Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Rev Mol Cell Biol ; 25(3): 187-211, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37957331

RESUMEN

Intrinsically disordered protein regions exist in a collection of dynamic interconverting conformations that lack a stable 3D structure. These regions are structurally heterogeneous, ubiquitous and found across all kingdoms of life. Despite the absence of a defined 3D structure, disordered regions are essential for cellular processes ranging from transcriptional control and cell signalling to subcellular organization. Through their conformational malleability and adaptability, disordered regions extend the repertoire of macromolecular interactions and are readily tunable by their structural and chemical context, making them ideal responders to regulatory cues. Recent work has led to major advances in understanding the link between protein sequence and conformational behaviour in disordered regions, yet the link between sequence and molecular function is less well defined. Here we consider the biochemical and biophysical foundations that underlie how and why disordered regions can engage in productive cellular functions, provide examples of emerging concepts and discuss how protein disorder contributes to intracellular information processing and regulation of cellular function.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Proteínas Intrínsecamente Desordenadas/metabolismo , Conformación Proteica , Secuencia de Aminoácidos , Sustancias Macromoleculares
2.
EMBO J ; 42(23): e111122, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37916890

RESUMEN

Alpha-synuclein (aSN) is a membrane-associated and intrinsically disordered protein, well known for pathological aggregation in neurodegeneration. However, the physiological function of aSN is disputed. Pull-down experiments have pointed to plasma membrane Ca2+ -ATPase (PMCA) as a potential interaction partner. From proximity ligation assays, we find that aSN and PMCA colocalize at neuronal synapses, and we show that calcium expulsion is activated by aSN and PMCA. We further show that soluble, monomeric aSN activates PMCA at par with calmodulin, but independent of the autoinhibitory domain of PMCA, and highly dependent on acidic phospholipids and membrane-anchoring properties of aSN. On PMCA, the key site is mapped to the acidic lipid-binding site, located within a disordered PMCA-specific loop connecting the cytosolic A domain and transmembrane segment 3. Our studies point toward a novel physiological role of monomeric aSN as a stimulator of calcium clearance in neurons through activation of PMCA.


Asunto(s)
Calcio , alfa-Sinucleína , Calcio/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , ATPasas Transportadoras de Calcio de la Membrana Plasmática/genética , ATPasas Transportadoras de Calcio de la Membrana Plasmática/química , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , Membrana Celular/metabolismo , Adenosina Trifosfatasas/metabolismo , Sitios de Unión
3.
Nucleic Acids Res ; 52(4): 2030-2044, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38261971

RESUMEN

DNA regulation, replication and repair are processes fundamental to all known organisms and the sliding clamp proliferating cell nuclear antigen (PCNA) is central to all these processes. S-phase delaying protein 1 (Spd1) from S. pombe, an intrinsically disordered protein that causes checkpoint activation by inhibiting the enzyme ribonucleotide reductase, has one of the most divergent PCNA binding motifs known. Using NMR spectroscopy, in vivo assays, X-ray crystallography, calorimetry, and Monte Carlo simulations, an additional PCNA binding motif in Spd1, a PIP-box, is revealed. The two tandemly positioned, low affinity sites exchange rapidly on PCNA exploiting the same binding sites. Increasing or decreasing the binding affinity between Spd1 and PCNA through mutations of either motif compromised the ability of Spd1 to cause checkpoint activation in yeast. These results pinpoint a role for PCNA in Spd1-mediated checkpoint activation and suggest that its tandemly positioned short linear motifs create a neatly balanced competition-based system, involving PCNA, Spd1 and the small ribonucleotide reductase subunit, Suc22R2. Similar mechanisms may be relevant in other PCNA binding ligands where divergent binding motifs so far have gone under the PIP-box radar.


Asunto(s)
Proteínas de Ciclo Celular , Antígeno Nuclear de Célula en Proliferación , Proteínas de Schizosaccharomyces pombe , Sitios de Unión , Replicación del ADN , Proteínas Intrínsecamente Desordenadas/química , Antígeno Nuclear de Célula en Proliferación/metabolismo , Unión Proteica , Ribonucleótido Reductasas/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo
4.
Cell Mol Life Sci ; 81(1): 245, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38814467

RESUMEN

DNA replication is a tightly coordinated event carried out by a multiprotein replication complex. An essential factor in the bacterial replication complex is the ring-shaped DNA sliding clamp, ß-clamp, ensuring processive DNA replication and DNA repair through tethering of polymerases and DNA repair proteins to DNA. ß -clamp is a hub protein with multiple interaction partners all binding through a conserved clamp binding sequence motif. Due to its central role as a DNA scaffold protein, ß-clamp is an interesting target for antimicrobial drugs, yet little effort has been put into understanding the functional interactions of ß-clamp. In this review, we scrutinize the ß-clamp structure and dynamics, examine how its interactions with a plethora of binding partners are regulated through short linear binding motifs and discuss how contexts play into selection. We describe the dynamic process of clamp loading onto DNA and cover the recent advances in drug development targeting ß-clamp. Despite decades of research in ß-clamps and recent landmark structural insight, much remains undisclosed fostering an increased focus on this very central protein.


Asunto(s)
Proteínas Bacterianas , Replicación del ADN , ADN Bacteriano , Descubrimiento de Drogas , ADN Bacteriano/metabolismo , ADN Bacteriano/química , Descubrimiento de Drogas/métodos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Unión Proteica , ADN Polimerasa III/metabolismo , ADN Polimerasa III/química , Modelos Moleculares , Bacterias/metabolismo , Bacterias/genética , Reparación del ADN
5.
Nature ; 555(7694): 61-66, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29466338

RESUMEN

Molecular communication in biology is mediated by protein interactions. According to the current paradigm, the specificity and affinity required for these interactions are encoded in the precise complementarity of binding interfaces. Even proteins that are disordered under physiological conditions or that contain large unstructured regions commonly interact with well-structured binding sites on other biomolecules. Here we demonstrate the existence of an unexpected interaction mechanism: the two intrinsically disordered human proteins histone H1 and its nuclear chaperone prothymosin-α associate in a complex with picomolar affinity, but fully retain their structural disorder, long-range flexibility and highly dynamic character. On the basis of closely integrated experiments and molecular simulations, we show that the interaction can be explained by the large opposite net charge of the two proteins, without requiring defined binding sites or interactions between specific individual residues. Proteome-wide sequence analysis suggests that this interaction mechanism may be abundant in eukaryotes.


Asunto(s)
Histonas/química , Histonas/metabolismo , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Precursores de Proteínas/química , Precursores de Proteínas/metabolismo , Timosina/análogos & derivados , Sitios de Unión , Humanos , Unión Proteica , Electricidad Estática , Timosina/química , Timosina/metabolismo
6.
Biophys J ; 122(2): 310-321, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36518077

RESUMEN

Diffusion measurements by pulsed-field gradient NMR and fluorescence correlation spectroscopy can be used to probe the hydrodynamic radius of proteins, which contains information about the overall dimension of a protein in solution. The comparison of this value with structural models of intrinsically disordered proteins is nonetheless impaired by the uncertainty of the accuracy of the methods for computing the hydrodynamic radius from atomic coordinates. To tackle this issue, we here build conformational ensembles of 11 intrinsically disordered proteins that we ensure are in agreement with measurements of compaction by small-angle x-ray scattering. We then use these ensembles to identify the forward model that more closely fits the radii derived from pulsed-field gradient NMR diffusion experiments. Of the models we examined, we find that the Kirkwood-Riseman equation provides the best description of the hydrodynamic radius probed by pulsed-field gradient NMR experiments. While some minor discrepancies remain, our results enable better use of measurements of the hydrodynamic radius in integrative modeling and for force field benchmarking and parameterization.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Proteínas Intrínsecamente Desordenadas/química , Radio (Anatomía)/metabolismo , Hidrodinámica , Conformación Proteica , Espectrometría de Fluorescencia , Dispersión del Ángulo Pequeño
7.
J Biol Chem ; 298(6): 101963, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35452682

RESUMEN

Formation of transcription factor (TF)-coregulator complexes is a key step in transcriptional regulation, with coregulators having essential functions as hub nodes in molecular networks. How specificity and selectivity are maintained in these nodes remain open questions. In this work, we addressed specificity in transcriptional networks using complexes formed between TFs and αα-hubs, which are defined by a common αα-hairpin secondary structure motif, as a model. Using NMR spectroscopy and binding thermodynamics, we analyzed the structure, dynamics, stability, and ligand-binding properties of the Arabidopsis thaliana RST domains from TAF4 and known binding partner RCD1, and the TAFH domain from human TAF4, allowing comparison across species, functions, and architectural contexts. While these αα-hubs shared the αα-hairpin motif, they differed in length and orientation of accessory helices as well as in their thermodynamic profiles of ligand binding. Whereas biologically relevant RCD1-ligand pairs displayed high affinity driven by enthalpy, TAF4-ligand interactions were entropy driven and exhibited less binding-induced structuring. We in addition identified a thermal unfolding state with a structured core for all three domains, although the temperature sensitivity differed. Thermal stability studies suggested that initial unfolding of the RCD1-RST domain localized around helix 1, lending this region structural malleability, while effects in TAF4-RST were more stochastic, suggesting variability in structural adaptability upon binding. Collectively, our results support a model in which hub structure, flexibility, and binding thermodynamics contribute to αα-hub-TF binding specificity, a finding of general relevance to the understanding of coregulator-ligand interactions and interactome sizes.


Asunto(s)
Proteínas de Arabidopsis/química , Factores Asociados con la Proteína de Unión a TATA/química , Factor de Transcripción TFIID/química , Factores de Transcripción TFII/química , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Humanos , Ligandos , Proteínas Nucleares/metabolismo , Unión Proteica , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factor de Transcripción TFIID/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción TFII/metabolismo
8.
Cell Mol Life Sci ; 79(9): 484, 2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-35974206

RESUMEN

Ubiquitin is a small, globular protein that is conjugated to other proteins as a posttranslational event. A palette of small, folded domains recognizes and binds ubiquitin to translate and effectuate this posttranslational signal. Recent computational studies have suggested that protein regions can recognize ubiquitin via a process of folding upon binding. Using peptide binding arrays, bioinformatics, and NMR spectroscopy, we have uncovered a disordered ubiquitin-binding motif that likely remains disordered when bound and thus expands the palette of ubiquitin-binding proteins. We term this motif Disordered Ubiquitin-Binding Motif (DisUBM) and find it to be present in many proteins with known or predicted functions in degradation and transcription. We decompose the determinants of the motif showing it to rely on features of aromatic and negatively charged residues, and less so on distinct sequence positions in line with its disordered nature. We show that the affinity of the motif is low and moldable by the surrounding disordered chain, allowing for an enhanced interaction surface with ubiquitin, whereby the affinity increases ~ tenfold. Further affinity optimization using peptide arrays pushed the affinity into the low micromolar range, but compromised context dependence. Finally, we find that DisUBMs can emerge from unbiased screening of randomized peptide libraries, featuring in de novo cyclic peptides selected to bind ubiquitin chains. We suggest that naturally occurring DisUBMs can recognize ubiquitin as a posttranslational signal to act as affinity enhancers in IDPs that bind to folded and ubiquitylated binding partners.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Proteínas , Secuencia de Aminoácidos , Proteínas Intrínsecamente Desordenadas/química , Péptidos/metabolismo , Unión Proteica , Proteínas/metabolismo , Ubiquitina/metabolismo
9.
J Biol Chem ; 296: 100226, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33361159

RESUMEN

Hub proteins are central nodes in protein-protein interaction networks with critical importance to all living organisms. Recently, a new group of folded hub domains, the αα-hubs, was defined based on a shared αα-hairpin supersecondary structural foundation. The members PAH, RST, TAFH, NCBD, and HHD are found in large proteins such as Sin3, RCD1, TAF4, CBP, and harmonin, which organize disordered transcriptional regulators and membrane scaffolds in interactomes of importance to human diseases and plant quality. In this review, studies of structures, functions, and complexes across the αα-hubs are described and compared to provide a unified description of the group. This analysis expands the associated molecular concepts of "one domain-one binding site", motif-based ligand binding, and coupled folding and binding of intrinsically disordered ligands to additional concepts of importance to signal fidelity. These include context, motif reversibility, multivalency, complex heterogeneity, synergistic αα-hub:ligand folding, accessory binding sites, and supramodules. We propose that these multifaceted protein-protein interaction properties are made possible by the characteristics of the αα-hub fold, including supersite properties, dynamics, variable topologies, accessory helices, and malleability and abetted by adaptability of the disordered ligands. Critically, these features provide additional filters for specificity. With the presentations of new concepts, this review opens for new research questions addressing properties across the group, which are driven from concepts discovered in studies of the individual members. Combined, the members of the αα-hubs are ideal models for deconvoluting signal fidelity maintained by folded hubs and their interactions with intrinsically disordered ligands.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Ciclo Celular/química , Proteínas del Citoesqueleto/química , Proteínas Intrínsecamente Desordenadas/química , Complejo Correpresor Histona Desacetilasa y Sin3/química , Factores Asociados con la Proteína de Unión a TATA/química , Factor de Transcripción TFIID/química , Factores de Transcripción TFII/química , Factores de Transcripción/química , Factores de Transcripción p300-CBP/química , Animales , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sitios de Unión , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Humanos , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Complejo Correpresor Histona Desacetilasa y Sin3/genética , Complejo Correpresor Histona Desacetilasa y Sin3/metabolismo , Factores Asociados con la Proteína de Unión a TATA/genética , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factor de Transcripción TFIID/genética , Factor de Transcripción TFIID/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción TFII/genética , Factores de Transcripción TFII/metabolismo , Factores de Transcripción p300-CBP/genética , Factores de Transcripción p300-CBP/metabolismo
10.
Proteins ; 90(1): 96-109, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34312913

RESUMEN

The denatured state of several proteins has been shown to display transient structures that are relevant for folding, stability, and aggregation. To detect them by nuclear magnetic resonance (NMR) spectroscopy, the denatured state must be stabilized by chemical agents or changes in temperature. This makes the environment different from that experienced in biologically relevant processes. Using high-resolution heteronuclear NMR spectroscopy, we have characterized several denatured states of a monomeric variant of HIV-1 protease, which is natively structured in water, induced by different concentrations of urea, guanidinium chloride, and acetic acid. We have extrapolated the chemical shifts and the relaxation parameters to the denaturant-free denatured state at native conditions, showing that they converge to the same values. Subsequently, we characterized the conformational properties of this biologically relevant denatured state under native conditions by advanced molecular dynamics simulations and validated the results by comparison to experimental data. We show that the denatured state of HIV-1 protease under native conditions displays rich patterns of transient native and non-native structures, which could be of relevance to its guidance through a complex folding process.


Asunto(s)
Proteasa del VIH , Simulación de Dinámica Molecular , Desnaturalización Proteica , Proteasa del VIH/química , Proteasa del VIH/metabolismo , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Pliegue de Proteína
11.
Mol Cell ; 56(3): 453-461, 2014 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-25306921

RESUMEN

The ubiquitin-proteasome system is the major pathway for protein degradation in eukaryotic cells. Proteins to be degraded are conjugated to ubiquitin chains that act as recognition signals for the 26S proteasome. The proteasome subunits Rpn10 and Rpn13 are known to bind ubiquitin, but genetic and biochemical data suggest the existence of at least one other substrate receptor. Here, we show that the phylogenetically conserved proteasome subunit Dss1 (Sem1) binds ubiquitin chains linked by K63 and K48. Atomic resolution data show that Dss1 is disordered and binds ubiquitin by binding sites characterized by acidic and hydrophobic residues. The complementary binding region in ubiquitin is composed of a hydrophobic patch formed by I13, I44, and L69 flanked by two basic regions. Mutations in the ubiquitin-binding site of Dss1 cause growth defects and accumulation of ubiquitylated proteins.


Asunto(s)
Proteínas Portadoras/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Ubiquitina/metabolismo , Sitios de Unión , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas de Unión al ARN , Proteínas de Schizosaccharomyces pombe/química , Ubiquitina/química
12.
Cell Mol Life Sci ; 78(5): 2263-2278, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32936312

RESUMEN

Understanding the interplay between sequence, structure and function of proteins has been complicated in recent years by the discovery of intrinsically disordered proteins (IDPs), which perform biological functions in the absence of a well-defined three-dimensional fold. Disordered protein sequences account for roughly 30% of the human proteome and in many proteins, disordered and ordered domains coexist. However, few studies have assessed how either feature affects the properties of the other. In this study, we examine the role of a disordered tail in the overall properties of the two-domain, calcium-sensing protein neuronal calcium sensor 1 (NCS-1). We show that loss of just six of the 190 residues at the flexible C-terminus is sufficient to severely affect stability, dynamics, and folding behavior of both ordered domains. We identify specific hydrophobic contacts mediated by the disordered tail that may be responsible for stabilizing the distal N-terminal domain. Moreover, sequence analyses indicate the presence of an LSL-motif in the tail that acts as a mimic of native ligands critical to the observed order-disorder communication. Removing the disordered tail leads to a shorter life-time of the ligand-bound complex likely originating from the observed destabilization. This close relationship between order and disorder may have important implications for how investigations into mixed systems are designed and opens up a novel avenue of drug targeting exploiting this type of behavior.


Asunto(s)
Proteínas Portadoras/química , Proteínas Intrínsecamente Desordenadas/química , Proteínas Sensoras del Calcio Neuronal/química , Neuropéptidos/química , Dominios Proteicos , Secuencia de Aminoácidos , Sitios de Unión/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Cinética , Ligandos , Modelos Moleculares , Mutación , Proteínas Sensoras del Calcio Neuronal/genética , Proteínas Sensoras del Calcio Neuronal/metabolismo , Neuropéptidos/genética , Neuropéptidos/metabolismo , Estabilidad Proteica , Termodinámica
13.
Biochem J ; 478(11): 2035-2050, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-34101805

RESUMEN

With the increased focus on intrinsically disordered proteins (IDPs) and their large interactomes, the question about their specificity - or more so on their multispecificity - arise. Here we recapitulate how specificity and multispecificity are quantified and address through examples if IDPs in this respect differ from globular proteins. The conclusion is that quantitatively, globular proteins and IDPs are similar when it comes to specificity. However, compared with globular proteins, IDPs have larger interactome sizes, a phenomenon that is further enabled by their flexibility, repetitive binding motifs and propensity to adapt to different binding partners. For IDPs, this adaptability, interactome size and a higher degree of multivalency opens for new interaction mechanisms such as facilitated exchange through trimer formation and ultra-sensitivity via threshold effects and ensemble redistribution. IDPs and their interactions, thus, do not compromise the definition of specificity. Instead, it is the sheer size of their interactomes that complicates its calculation. More importantly, it is this size that challenges how we conceptually envision, interpret and speak about their specificity.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Animales , Humanos , Unión Proteica , Conformación Proteica
14.
Nucleic Acids Res ; 48(10): 5540-5554, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32347931

RESUMEN

In the fight against antimicrobial resistance, the bacterial DNA sliding clamp, ß-clamp, is a promising drug target for inhibition of DNA replication and translesion synthesis. The ß-clamp and its eukaryotic homolog, PCNA, share a C-terminal hydrophobic pocket where all the DNA polymerases bind. Here we report that cell penetrating peptides containing the PCNA-interacting motif APIM (APIM-peptides) inhibit bacterial growth at low concentrations in vitro, and in vivo in a bacterial skin infection model in mice. Surface plasmon resonance analysis and computer modeling suggest that APIM bind to the hydrophobic pocket on the ß-clamp, and accordingly, we find that APIM-peptides inhibit bacterial DNA replication. Interestingly, at sub-lethal concentrations, APIM-peptides have anti-mutagenic activities, and this activity is increased after SOS induction. Our results show that although the sequence homology between the ß-clamp and PCNA are modest, the presence of similar polymerase binding pockets in the DNA clamps allows for binding of the eukaryotic binding motif APIM to the bacterial ß-clamp. Importantly, because APIM-peptides display both anti-mutagenic and growth inhibitory properties, they may have clinical potential both in combination with other antibiotics and as single agents.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , ADN Polimerasa III/antagonistas & inhibidores , Péptidos/química , Péptidos/farmacología , Animales , Antibacterianos/metabolismo , Antibacterianos/uso terapéutico , ADN Polimerasa III/química , Replicación del ADN/efectos de los fármacos , ADN Polimerasa Dirigida por ADN , Femenino , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/crecimiento & desarrollo , Ratones Endogámicos BALB C , Mutagénesis/efectos de los fármacos , Inhibidores de la Síntesis del Ácido Nucleico/química , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , Inhibidores de la Síntesis del Ácido Nucleico/uso terapéutico , Péptidos/metabolismo , Péptidos/uso terapéutico , Antígeno Nuclear de Célula en Proliferación/metabolismo , Dominios y Motivos de Interacción de Proteínas , Infecciones Cutáneas Estafilocócicas/tratamiento farmacológico , Staphylococcus epidermidis/efectos de los fármacos , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/crecimiento & desarrollo
15.
J Am Chem Soc ; 143(36): 14540-14550, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34473923

RESUMEN

Intrinsic disorder (ID) constitutes a new dimension to the protein structure-function relationship. The ability to undergo conformational changes upon binding is a key property of intrinsically disordered proteins and remains challenging to study using conventional methods. A 1994 paper by R. S. Spolar and M. T. Record presented a thermodynamic approach for estimating changes in conformational entropy based on heat capacity changes, allowing quantification of residues folding upon binding. Here, we adapt the method for studies of intrinsically disordered proteins. We integrate additional data to provide a broader experimental foundation for the underlying relations and, based on >500 protein-protein complexes involving disordered proteins, reassess a key relation between polar and nonpolar surface area changes, previously determined using globular protein folding. We demonstrate the improved suitability of the adapted method to studies of the folded αα-hub domain RST from radical-induced cell death 1, whose interactome is characterized by ID. From extensive thermodynamic data, quantifying the conformational entropy changes upon binding, and comparison to the NMR structure, the adapted method improves accuracy for ID-based studies. Furthermore, we apply the method, in conjunction with NMR, to reveal hitherto undetected effects of interaction-motif context. Thus, inclusion of the disordered context of the DREB2A RST-binding motif induces structuring of the binding motif, resulting in major enthalpy-entropy compensation in the interaction interface. This study, also evaluating additional interactions, demonstrates the strength of the ID-adapted Spolar-Record thermodynamic approach for dissection of structural features of ID-based interactions, easily overlooked in traditional studies, and for translation of these into mechanistic knowledge.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas Intrínsecamente Desordenadas/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Proteínas de Arabidopsis/química , Entropía , Proteínas Intrínsecamente Desordenadas/química , Proteínas Nucleares/química , Unión Proteica , Conformación Proteica , Dominios Proteicos , Pliegue de Proteína , Factores de Transcripción/química
16.
FASEB J ; 34(6): 7462-7482, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32277854

RESUMEN

In the brain, α-synuclein (aSN) partitions between free unbound cytosolic and membrane bound forms modulating both its physiological and pathological role and complicating its study due to structural heterogeneity. Here, we use an interdisciplinary, synergistic approach to characterize the properties of aSN:lipid mixtures, isolated aSN:lipid co-structures, and aSN in mammalian cells. Enabled by the isolation of the membrane-bound state, we show that within the previously described N-terminal membrane anchor, membrane interaction relies both on an N-terminal tail (NTT) head group layer insertion of 14 residues and a folded-upon-binding helix at the membrane surface. Both binding events must be present; if, for example, the NTT insertion is lost, the membrane affinity of aSN is severely compromised and formation of aSN:lipid co-structures hampered. In mammalian cells, compromised cooperativity results in lowered membrane association. Thus, avidity within the N-terminal anchor couples N-terminal insertion and helical surface binding, which is crucial for aSN membrane interaction and cellular localization, and may affect membrane fusion.


Asunto(s)
Membrana Celular/metabolismo , alfa-Sinucleína/metabolismo , Animales , Células Cultivadas , Humanos , Mamíferos/metabolismo , Fusión de Membrana/fisiología
17.
Cell Commun Signal ; 19(1): 2, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33407551

RESUMEN

BACKGROUND: Signal fidelity depends on protein-protein interaction-'hubs' integrating cues from large interactomes. Recently, and based on a common secondary structure motif, the αα-hubs were defined, which are small α-helical domains of large, modular proteins binding intrinsically disordered transcriptional regulators. METHODS: Comparative structural biology. RESULTS: We assign the harmonin-homology-domain (HHD, also named the harmonin N-terminal domain, NTD) present in large proteins such as harmonin, whirlin, cerebral cavernous malformation 2, and regulator of telomere elongation 1 to the αα-hubs. The new member of the αα-hubs expands functionality to include scaffolding of supra-modular complexes mediating sensory perception, neurovascular integrity and telomere regulation, and reveal novel features of the αα-hubs. As a common trait, the αα-hubs bind intrinsically disordered ligands of similar properties integrating similar cellular cues, but without cross-talk. CONCLUSION: The inclusion of the HHD in the αα-hubs has uncovered new features, exemplifying the utility of identifying groups of hub domains, whereby discoveries in one member may cross-fertilize discoveries in others. These features make the αα-hubs unique models for decomposing signal specificity and fidelity. Using these as models, together with other suitable hub domain, we may advance the functional understanding of hub proteins and their role in cellular communication and signaling, as well as the role of intrinsically disordered proteins in signaling networks. Video Abstract.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Ligandos , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas
18.
Nucleic Acids Res ; 47(18): 9592-9608, 2019 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-31400117

RESUMEN

Physical interactions between members of the MYB and bHLH transcription factor (TF) families regulate many important biological processes in plants. Not all reported MYB-bHLH interactions can be explained by the known binding sites in the R3 repeat of the MYB DNA-binding domain. Noteworthy, most of the sequence diversity of MYB TFs lies in their non-MYB regions, which contain orphan small subgroup-defining motifs not yet linked to molecular functions. Here, we identified the motif mediating interaction between MYB TFs from subgroup 12 and their bHLH partners. Unlike other known MYB-bHLH interactions, the motif locates to the centre of the predicted disordered non-MYB region. We characterised the core motif, which enabled accurate prediction of previously unknown bHLH-interacting MYB TFs in Arabidopsis thaliana, and we confirmed its functional importance in planta. Our results indicate a correlation between the MYB-bHLH interaction affinity and the phenotypic output controlled by the TF complex. The identification of an interaction motif outside R3 indicates that MYB-bHLH interactions must have arisen multiple times, independently and suggests many more motifs of functional relevance to be harvested from subgroup-specific studies.


Asunto(s)
Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas de Unión al ADN/genética , Filogenia , Factores de Transcripción/genética , Secuencia de Aminoácidos/genética , Arabidopsis/genética , Proteínas de Arabidopsis/clasificación , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/clasificación , Regulación de la Expresión Génica de las Plantas/genética , Plantas Modificadas Genéticamente/genética , Factores de Transcripción/clasificación
19.
Proc Natl Acad Sci U S A ; 115(26): E6020-E6029, 2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29899144

RESUMEN

The intravascular processing of triglyceride-rich lipoproteins depends on lipoprotein lipase (LPL) and GPIHBP1, a membrane protein of endothelial cells that binds LPL within the subendothelial spaces and shuttles it to the capillary lumen. In the absence of GPIHBP1, LPL remains mislocalized within the subendothelial spaces, causing severe hypertriglyceridemia (chylomicronemia). The N-terminal domain of GPIHBP1, an intrinsically disordered region (IDR) rich in acidic residues, is important for stabilizing LPL's catalytic domain against spontaneous and ANGPTL4-catalyzed unfolding. Here, we define several important properties of GPIHBP1's IDR. First, a conserved tyrosine in the middle of the IDR is posttranslationally modified by O-sulfation; this modification increases both the affinity of GPIHBP1-LPL interactions and the ability of GPIHBP1 to protect LPL against ANGPTL4-catalyzed unfolding. Second, the acidic IDR of GPIHBP1 increases the probability of a GPIHBP1-LPL encounter via electrostatic steering, increasing the association rate constant (kon) for LPL binding by >250-fold. Third, we show that LPL accumulates near capillary endothelial cells even in the absence of GPIHBP1. In wild-type mice, we expect that the accumulation of LPL in close proximity to capillaries would increase interactions with GPIHBP1. Fourth, we found that GPIHBP1's IDR is not a key factor in the pathogenicity of chylomicronemia in patients with the GPIHBP1 autoimmune syndrome. Finally, based on biophysical studies, we propose that the negatively charged IDR of GPIHBP1 traverses a vast space, facilitating capture of LPL by capillary endothelial cells and simultaneously contributing to GPIHBP1's ability to preserve LPL structure and activity.


Asunto(s)
Células Endoteliales/metabolismo , Lipoproteína Lipasa/metabolismo , Receptores de Lipoproteína/metabolismo , Proteína 4 Similar a la Angiopoyetina/química , Proteína 4 Similar a la Angiopoyetina/genética , Proteína 4 Similar a la Angiopoyetina/metabolismo , Animales , Células Endoteliales/patología , Humanos , Hiperlipoproteinemia Tipo I/genética , Hiperlipoproteinemia Tipo I/metabolismo , Hiperlipoproteinemia Tipo I/patología , Lipoproteína Lipasa/química , Lipoproteína Lipasa/genética , Ratones , Unión Proteica , Dominios Proteicos , Receptores de Lipoproteína/química , Receptores de Lipoproteína/genética , Tirosina/química , Tirosina/genética , Tirosina/metabolismo
20.
Int J Mol Sci ; 22(1)2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33466276

RESUMEN

Intrinsically disordered proteins and regions with their associated short linear motifs play key roles in transcriptional regulation. The disordered MYC-interaction motif (MIM) mediates interactions between MYC and MYB transcription factors in Arabidopsis thaliana that are critical for constitutive and induced glucosinolate (GLS) biosynthesis. GLSs comprise a class of plant defense compounds that evolved in the ancestor of the Brassicales order. We used a diverse set of search strategies to discover additional occurrences of the MIM in other proteins and in other organisms and evaluate the findings by means of structural predictions, interaction assays, and biophysical experiments. Our search revealed numerous MIM instances spread throughout the angiosperm lineage. Experiments verify that several of the newly discovered MIM-containing proteins interact with MYC TFs. Only hits found within the same transcription factor family and having similar characteristics could be validated, indicating that structural predictions and sequence similarity are good indicators of whether the presence of a MIM mediates interaction. The experimentally validated MIMs are found in organisms outside the Brassicales order, showing that MIM function is broader than regulating GLS biosynthesis.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Secuencias Hélice-Asa-Hélice/genética , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Glucosinolatos/genética , Proteínas Intrínsecamente Desordenadas/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA