA cross-linked tissue showed characteristic hydroxyapatite (959 and 1038 cm-1) bands in the Raman spectrum and fluorescence lifetime shortened by 0.4 ns compared to uncalcified regions. FLIm-guided Raman imaging could rapidly identify degrees of cross-linking and detected calcified regions with high chemical specificity, an ability that can be used to monitor tissue engineering processes for applications in regenerative medicine.


Asunto(s)
Materiales Biocompatibles/metabolismo , Calcificación Fisiológica , Imagen Óptica/métodos , Pericardio/diagnóstico por imagen , Pericardio/metabolismo , Espectrometría Raman , Animales , Bovinos
8.
Anal Chem ; 92(24): 15745-15756, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33225709

RESUMEN

The variable configuration of Raman spectroscopic platforms is one of the major obstacles in establishing Raman spectroscopy as a valuable physicochemical method within real-world scenarios such as clinical diagnostics. For such real world applications like diagnostic classification, the models should ideally be usable to predict data from different setups. Whether it is done by training a rugged model with data from many setups or by a primary-replica strategy where models are developed on a 'primary' setup and the test data are generated on 'replicate' setups, this is only possible if the Raman spectra from different setups are consistent, reproducible, and comparable. However, Raman spectra can be highly sensitive to the measurement conditions, and they change from setup to setup even if the same samples are measured. Although increasingly recognized as an issue, the dependence of the Raman spectra on the instrumental configuration is far from being fully understood and great effort is needed to address the resulting spectral variations and to correct for them. To make the severity of the situation clear, we present a round robin experiment investigating the comparability of 35 Raman spectroscopic devices with different configurations in 15 institutes within seven European countries from the COST (European Cooperation in Science and Technology) action Raman4clinics. The experiment was developed in a fashion that allows various instrumental configurations ranging from highly confocal setups to fibre-optic based systems with different excitation wavelengths. We illustrate the spectral variations caused by the instrumental configurations from the perspectives of peak shifts, intensity variations, peak widths, and noise levels. We conclude this contribution with recommendations that may help to improve the inter-laboratory studies.

9.
Sensors (Basel) ; 20(23)2020 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-33255459

RESUMEN

Wide field Raman imaging using the integral field spectroscopy approach was used as a fast, one shot imaging method for the simultaneous collection of all spectra composing a Raman image. For the suppression of autofluorescence and background signals such as room light, shifted excitation Raman difference spectroscopy (SERDS) was applied to remove background artifacts in Raman spectra. To reduce acquisition times in wide field SERDS imaging, we adapted the nod and shuffle technique from astrophysics and implemented it into a wide field SERDS imaging setup. In our adapted version, the nod corresponds to the change in excitation wavelength, whereas the shuffle corresponds to the shifting of charges up and down on a Charge-Coupled Device (CCD) chip synchronous to the change in excitation wavelength. We coupled this improved wide field SERDS imaging setup to diode lasers with 784.4/785.5 and 457.7/458.9 nm excitation and applied it to samples such as paracetamol and aspirin tablets, polystyrene and polymethyl methacrylate beads, as well as pork meat using multiple accumulations with acquisition times in the range of 50 to 200 ms. The results tackle two main challenges of SERDS imaging: gradual photobleaching changes the autofluorescence background, and multiple readouts of CCD detector prolong the acquisition time.

10.
Molecules ; 25(17)2020 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-32854230

RESUMEN

Biomaterials used in tissue engineering and regenerative medicine applications benefit from longitudinal monitoring in a non-destructive manner. Label-free imaging based on fluorescence lifetime imaging (FLIm) and Raman spectroscopy were used to monitor the degree of genipin (GE) cross-linking of antigen-removed bovine pericardium (ARBP) at three incubation time points (0.5, 1.0, and 2.5 h). Fluorescence lifetime decreased and the emission spectrum redshifted compared to that of uncross-linked ARBP. The Raman signature of GE-ARBP was resonance-enhanced due to the GE cross-linker that generated new Raman bands at 1165, 1326, 1350, 1380, 1402, 1470, 1506, 1535, 1574, 1630, 1728, and 1741 cm-1. These were validated through density functional theory calculations as cross-linker-specific bands. A multivariate multiple regression model was developed to enhance the biochemical specificity of FLIm parameters fluorescence intensity ratio (R2 = 0.92) and lifetime (R2 = 0.94)) with Raman spectral results. FLIm and Raman spectroscopy detected biochemical changes occurring in the collagenous tissue during the cross-linking process that were characterized by the formation of a blue pigment which affected the tissue fluorescence and scattering properties. In conclusion, FLIm parameters and Raman spectroscopy were used to monitor the degree of cross-linking non-destructively.


Asunto(s)
Reactivos de Enlaces Cruzados/química , Matriz Extracelular/química , Iridoides/química , Pericardio/química , Animales , Bovinos , Imagen Óptica , Pericardio/diagnóstico por imagen , Espectrometría Raman
11.
Analyst ; 144(15): 4488-4492, 2019 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-31287453

RESUMEN

High-throughput screening Raman spectroscopy (HTS-RS) with automated localization algorithms offers unsurpassed speed and sensitivity to investigate the effect of dithiothreitol on the diatom Phaedactylum tricornutum. The HTS-RS capability that was demonstrated for this model system can be transferred to unmet analytical applications such as kinetic in vivo studies of microalgal assemblages.


Asunto(s)
Diatomeas/efectos de los fármacos , Ditiotreitol/farmacología , Algoritmos , Diatomeas/efectos de la radiación , Ensayos Analíticos de Alto Rendimiento/métodos , Luz , Espectrometría Raman/métodos , Xantófilas/química , Xantófilas/metabolismo
12.
Anal Chem ; 90(3): 2023-2030, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29286634

RESUMEN

We present a high-throughput screening Raman spectroscopy (HTS-RS) platform for a rapid and label-free macromolecular fingerprinting of tens of thousands eukaryotic cells. The newly proposed label-free HTS-RS platform combines automated imaging microscopy with Raman spectroscopy to enable a rapid label-free screening of cells and can be applied to a large number of biomedical and clinical applications. The potential of the new approach is illustrated by two applications. (1) HTS-RS-based differential white blood cell count. A classification model was trained using Raman spectra of 52 218 lymphocytes, 48 220 neutrophils, and 7 294 monocytes from four volunteers. The model was applied to determine a WBC differential for two volunteers and three patients, producing comparable results between HTS-RS and machine counting. (2) HTS-RS-based identification of circulating tumor cells (CTCs) in 1:1, 1:9, and 1:99 mixtures of Panc1 cells and leukocytes yielded ratios of 55:45, 10:90, and 3:97, respectively. Because the newly developed HTS-RS platform can be transferred to many existing Raman devices in all laboratories, the proposed implementation will lead to a significant expansion of Raman spectroscopy as a standard tool in biomedical cell research and clinical diagnostics.


Asunto(s)
Bioquímica/métodos , Células Sanguíneas/citología , Ensayos Analíticos de Alto Rendimiento/métodos , Recuento de Leucocitos/métodos , Células Neoplásicas Circulantes , Espectrometría Raman/métodos , Línea Celular Tumoral , Humanos
13.
Anal Chem ; 90(11): 6757-6765, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29697967

RESUMEN

Data fusion of different imaging techniques allows a comprehensive description of chemical and biological systems. Yet, joining images acquired with different spectroscopic platforms is complex because of the different sample orientation and image spatial resolution. Whereas matching sample orientation is often solved by performing suitable affine transformations of rotation, translation, and scaling among images, the main difficulty in image fusion is preserving the spatial detail of the highest spatial resolution image during multitechnique image analysis. In this work, a special variant of the unmixing algorithm Multivariate Curve Resolution Alternating Least Squares (MCR-ALS) for incomplete multisets is proposed to provide a solution for this kind of problem. This algorithm allows analyzing simultaneously images collected with different spectroscopic platforms without losing spatial resolution and ensuring spatial coherence among the images treated. The incomplete multiset structure concatenates images of the two platforms at the lowest spatial resolution with the image acquired with the highest spatial resolution. As a result, the constituents of the sample analyzed are defined by a single set of distribution maps, common to all platforms used and with the highest spatial resolution, and their related extended spectral signatures, covering the signals provided by each of the fused techniques. We demonstrate the potential of the new variant of MCR-ALS for multitechnique analysis on three case studies: (i) a model example of MIR and Raman images of pharmaceutical mixture, (ii) FT-IR and Raman images of palatine tonsil tissue, and (iii) mass spectrometry and Raman images of bean tissue.

14.
Chemphyschem ; 19(9): 1048-1055, 2018 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-29356256

RESUMEN

The yield of high-value products, such as pigments that could be extracted from microalgae, is affected by various nutritional and physical factors. Consequently, there is a need for fast visualization techniques that investigate the responses of individual microalgal cells to changing environmental conditions without introducing perturbations. Here, we apply CARS microscopy to map the distribution of pigments in the diatoms Ditylum brightwellii and Stephanopyxis turris and report their relative change in response to varying light cycles using a marker-based watershed analysis of the acquired images. Simultaneously, the underlying specific pigment composition alterations are revealed using Raman microspectroscopy at 785 nm excitation. In regards to assessing the chemical content of microalgae, these methods present themselves as viable alternatives to the standard techniques currently in use because of their non-disruptive nature and the wealth of complementary information that could be obtained from them.


Asunto(s)
Carotenoides/metabolismo , Diatomeas/metabolismo , Microalgas/metabolismo , Cloroplastos/metabolismo , Diatomeas/efectos de la radiación , Luz , Microalgas/efectos de la radiación , Microscopía/métodos , Espectrometría Raman/métodos
15.
Analyst ; 143(20): 4990-4999, 2018 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-30225475

RESUMEN

Raman measurements applied on freshly tattooed porcine skin ex vivo showed a possibility of obtaining the ink pigment related information in the skin. Based on these results, confocal Raman microscopy was used to identify the tattoo ink pigments of different colors in multicolored tattooed human skin in vivo. The Raman signatures of tattoo ink pigments were unique. Therefore, it could be shown that the applied method is successful for the identification of the tattoo ink pigments in human skin in vivo down to depths of approx. 50 µm, which is sufficient to screen the entire epidermis and the top of the papillary dermis area on the forearm and leg skin sites. Additional application of the optical clearing technique in vivo by topical application of glycerol, combined with tape stripping removal of the uppermost stratum corneum layers and defatting allows the extension of depths of investigation in tattooed skin down to approx. 400 µm, i.e. to cover the entire papillary dermis and a large part of the reticular dermis. Thus, the tattoo ink pigments were identified in vivo and depth-dependently in human tattooed skin confirming their presence in the papillary and reticular dermis. The proposed non-invasive in vivo Raman screening combined with optical clearing for identifying the tattoo pigments in the dermis can be an important task preceding a laser-based tattoo removal procedure and for determining the optimal laser parameters.


Asunto(s)
Colorantes/análisis , Tinta , Microscopía Confocal/métodos , Piel/química , Espectrometría Raman/métodos , Tatuaje , Animales , Color , Humanos , Porcinos
16.
Analyst ; 143(15): 3595-3599, 2018 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-29961798

RESUMEN

Fourier transform infrared (FTIR) spectroscopy techniques and data analyses have become widely available, are easy to use, and are convenient for studies of various biosamples, especially in biomedical science. Yet, cultivation of cells and purification of cell components are costly, often methodically challenging, and time and labor consuming. Therefore, reduction of the sample amount is of high value. Here we propose a novel method for the analysis of small quantities of biosamples by FTIR-microscopy of dry films using a diamond-anvil cell (DAC). This approach allows us to decrease the sample volume at least a hundred times compared to that for a high-throughput screening device (HTS-XT, Bruker, Germany), while still obtaining homogeneous films, acquiring qualitative spectra, and using a conventional 15× objective instead of an ATR-objective. Both FTIR methods were applied for analyses of human colorectal cancer cell lines SW480 and SW620 cultured under hypoxic conditions to estimate the strengths and weaknesses of each approach. FTIR absorption spectra acquired by both methods were compared and no significant spectral differences were detected. It was shown that FTIR-microscopy of films on the DAC can be used for evaluation, screening, discrimination and identification of biochemical markers in biosamples like cells. We conclude that the DAC can be transferred to other biosamples like tissues, biofluids, their components and extracellular matrix, and is especially valuable when the available quantities of biosamples are limited.

17.
Anal Bioanal Chem ; 410(3): 999-1006, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28905087

RESUMEN

A new approach is presented for cell lysate identification which uses SERS-active silver nanoparticles and a droplet-based microfluidic chip. Eighty-nanoliter droplets are generated by injecting silver nanoparticles, KCl as aggregation agent, and cell lysate containing cell constituents, such as nucleic acids, carbohydrates, metabolites, and proteins into a continuous flow of mineral oil. This platform enables accurate mixing of small volumes inside the meandering channels of the quartz chip and allows acquisition of thousands of SERS spectra with 785 nm excitation at an integration time of 1 s. Preparation of three batches of three leukemia cell lines demonstrated the experimental reproducibility. The main advantage of a high number of reproducible spectra is to apply statistics for large sample populations with robust classification results. A support vector machine with leave-one-batch-out cross-validation classified SERS spectra with sensitivities, specificities, and accuracies better than 99% to differentiate Jurkat, THP-1, and MONO-MAC-6 leukemia cell lysates. This approach is compared with previous published reports about Raman spectroscopy for leukemia detection, and an outlook is given for transfer to single cells. A quartz chip was designed for SERS at 785 nm excitation. Principal component analysis of SERS spectra clearly separates cell lysates using variations in band intensity ratios.


Asunto(s)
Leucemia/diagnóstico , Técnicas Analíticas Microfluídicas/instrumentación , Espectrometría Raman/instrumentación , Línea Celular Tumoral , Diseño de Equipo , Humanos , Nanopartículas del Metal/química , Técnicas Analíticas Microfluídicas/métodos , Plata/química , Sonicación , Espectrometría Raman/métodos
19.
Biometals ; 30(1): 71-82, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28064420

RESUMEN

Iron incorporation into diatom biosilica was investigated for the species Stephanopyxis turris. It is known that several "foreign" elements (e.g., germanium, titanium, aluminum, zinc, iron) can be incorporated into the siliceous cell walls of diatoms in addition to silicon dioxide (SiO2). In order to examine the amount and form of iron incorporation, the iron content in the growth medium was varied during cultivation. Fe:Si ratios of isolated cell walls were measured by ICP-OES. SEM studies were performed to examine of a possible influence of excess iron during diatom growth upon cell wall formation. The chemical state of biosilica-attached iron was characterized by a combination of infrared, 29Si MAS NMR, and EPR spectroscopy. For comparison, synthetic silicagels of variable iron content were studied. Our investigations show that iron incorporation in biosilica is limited. More than 95% of biosilica-attached iron is found in the form of iron clusters/nanoparticles. In contrast, iron is preferentially dispersedly incorporated within the silica framework in synthetic silicagels leading to Si-O-Fe bond formation.


Asunto(s)
Pared Celular/química , Diatomeas/química , Hierro/química , Dióxido de Silicio/química , Medios de Cultivo , Espectroscopía de Resonancia Magnética , Nanopartículas/química , Titanio/química
20.
Nanomedicine ; 13(3): 835-841, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27965168

RESUMEN

In cancer, extracellular vesicles (EV) contribute to tumor progression by regulating local and systemic effects. Being released into body fluids, EV may be used in nanomedicine as a valuable source for diagnostic biomarkers. In this work, infrared and Raman spectroscopy were used for comprehensive comparative analysis of cancer versus non-cancer EV and patient screening. Two different EV fractions enriched in exosomes and microvesicles were isolated by differential centrifugation from serum and plasma of cancer and non-cancer patients and from serum and plasma of a healthy donor. The EV fractions were then subjected to drop-coating deposition and drying on calcium fluoride substrates. Reduction of alpha-helix-rich proteins and enhancement of beta-sheet-rich proteins as a cancer-specific blood EV signature was determined, and subsequently this feature was applied for a pilot study aiming to detect prostate cancer in a test cohort of patients with high-grade prostate carcinoma and benign hypoplasia.


Asunto(s)
Micropartículas Derivadas de Células/patología , Vesículas Extracelulares/patología , Neoplasias de la Próstata/sangre , Neoplasias de la Próstata/diagnóstico , Espectrofotometría Infrarroja/métodos , Espectrometría Raman/métodos , Micropartículas Derivadas de Células/química , Vesículas Extracelulares/química , Humanos , Masculino , Proyectos Piloto , Próstata/patología , Hiperplasia Prostática/sangre , Hiperplasia Prostática/diagnóstico , Hiperplasia Prostática/patología , Neoplasias de la Próstata/química , Neoplasias de la Próstata/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA