Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 149(3): 590-604, 2012 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-22541430

RESUMEN

Mouse embryonic stem (ES) cells grown in serum exhibit greater heterogeneity in morphology and expression of pluripotency factors than ES cells cultured in defined medium with inhibitors of two kinases (Mek and GSK3), a condition known as "2i" postulated to establish a naive ground state. We show that the transcriptome and epigenome profiles of serum- and 2i-grown ES cells are distinct. 2i-treated cells exhibit lower expression of lineage-affiliated genes, reduced prevalence at promoters of the repressive histone modification H3K27me3, and fewer bivalent domains, which are thought to mark genes poised for either up- or downregulation. Nonetheless, serum- and 2i-grown ES cells have similar differentiation potential. Precocious transcription of developmental genes in 2i is restrained by RNA polymerase II promoter-proximal pausing. These findings suggest that transcriptional potentiation and a permissive chromatin context characterize the ground state and that exit from it may not require a metastable intermediate or multilineage priming.


Asunto(s)
Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Código de Histonas , Transcripción Genética , Animales , Diferenciación Celular , Epigénesis Genética , Genes myc , Histonas/metabolismo , Metilación , Ratones , ARN Polimerasa II/metabolismo , Transcriptoma
2.
EMBO J ; 41(1): e106459, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34806773

RESUMEN

In mammals, histone 3 lysine 4 methylation (H3K4me) is mediated by six different lysine methyltransferases. Among these enzymes, SETD1B (SET domain containing 1b) has been linked to syndromic intellectual disability in human subjects, but its role in the mammalian postnatal brain has not been studied yet. Here, we employ mice deficient for Setd1b in excitatory neurons of the postnatal forebrain, and combine neuron-specific ChIP-seq and RNA-seq approaches to elucidate its role in neuronal gene expression. We observe that Setd1b controls the expression of a set of genes with a broad H3K4me3 peak at their promoters, enriched for neuron-specific genes linked to learning and memory function. Comparative analyses in mice with conditional deletion of Kmt2a and Kmt2b histone methyltransferases show that SETD1B plays a more pronounced and potent role in regulating such genes. Moreover, postnatal loss of Setd1b leads to severe learning impairment, suggesting that SETD1B-dependent regulation of H3K4me levels in postnatal neurons is critical for cognitive function.


Asunto(s)
Regulación de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/metabolismo , Aprendizaje/fisiología , Neuronas/metabolismo , Animales , Animales Recién Nacidos , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Núcleo Celular/metabolismo , Epigénesis Genética , Hipocampo/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Histonas/metabolismo , Integrasas/metabolismo , Memoria/fisiología , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Sitio de Iniciación de la Transcripción , Transcriptoma/genética
3.
Nucleic Acids Res ; 50(4): 1993-2004, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35137160

RESUMEN

Histone 3 lysine 4 trimethylation (H3K4me3) is an epigenetic mark found at gene promoters and CpG islands. H3K4me3 is essential for mammalian development, yet mechanisms underlying its genomic targeting are poorly understood. H3K4me3 methyltransferases SETD1B and MLL2 (KMT2B) are essential for oogenesis. We investigated changes in H3K4me3 in Setd1b conditional knockout (cKO) oocytes using ultra-low input ChIP-seq, with comparisons to DNA methylation and gene expression analyses. H3K4me3 was redistributed in Setd1b cKO oocytes showing losses at active gene promoters associated with downregulated gene expression. Remarkably, many regions also gained H3K4me3, in particular those that were DNA hypomethylated, transcriptionally inactive and CpG-rich, which are hallmarks of MLL2 targets. Consequently, loss of SETD1B disrupts the balance between MLL2 and de novo DNA methyltransferases in determining the epigenetic landscape during oogenesis. Our work reveals two distinct, complementary mechanisms of genomic targeting of H3K4me3 in oogenesis, with SETD1B linked to gene expression and MLL2 to CpG content.


Asunto(s)
Histonas , Lisina , Animales , Islas de CpG/genética , Metilación de ADN , Histona Metiltransferasas/genética , Histonas/genética , Histonas/metabolismo , Lisina/metabolismo , Mamíferos/genética , Oogénesis/genética
4.
PLoS Genet ; 17(12): e1009250, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34860830

RESUMEN

Epigenetic mechanisms are gatekeepers for the gene expression patterns that establish and maintain cellular identity in mammalian development, stem cells and adult homeostasis. Amongst many epigenetic marks, methylation of histone 3 lysine 4 (H3K4) is one of the most widely conserved and occupies a central position in gene expression. Mixed lineage leukemia 1 (MLL1/KMT2A) is the founding mammalian H3K4 methyltransferase. It was discovered as the causative mutation in early onset leukemia and subsequently found to be required for the establishment of definitive hematopoiesis and the maintenance of adult hematopoietic stem cells. Despite wide expression, the roles of MLL1 in non-hematopoietic tissues remain largely unexplored. To bypass hematopoietic lethality, we used bone marrow transplantation and conditional mutagenesis to discover that the most overt phenotype in adult Mll1-mutant mice is intestinal failure. MLL1 is expressed in intestinal stem cells (ISCs) and transit amplifying (TA) cells but not in the villus. Loss of MLL1 is accompanied by loss of ISCs and a differentiation bias towards the secretory lineage with increased numbers and enlargement of goblet cells. Expression profiling of sorted ISCs revealed that MLL1 is required to promote expression of several definitive intestinal transcription factors including Pitx1, Pitx2, Foxa1, Gata4, Zfp503 and Onecut2, as well as the H3K27me3 binder, Bahcc1. These results were recapitulated using conditional mutagenesis in intestinal organoids. The stem cell niche in the crypt includes ISCs in close association with Paneth cells. Loss of MLL1 from ISCs promoted transcriptional changes in Paneth cells involving metabolic and stress responses. Here we add ISCs to the MLL1 repertoire and observe that all known functions of MLL1 relate to the properties of somatic stem cells, thereby highlighting the suggestion that MLL1 is a master somatic stem cell regulator.


Asunto(s)
Células Madre Adultas/fisiología , Diferenciación Celular/genética , N-Metiltransferasa de Histona-Lisina/genética , Insuficiencia Intestinal/genética , Mucosa Intestinal/patología , Proteína de la Leucemia Mieloide-Linfoide/genética , Animales , Trasplante de Médula Ósea , Metilación de ADN , Modelos Animales de Enfermedad , Epigénesis Genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Insuficiencia Intestinal/patología , Mucosa Intestinal/citología , Yeyuno/citología , Yeyuno/patología , Ratones , Ratones Transgénicos , Mutagénesis , Mutación , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Nicho de Células Madre
5.
Genes Dev ; 30(4): 408-20, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26883360

RESUMEN

Genome instability is a recurring feature of tumorigenesis. Mutation in MLL2, encoding a histone methyltransferase, is a driver in numerous different cancer types, but the mechanism is unclear. Here, we present evidence that MLL2 mutation results in genome instability. Mouse cells in which MLL2 gene deletion can be induced display elevated levels of sister chromatid exchange, gross chromosomal aberrations, 53BP1 foci, and micronuclei. Human MLL2 knockout cells are characterized by genome instability as well. Interestingly, MLL2 interacts with RNA polymerase II (RNAPII) and RECQL5, and, although MLL2 mutated cells have normal overall H3K4me levels in genes, nucleosomes in the immediate vicinity of RNAPII are hypomethylated. Importantly, MLL2 mutated cells display signs of substantial transcription stress, and the most affected genes overlap with early replicating fragile sites, show elevated levels of γH2AX, and suffer frequent mutation. The requirement for MLL2 in the maintenance of genome stability in genes helps explain its widespread role in cancer and points to transcription stress as a strong driver in tumorigenesis.


Asunto(s)
Inestabilidad Genómica/genética , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Transcripción Genética/genética , Animales , Línea Celular , Daño del ADN/genética , N-Metiltransferasa de Histona-Lisina , Humanos , Ratones , Mutación , ARN Polimerasa II/metabolismo , RecQ Helicasas/metabolismo
6.
Development ; 147(12)2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32439762

RESUMEN

Methylation of histone 3 lysine 4 (H3K4) is a major epigenetic system associated with gene expression. In mammals there are six H3K4 methyltransferases related to yeast Set1 and fly Trithorax, including two orthologs of fly Trithorax-related: MLL3 and MLL4. Exome sequencing has documented high frequencies of MLL3 and MLL4 mutations in many types of human cancer. Despite this emerging importance, the requirements of these paralogs in mammalian development have only been incompletely reported. Here, we examined the null phenotypes to establish that MLL3 is first required for lung maturation, whereas MLL4 is first required for migration of the anterior visceral endoderm that initiates gastrulation in the mouse. This collective cell migration is preceded by a columnar-to-squamous transition in visceral endoderm cells that depends on MLL4. Furthermore, Mll4 mutants display incompletely penetrant, sex-distorted, embryonic haploinsufficiency and adult heterozygous mutants show aspects of Kabuki syndrome, indicating that MLL4 action, unlike MLL3, is dosage dependent. The highly specific and discordant functions of these paralogs in mouse development argues against their action as general enhancer factors.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/metabolismo , Anomalías Múltiples/genética , Anomalías Múltiples/patología , Anomalías Múltiples/veterinaria , Alelos , Animales , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario , Cara/anomalías , Cara/patología , Femenino , Genotipo , Enfermedades Hematológicas/genética , Enfermedades Hematológicas/patología , Enfermedades Hematológicas/veterinaria , N-Metiltransferasa de Histona-Lisina/química , N-Metiltransferasa de Histona-Lisina/genética , Pulmón/crecimiento & desarrollo , Pulmón/metabolismo , Masculino , Ratones , Ratones Noqueados , Mutagénesis , Embarazo , Insuficiencia Respiratoria/etiología , Factores de Tiempo , Enfermedades Vestibulares/genética , Enfermedades Vestibulares/patología , Enfermedades Vestibulares/veterinaria
7.
Development ; 144(14): 2606-2617, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28619824

RESUMEN

Germ cell development involves major reprogramming of the epigenome to prime the zygote for totipotency. Histone 3 lysine 4 (H3K4) methylations are universal epigenetic marks mediated in mammals by six H3K4 methyltransferases related to fly Trithorax, including two yeast Set1 orthologs: Setd1a and Setd1b. Whereas Setd1a plays no role in oogenesis, we report that Setd1b deficiency causes female sterility in mice. Oocyte-specific Gdf9-iCre conditional knockout (Setd1bGdf9 cKO) ovaries develop through all stages; however, follicular loss accumulated with age and unfertilized metaphase II (MII) oocytes exhibited irregularities of the zona pellucida and meiotic spindle. Most Setd1bGdf9 cKO zygotes remained in the pronuclear stage and displayed polyspermy in the perivitelline space. Expression profiling of Setd1bGdf9 cKO MII oocytes revealed (1) that Setd1b promotes the expression of the major oocyte transcription factors including Obox1, 2, 5, 7, Meis2 and Sall4; and (2) twice as many mRNAs were upregulated than downregulated, suggesting that Setd1b also promotes the expression of negative regulators of oocyte development with multiple Zfp-KRAB factors implicated. Together, these findings indicate that Setd1b serves as maternal effect gene through regulation of the oocyte gene expression program.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Oogénesis/genética , Oogénesis/fisiología , Animales , Blastocisto/citología , Blastocisto/metabolismo , Epigénesis Genética , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Factor 9 de Diferenciación de Crecimiento/deficiencia , Factor 9 de Diferenciación de Crecimiento/genética , Factor 9 de Diferenciación de Crecimiento/metabolismo , N-Metiltransferasa de Histona-Lisina/deficiencia , Masculino , Herencia Materna , Ratones , Ratones Noqueados , Ratones Transgénicos , Oocitos/citología , Oocitos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis de la Célula Individual , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Zona Pelúcida/metabolismo , Zona Pelúcida/patología , Cigoto/citología , Cigoto/metabolismo
8.
Blood ; 131(12): 1311-1324, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29348130

RESUMEN

The regenerative capacity of hematopoietic stem cells (HSCs) is limited by the accumulation of DNA damage. Conditional mutagenesis of the histone 3 lysine 4 (H3K4) methyltransferase, Setd1a, revealed that it is required for the expression of DNA damage recognition and repair pathways in HSCs. Specific deletion of Setd1a in adult long-term (LT) HSCs is compatible with adult life and has little effect on the maintenance of phenotypic LT-HSCs in the bone marrow. However, SETD1A-deficient LT-HSCs lose their transcriptional cellular identity, accompanied by loss of their proliferative capacity and stem cell function under replicative stress in situ and after transplantation. In response to inflammatory stimulation, SETD1A protects HSCs and progenitors from activation-induced attrition in vivo. The comprehensive regulation of DNA damage responses by SETD1A in HSCs is clearly distinct from the key roles played by other epigenetic regulators, including the major leukemogenic H3K4 methyltransferase MLL1, or MLL5, indicating that HSC identity and function is supported by cooperative specificities within an epigenetic framework.


Asunto(s)
Proliferación Celular , Daño del ADN , Reparación del ADN , Células Madre Hematopoyéticas/enzimología , N-Metiltransferasa de Histona-Lisina/metabolismo , Animales , N-Metiltransferasa de Histona-Lisina/genética , Ratones , Ratones Noqueados , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteína de la Leucemia Mieloide-Linfoide/metabolismo
9.
Nucleic Acids Res ; 45(13): 8105-8115, 2017 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-28582546

RESUMEN

Designer nucleases like CRISPR/Cas9 enable fluent site-directed damage or small mutations in many genomes. Strategies for their use to achieve more complex tasks like regional exchanges for gene humanization or the establishment of conditional alleles are still emerging. To optimize Cas9-assisted targeting, we measured the relationship between targeting frequency and homology length in targeting constructs using a hypoxanthine-guanine phosphoribosyl-transferase assay in mouse embryonic stem cells. Targeting frequency with supercoiled plasmids improved steeply up to 2 kb total homology and continued to increase with even longer homology arms, thereby implying that Cas9-assisted targeting efficiencies can be improved using homology arms of 1 kb or greater. To humanize the Kmt2d gene, we built a hybrid mouse/human targeting construct in a bacterial artificial chromosome by recombineering. To simplify the possible outcomes, we employed a single Cas9 cleavage strategy and best achieved the intended 42 kb regional exchange with a targeting construct including a very long homology arm to recombine ∼42 kb away from the cleavage site. We recommend the use of long homology arm targeting constructs for accurate and efficient complex genome engineering, particularly when combined with the simplifying advantages of using just one Cas9 cleavage at the genome target site.


Asunto(s)
Sistemas CRISPR-Cas , Ingeniería Genética/métodos , Animales , Cromosomas Artificiales Bacterianos/genética , Proteínas de Unión al ADN/genética , Células Madre Embrionarias/metabolismo , Endonucleasas/metabolismo , Marcación de Gen , N-Metiltransferasa de Histona-Lisina , Humanos , Hibridación Genética , Hipoxantina Fosforribosiltransferasa/genética , Ratones , Mutación , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteínas de Neoplasias/genética
10.
Development ; 141(5): 1022-35, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24550110

RESUMEN

Histone 3 lysine 4 (H3K4) methylation is a universal epigenetic mark. In mammals, there are six H3K4 methyltransferases related to yeast Set1 and fly Trithorax, including two orthologs of Set1: Setd1a and Setd1b. Here we show that mouse Setd1a is required for gastrulation, whereas Setd1b-deficient embryos survive to E11.5 but are grossly retarded. Setd1a knockout embryos implant but do not proceed past the epiblast. Furthermore, Setd1a is not required until the inner cell mass has formed, at which stage it has replaced Mll2 as the major H3K4 methyltransferase. Setd1a is required for embryonic, epiblast and neural stem cell survival and neural stem cell reprogramming, whereas Setd1b is dispensable. Deletion of Setd1a in embryonic stem cells resulted in rapid losses of bulk H3K4 methylation, pluripotency gene expression and proliferation, with G1 pileup. Setd1b overexpression could not rescue the proliferation defects caused by loss of Setd1a in embryonic stem cells. The precise developmental requirement for Setd1a suggests that gastrulation is regulated by a switch between the major H3K4 methyltransferases.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/metabolismo , Animales , Apoptosis/genética , Apoptosis/fisiología , Astrocitos/citología , Astrocitos/metabolismo , Ciclo Celular/genética , Ciclo Celular/fisiología , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Proliferación Celular , Gastrulación/genética , Gastrulación/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Estratos Germinativos/citología , Estratos Germinativos/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Ratones , Ratones Noqueados , Neuronas/citología , Neuronas/metabolismo
11.
Development ; 141(3): 526-37, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24423662

RESUMEN

Trimethylation of histone H3 lysine 4 (H3K4me3) at the promoters of actively transcribed genes is a universal epigenetic mark and a key product of Trithorax group action. Here, we show that Mll2, one of the six Set1/Trithorax-type H3K4 methyltransferases in mammals, is required for trimethylation of bivalent promoters in mouse embryonic stem cells. Mll2 is bound to bivalent promoters but also to most active promoters, which do not require Mll2 for H3K4me3 or mRNA expression. By contrast, the Set1 complex (Set1C) subunit Cxxc1 is primarily bound to active but not bivalent promoters. This indicates that bivalent promoters rely on Mll2 for H3K4me3 whereas active promoters have more than one bound H3K4 methyltransferase, including Set1C. Removal of Mll1, sister to Mll2, had almost no effect on any promoter unless Mll2 was also removed, indicating functional backup between these enzymes. Except for a subset, loss of H3K4me3 on bivalent promoters did not prevent responsiveness to retinoic acid, thereby arguing against a priming model for bivalency. In contrast, we propose that Mll2 is the pioneer trimethyltransferase for promoter definition in the naïve epigenome and that Polycomb group action on bivalent promoters blocks the premature establishment of active, Set1C-bound, promoters.


Asunto(s)
Células Madre Embrionarias/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Regiones Promotoras Genéticas , Animales , Sitios de Unión/genética , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Cromosomas Artificiales Bacterianos/metabolismo , Células Madre Embrionarias/efectos de los fármacos , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Genoma/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Metilación/efectos de los fármacos , Ratones , Modelos Biológicos , Proteína de la Leucemia Mieloide-Linfoide/deficiencia , Unión Proteica/efectos de los fármacos , Unión Proteica/genética , Transgenes/genética , Tretinoina/farmacología
12.
J Neurosci ; 33(8): 3452-64, 2013 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-23426673

RESUMEN

The consolidation of long-term memories requires differential gene expression. Recent research has suggested that dynamic changes in chromatin structure play a role in regulating the gene expression program linked to memory formation. The contribution of histone methylation, an important regulatory mechanism of chromatin plasticity that is mediated by the counteracting activity of histone-methyltransferases and histone-demethylases, is, however, not well understood. Here we show that mice lacking the histone-methyltransferase myeloid/lymphoid or mixed-lineage leukemia 2 (mll2/kmt2b) gene in adult forebrain excitatory neurons display impaired hippocampus-dependent memory function. Consistent with the role of KMT2B in gene-activation DNA microarray analysis revealed that 152 genes were downregulated in the hippocampal dentate gyrus region of mice lacking kmt2b. Downregulated plasticity genes showed a specific deficit in histone 3 lysine 4 di- and trimethylation, while histone 3 lysine 4 monomethylation was not affected. Our data demonstrates that KMT2B mediates hippocampal histone 3 lysine 4 di- and trimethylation and is a critical player for memory formation.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Memoria a Largo Plazo/fisiología , Proteínas de Neoplasias/fisiología , Animales , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Hipocampo/enzimología , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/deficiencia , N-Metiltransferasa de Histona-Lisina/genética , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Proteínas de Neoplasias/deficiencia , Proteínas de Neoplasias/genética , Plasticidad Neuronal/genética , Plasticidad Neuronal/fisiología
13.
Life Sci Alliance ; 5(4)2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35064075

RESUMEN

Differentiation and lineage specification are controlled by cooperation of growth factor signalling. The involvement of epigenetic regulators in lineage specification remains largely elusive. Here, we show that the histone methyltransferase Mll1 prevents intestinal progenitor cells from differentiation, whereas it is also involved in secretory lineage specification of Paneth and goblet cells. Using conditional mutagenesis in mice and intestinal organoids, we demonstrate that loss of Mll1 renders intestinal progenitor cells permissive for Wnt-driven secretory differentiation. However, Mll1-deficient crypt cells fail to segregate Paneth and goblet cell fates. Mll1 deficiency causes Paneth cell-determined crypt progenitors to exhibit goblet cell features by unleashing Mapk signalling, resulting in increased numbers of mixed Paneth/goblet cells. We show that loss of Mll1 abolishes the pro-proliferative effect of Mapk signalling in intestinal progenitor cells and promotes Mapk-induced goblet cell differentiation. Our data uncover Mll1 and its downstream targets Gata4/6 as a regulatory hub of Wnt and Mapk signalling in the control of lineage specification of intestinal secretory Paneth and goblet cells.


Asunto(s)
Sistema de Señalización de MAP Quinasas/genética , Vía de Señalización Wnt/genética , Animales , Diferenciación Celular/genética , Epigénesis Genética/genética , Epigenómica/métodos , Femenino , Células Caliciformes/citología , Células Caliciformes/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Intestinos , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Ratones , Ratones Transgénicos , Organoides/metabolismo , Células de Paneth/citología , Células de Paneth/metabolismo , Células Madre/metabolismo , Vía de Señalización Wnt/fisiología
14.
Nat Med ; 9(7): 936-43, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12796773

RESUMEN

Therapeutic angiogenesis is likely to require the administration of factors that complement each other. Activation of the receptor tyrosine kinase (RTK) Flk1 by vascular endothelial growth factor (VEGF) is crucial, but molecular interactions of other factors with VEGF and Flk1 have been studied to a limited extent. Here we report that placental growth factor (PGF, also known as PlGF) regulates inter- and intramolecular cross talk between the VEGF RTKs Flt1 and Flk1. Activation of Flt1 by PGF resulted in intermolecular transphosphorylation of Flk1, thereby amplifying VEGF-driven angiogenesis through Flk1. Even though VEGF and PGF both bind Flt1, PGF uniquely stimulated the phosphorylation of specific Flt1 tyrosine residues and the expression of distinct downstream target genes. Furthermore, the VEGF/PGF heterodimer activated intramolecular VEGF receptor cross talk through formation of Flk1/Flt1 heterodimers. The inter- and intramolecular VEGF receptor cross talk is likely to have therapeutic implications, as treatment with VEGF/PGF heterodimer or a combination of VEGF plus PGF increased ischemic myocardial angiogenesis in a mouse model that was refractory to VEGF alone.


Asunto(s)
Proteínas Gestacionales/metabolismo , Receptor Cross-Talk/fisiología , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Células Cultivadas , Dimerización , Factores de Crecimiento Endotelial/metabolismo , Factores de Crecimiento Endotelial/farmacología , Endotelio Vascular/citología , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/fisiología , Activación Enzimática , Perfilación de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intercelular/farmacología , Linfocinas/metabolismo , Linfocinas/farmacología , Ratones , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patología , Neovascularización Patológica/metabolismo , Neovascularización Fisiológica/efectos de los fármacos , Fosforilación , Factor de Crecimiento Placentario , Proteínas Gestacionales/farmacología , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular , Factores de Crecimiento Endotelial Vascular , Proteínas Virales/metabolismo , Proteínas Virales/farmacología
15.
Genesis ; 48(8): 512-20, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20506501

RESUMEN

Recently, a codon improved version of the Flpe site specific recombinase, termed Flpo, was reported as having greatly improved performance in mammalian cell applications. However, the degree of improvement could not be estimated because essentially no Flpe activity was observed. Here, we compare Flpe and Flpo accurately in a mammalian cell assay to estimate that Flpo is about five times more active than Flpe and similar to Cre and Dre. Consequently, we generated a Flpo deleter mouse line from the JM8 C57Bl/6 ES cells used in the EUCOMM and KOMP systematic knock-out programs. In breeding experiments, we show that the Flpo deleter delivers complete recombination using alleles that are incompletely recombined by a commonly used Flpe deleter. This indicates that the Flpo deleter is more efficient.


Asunto(s)
ADN Nucleotidiltransferasas/metabolismo , Células Madre Embrionarias/metabolismo , Fibroblastos/metabolismo , Animales , Secuencia de Bases , Sitios de Unión/genética , Línea Celular , Células Cultivadas , ADN Nucleotidiltransferasas/genética , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Células Madre Embrionarias/citología , Femenino , Fibroblastos/citología , Regulación del Desarrollo de la Expresión Génica , Técnicas de Inactivación de Genes , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Plásmidos/genética , Recombinación Genética , Transfección
16.
Biochim Biophys Acta Gene Regul Mech ; 1863(8): 194578, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32389824

RESUMEN

The Trithorax-related Set1 H3K4 methyltransferases are conserved from yeast to human. In yeast loss of Set1 causes pleiotropic effects but is compatible with life. In contrast, both mammalian Set1 orthologs: SETD1A and SETD1B are essential for embryonic development, however they have distinct functions. SETD1A is required shortly after epiblast formation whereas SETD1B becomes indispensible during early organogenesis. In adult mice both SETD1A and SETD1B regulate hematopoiesis differently: SETD1A is required for the establishment of definitive hematopoiesis whereas SETD1B is important for the maintenance of long-term hematopoietic stem cells. Both are implicated in different diseases with accumulating evidence for the association of SETD1A variants in neurological disorders and SETD1B variants with cancer. Why the two paralogs cannot or only partially compensate for the loss of each other is part of the puzzle that we try to sort out in this review.


Asunto(s)
Desarrollo Embrionario/genética , Desarrollo Embrionario/fisiología , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Enfermedad , Drosophila , Proteínas de Drosophila , Fertilidad , Hematopoyesis/fisiología , Células Madre Hematopoyéticas , Histonas/metabolismo , Ratones , Levaduras
17.
Nat Commun ; 11(1): 6422, 2020 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-33349639

RESUMEN

Wnt/ß-catenin signaling is crucial for intestinal carcinogenesis and the maintenance of intestinal cancer stem cells. Here we identify the histone methyltransferase Mll1 as a regulator of Wnt-driven intestinal cancer. Mll1 is highly expressed in Lgr5+ stem cells and human colon carcinomas with increased nuclear ß-catenin. High levels of MLL1 are associated with poor survival of colon cancer patients. The genetic ablation of Mll1 in mice prevents Wnt/ß-catenin-driven adenoma formation from Lgr5+ intestinal stem cells. Ablation of Mll1 decreases the self-renewal of human colon cancer spheres and halts tumor growth of xenografts. Mll1 controls the expression of stem cell genes including the Wnt/ß-catenin target gene Lgr5. Upon the loss of Mll1, histone methylation at the stem cell promoters switches from activating H3K4 tri-methylation to repressive H3K27 tri-methylation, indicating that Mll1 sustains stem cell gene expression by antagonizing gene silencing through polycomb repressive complex 2 (PRC2)-mediated H3K27 tri-methylation. Transcriptome profiling of Wnt-mutated intestinal tumor-initiating cells reveals that Mll1 regulates Gata4/6 transcription factors, known to sustain cancer stemness and to control goblet cell differentiation. Our results demonstrate that Mll1 is an essential epigenetic regulator of Wnt/ß-catenin-induced intestinal tumorigenesis and cancer stemness.


Asunto(s)
Carcinogénesis/genética , Epigénesis Genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Células Madre Neoplásicas/metabolismo , Vía de Señalización Wnt , Animales , Carcinogénesis/patología , Diferenciación Celular , Línea Celular Tumoral , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Histonas/metabolismo , Humanos , Intestinos/patología , Lisina/metabolismo , Metilación , Ratones Desnudos , Células Madre Neoplásicas/patología , Complejo Represivo Polycomb 2/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Regulación hacia Arriba/genética , Vía de Señalización Wnt/genética , beta Catenina/metabolismo
18.
Exp Hematol ; 69: 37-42, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30315824

RESUMEN

Disrupting the protein-protein interaction for molecularly targeted cancer therapeutics can be a challenging but promising strategy. Compounds that disrupt the interaction between menin, a chromatin-binding protein, and oncogenic mixed lineage leukemia fusion proteins (MLL-FPs) have shown significant promise in preclinical models of leukemia and have a high degree of selectivity for leukemia versus normal hematopoietic cells. Biochemical and structural studies demonstrate that, in addition to disrupting the menin-MLL-FP interaction, such compounds also inhibit menin-MLL1, menin-MLL2, and other menin-interacting proteins. Here, we address the degree to which disruption of menin-MLL-FP interactions or menin-MLL1/MLL2 interactions contribute to the antileukemia effect of menin inhibition. We show that Men1 deletion in MLL-AF9-transformed leukemia cells produces distinct cellular and molecular consequences compared with Mll1;Mll2 co-deletion and that compounds disrupting menin-MLL N-terminal interactions largely phenocopy menin loss. Moreover, we show that Mll1;Mll2-deficient leukemia cells exhibit enhanced sensitivity to menin interaction inhibitors, which is consistent with each regulating complementary genetic pathways. These data illustrate the heightened dependency of MLL-FPs on menin compared with wild-type MLL1/MLL2 for regulation of downstream target genes and argue that the predominant action of menin inhibitory compounds is through direct inhibition of MLL-FPs without significant contribution from MLL1/MLL2 inhibition.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Reordenamiento Génico , N-Metiltransferasa de Histona-Lisina/metabolismo , Leucemia Mieloide Aguda/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Animales , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , N-Metiltransferasa de Histona-Lisina/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Ratones , Ratones Noqueados , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteínas Proto-Oncogénicas/genética
19.
Cell Rep ; 26(2): 415-428.e5, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30625324

RESUMEN

We identified a regulatory system that acts downstream of Wnt/ß-catenin signaling in salivary gland and head and neck carcinomas. We show in a mouse tumor model of K14-Cre-induced Wnt/ß-catenin gain-of-function and Bmpr1a loss-of-function mutations that tumor-propagating cells exhibit increased Mll1 activity and genome-wide increased H3K4 tri-methylation at promoters. Null mutations of Mll1 in tumor mice and in xenotransplanted human head and neck tumors resulted in loss of self-renewal of tumor-propagating cells and in block of tumor formation but did not alter normal tissue homeostasis. CRISPR/Cas9 mutagenesis and pharmacological interference of Mll1 at sequences that inhibit essential protein-protein interactions or the SET enzyme active site also blocked the self-renewal of mouse and human tumor-propagating cells. Our work provides strong genetic evidence for a crucial role of Mll1 in solid tumors. Moreover, inhibitors targeting specific Mll1 interactions might offer additional directions for therapies to treat these aggressive tumors.


Asunto(s)
Epigénesis Genética , Neoplasias de Cabeza y Cuello/genética , Código de Histonas , N-Metiltransferasa de Histona-Lisina/genética , Proteína de la Leucemia Mieloide-Linfoide/genética , Neoplasias de las Glándulas Salivales/genética , Vía de Señalización Wnt , Animales , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Dominio Catalítico , Células Cultivadas , Neoplasias de Cabeza y Cuello/metabolismo , N-Metiltransferasa de Histona-Lisina/química , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Mutación con Pérdida de Función , Ratones , Ratones Endogámicos C57BL , Proteína de la Leucemia Mieloide-Linfoide/química , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Unión Proteica , Neoplasias de las Glándulas Salivales/metabolismo , beta Catenina/metabolismo
20.
Arterioscler Thromb Vasc Biol ; 27(1): 120-6, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17053168

RESUMEN

OBJECTIVE: The role of antioxidants in preventing vascular disease remains controversial. Vascular endothelial growth factor (VEGF-A) is important for endothelial and monocyte function. This study investigated the negative effects of smoking on monocyte migratory responsiveness to VEGF-A and the usefulness of vitamin C to prevent smoking-induced monocyte dysfunction. METHODS AND RESULTS: The chemotactic response of isolated monocytes from a cohort of 17 non-smokers and 10 smokers toward VEGF-A was assessed. VEGF-A significantly stimulated the migration of monocytes in non-smokers; the monocytes from smokers failed to respond to VEGF-A. Repeated analysis after 2 weeks of vitamin C intake (2 g/d) showed a fully restored VEGF-A-induced monocyte migration in smokers. VEGF-A serum levels were not altered by vitamin C. VEGF-A-inducible kinase activity was intact in monocytes from smokers as assessed by in vitro kinase assay. Monocyte dysfunction can be mimicked in vitro by challenging monocytes with a range of reactive oxygen species (ROS). CONCLUSIONS: Stimulation of monocyte migration by VEGF-A was severely attenuated in smokers, and the deficit observed was surmounted by vitamin C supplementation. The negative effects of smoking on monocyte function may translate into adverse impacts on VEGF-A-dependent repair processes such as arteriogenesis. These results propose a causative role of oxidative stress in smoking-induced monocyte dysfunction.


Asunto(s)
Antioxidantes/farmacología , Ácido Ascórbico/farmacología , Suplementos Dietéticos , Monocitos/efectos de los fármacos , Monocitos/fisiología , Fumar/efectos adversos , Adulto , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/fisiopatología , Movimiento Celular/efectos de los fármacos , Movimiento Celular/fisiología , Quimiotaxis/efectos de los fármacos , Quimiotaxis/fisiología , Humanos , Masculino , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/farmacología , Factores de Riesgo , Factor A de Crecimiento Endotelial Vascular/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA