Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Biomed Sci ; 30(1): 72, 2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37620936

RESUMEN

BACKGROUND: Epithelial-to-mesenchymal transition (EMT) of malignant cells is a driving force of disease progression in human papillomavirus-negative (HPV-negative) head and neck squamous cell carcinomas (HNSCC). Sustained hyper-activation of epidermal growth factor receptor (EGFR) induces an invasion-promoting subtype of EMT (EGFR-EMT) characterized by a gene signature ("'EGFR-EMT_Signature'") comprising 5´-ectonucleotidase CD73. Generally, CD73 promotes immune evasion via adenosine (ADO) formation and associates with EMT and metastases. However, CD73 regulation through EGFR signaling remains under-explored and targeting options are amiss. METHODS: CD73 functions in EGFR-mediated tumor cell dissemination were addressed in 2D and 3D cellular models of migration and invasion. The novel antagonizing antibody 22E6 and therapeutic antibody Cetuximab served as inhibitors of CD73 and EGFR, respectively, in combinatorial treatment. Specificity for CD73 and its role as effector or regulator of EGFR-EMT were assessed upon CD73 knock-down and over-expression. CD73 correlation to tumor budding was studied in an in-house primary HNSCC cohort. Expression correlations, and prognostic and predictive values were analyzed using machine learning-based algorithms and Kaplan-Meier survival curves in single cell and bulk RNA sequencing datasets. RESULTS: CD73/NT5E is induced by the EGF/EGFR-EMT-axis and blocked by Cetuximab and MEK inhibitor. Inhibition of CD73 with the novel antagonizing antibody 22E6 specifically repressed EGFR-dependent migration and invasion of HNSCC cells in 2D. Cetuximab and 22E6 alone reduced local invasion in a 3D-model. Interestingly, combining inefficient low-dose concentrations of Cetuximab and 22E6 revealed highly potent in invasion inhibition, substantially reducing the functional IC50 of Cetuximab regarding local invasion. A role for CD73 as an effector of EGFR-EMT in local invasion was further supported by knock-down and over-expression experiments in vitro and by high expression in malignant cells budding from primary tumors. CD73 expression correlated with EGFR pathway activity, EMT, and partial EMT (p-EMT) in malignant single HNSCC cells and in large patient cohorts. Contrary to published data, CD73 was not a prognostic marker of overall survival (OS) in the TCGA-HNSCC cohort when patients were stratified for HPV-status. However, CD73 prognosticated OS of oral cavity carcinomas. Furthermore, CD73 expression levels correlated with response to Cetuximab in HPV-negative advanced, metastasized HNSCC patients. CONCLUSIONS: In sum, CD73 is an effector of EGF/EGFR-mediated local invasion and a potential therapeutic target and candidate predictive marker for advanced HPV-negative HNSCC.


Asunto(s)
5'-Nucleotidasa , Proteínas Ligadas a GPI , Neoplasias de Cabeza y Cuello , Infecciones por Papillomavirus , Carcinoma de Células Escamosas de Cabeza y Cuello , Humanos , 5'-Nucleotidasa/genética , Cetuximab , Factor de Crecimiento Epidérmico , Receptores ErbB/genética , Proteínas Ligadas a GPI/genética , Neoplasias de Cabeza y Cuello/genética , Infecciones por Papillomavirus/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/genética
2.
Mol Cancer ; 21(1): 178, 2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-36076232

RESUMEN

BACKGROUND: Epidermal growth factor receptor (EGFR) is both a driver oncogene and a therapeutic target in advanced head and neck squamous cell carcinoma (HNSCC). However, response to EGFR treatment is inconsistent and lacks markers for treatment prediction. This study investigated EGFR-induced epithelial-to-mesenchymal transition (EMT) as a central parameter in tumor progression and identified novel prognostic and therapeutic targets, and a candidate predictive marker for EGFR therapy response. METHODS: Transcriptomic profiles were analyzed by RNA sequencing (RNA-seq) following EGFR-mediated EMT in responsive human HNSCC cell lines. Exclusive genes were extracted via differentially expressed genes (DEGs) and a risk score was determined through forward feature selection and Cox regression models in HNSCC cohorts. Functional characterization of selected prognostic genes was conducted in 2D and 3D cellular models, and findings were validated by immunohistochemistry in primary HNSCC. RESULTS: An EGFR-mediated EMT gene signature composed of n = 171 genes was identified in responsive cell lines and transferred to the TCGA-HNSCC cohort. A 5-gene risk score comprising DDIT4, FADD, ITGB4, NCEH1, and TIMP1 prognosticated overall survival (OS) in TCGA and was confirmed in independent HNSCC cohorts. The EGFR-mediated EMT signature was distinct from EMT hallmark and partial EMT (pEMT) meta-programs with a differing enrichment pattern in single malignant cells. Molecular characterization showed that ITGB4 was upregulated in primary tumors and metastases compared to normal mucosa and correlated with EGFR/MAPK activity in tumor bulk and single malignant cells. Preferential localization of ITGB4 together with its ligand laminin 5 at tumor-stroma interfaces correlated with increased tumor budding in primary HNSCC tissue sections. In vitro, ITGB4 knock-down reduced EGFR-mediated migration and invasion and ITGB4-antagonizing antibody ASC8 impaired 2D and 3D invasion. Furthermore, a logistic regression model defined ITGB4 as a predictive marker of progression-free survival in response to Cetuximab in recurrent metastatic HNSCC patients. CONCLUSIONS: EGFR-mediated EMT conveyed through MAPK activation contributes to HNSCC progression upon induction of migration and invasion. A 5-gene risk score based on a novel EGFR-mediated EMT signature prognosticated survival of HNSCC patients and determined ITGB4 as potential therapeutic and predictive target in patients with strong EGFR-mediated EMT.


Asunto(s)
Neoplasias de Cabeza y Cuello , Transcriptoma , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/genética , Receptores ErbB/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/genética , Humanos , Recurrencia Local de Neoplasia/genética , Pronóstico , Carcinoma de Células Escamosas de Cabeza y Cuello/genética
3.
PLoS Biol ; 16(9): e2006624, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30261040

RESUMEN

Head and neck squamous cell carcinomas (HNSCCs) are characterized by outstanding molecular heterogeneity that results in severe therapy resistance and poor clinical outcome. Inter- and intratumoral heterogeneity in epithelial-mesenchymal transition (EMT) was recently revealed as a major parameter of poor clinical outcome. Here, we addressed the expression and function of the therapeutic target epidermal growth factor receptor (EGFR) and of the major determinant of epithelial differentiation epithelial cell adhesion molecule (EpCAM) in clinical samples and in vitro models of HNSCCs. We describe improved survival of EGFRlow/EpCAMhigh HNSCC patients (n = 180) and provide a molecular basis for the observed disparities in clinical outcome. EGF/EGFR have concentration-dependent dual capacities as inducers of proliferation and EMT through differential activation of the central molecular switch phosphorylated extracellular signal-regulated kinase 1/2 (pERK1/2) and EMT transcription factors (EMT-TFs) Snail, zinc finger E-box-binding homeobox 1 (Zeb1), and Slug. Furthermore, soluble ectodomain of EpCAM (EpEX) was identified as a ligand of EGFR that activates pERK1/2 and phosphorylated AKT (pAKT) and induces EGFR-dependent proliferation but represses EGF-mediated EMT, Snail, Zeb1, and Slug activation and cell migration. EMT repression by EpEX is realized through competitive modulation of pERK1/2 activation strength and inhibition of EMT-TFs, which is reflected in levels of pERK1/2 and its target Slug in clinical samples. Accordingly, high expression of pERK1/2 and/or Slug predicted poor outcome of HNSCCs. Hence, EpEX is a ligand of EGFR that induces proliferation but counteracts EMT mediated by the EGF/EGFR/pERK1/2 axis. Therefore, the emerging EGFR/EpCAM molecular cross talk represents a promising target to improve patient-tailored adjuvant treatment of HNSCCs.


Asunto(s)
Factor de Crecimiento Epidérmico/metabolismo , Molécula de Adhesión Celular Epitelial/química , Transición Epitelial-Mesenquimal , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Neoplasias de Cabeza y Cuello/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Receptores ErbB/química , Receptores ErbB/metabolismo , Neoplasias de Cabeza y Cuello/patología , Humanos , Ligandos , Modelos Biológicos , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Dominios Proteicos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factores de Transcripción de la Familia Snail/metabolismo , Resultado del Tratamiento
4.
J Biol Chem ; 294(9): 3051-3064, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30598504

RESUMEN

Regulated intramembrane proteolysis (RIP) is a key mechanism for activating transmembrane proteins such as epithelial cell adhesion molecule (EpCAM) for cellular signaling and degradation. EpCAM is highly expressed in carcinomas and progenitor and embryonic stem cells and is involved in the regulation of cell adhesion, proliferation, and differentiation. Strictly sequential cleavage of EpCAM through RIP involves initial shedding of the extracellular domain by α-secretase (ADAM) and ß-secretase (BACE) sheddases, generating a membrane-tethered C-terminal fragment EpCTF. Subsequently, the rate-limiting γ-secretase complex catalyzes intramembrane cleavage of EpCTF, generating an extracellular EpCAM-Aß-like fragment and an intracellular EpICD fragment involved in nuclear signaling. Here, we have combined biochemical approaches with live-cell imaging of fluorescent protein tags to investigate the kinetics of γ-secretase-mediated intramembrane cleavage of EpCTF. We demonstrate that γ-secretase-mediated proteolysis of exogenously and endogenously expressed EpCTF is a slow process with a 50% protein turnover in cells ranging from 45 min to 5.5 h. The slow cleavage was dictated by γ-secretase activity and not by EpCTF species, as indicated by cross-species swapping experiments. Furthermore, both human and murine EpICDs generated from EpCTF by γ-secretase were degraded efficiently (94-99%) by the proteasome. Hence, proteolytic cleavage of EpCTF is a comparably slow process, and EpICD generation does not appear to be suited for rapidly transducing extracellular cues into nuclear signaling, but appears to provide steady signals that can be further controlled through efficient proteasomal degradation. Our approach provides an unbiased bioassay to investigate proteolytic processing of EpCTF in single living cells.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Membrana Celular/metabolismo , Molécula de Adhesión Celular Epitelial/química , Molécula de Adhesión Celular Epitelial/metabolismo , Espacio Intracelular/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Animales , Línea Celular , Humanos , Cinética , Ratones , Dominios Proteicos
5.
Front Oncol ; 12: 984138, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36544698

RESUMEN

Introduction: Head and neck squamous cell carcinomas (HNSCC) are characterized by strong cellular and molecular heterogeneity and treatment resistance entailing poor survival. Besides cell-intrinsic properties, carcinoma cells receive important cues from non-malignant cells within the tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs) are a major component of the TME that impact on the molecular make-up of malignant cells and have a decisive function in tumor progression. However, the potential functionality of fibroblasts within tumor-adjacent, macroscopically normal tissue remains poorly explored. Methods: Here, we isolated primary peritumoral fibroblasts (PtFs) from macroscopically normal tissue in vicinity of primary human papillomavirus-negative and -positive oropharyngeal HNSCC and compared their phenotype and functionality with matched CAFs (n = 5 pairs) and with human oral fibroblasts (hOFs). Results: Expression patterns of CD90, CD73, CD105, smooth muscle actin, Vimentin, and S100A4 were comparable in PtFs, CAFs, and hOFs. Cell proliferation and doubling times of CAFs and PtFs were heterogeneous across patients (n =2 PtF>CAF; n = 1 CAF>PtF; n = 2 CAF=PtF) and reflected inferior growth than hOFs. Furthermore, PtFs displayed an reduced heterogeneity in cell size compared to matched CAFs, which were characterized by the presence of single large cells. Overall, conditioned supernatants from CAFs had more frequently growth-promoting effects on a panel of carcinoma cell lines of the upper aerodigestive tract carcinoma cell lines (Cal27, Cal33, FaDu, and Kyse30), whereas significant differences in migration-inducing effects demonstrated a higher potential of PtFs. Except for Kyse30, CAFs were significantly superior to hOFs in promoting proliferation, while PtFs induced stronger migration than hOFs in all carcinoma lines tested. Analysis of soluble factors demonstrated significantly increased VEGF-A production in CAFs (except in pat.8), and significantly increased PDGF-BB production in PtFs of two patients. Tube formation assays confirmed a significantly enhanced angiogenic potential of conditioned supernatants from CAFs compared to hOFs on human umbilical vascular endothelial cells (HUVECs) in vitro. Discussion: Hence, matched CAFs and PtFs present in HNSCC patients are heterogeneous in their proliferation-, migration-, and angiogenesis-promoting capacity. Despite this heterogeneity, CAFs induced stronger carcinoma cell proliferation and HUVEC tube formation overall, whereas PtFs promoted migration of tumor cells more strongly.

6.
Mol Oncol ; 16(2): 347-367, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34382739

RESUMEN

Partial epithelial-to-mesenchymal transition (pEMT) contributes to cellular heterogeneity that is associated with nodal metastases and unfavorable clinical parameters in head and neck squamous cell carcinomas (HNSCCs). We developed a single-cell RNA sequencing signature-based pEMT quantification through cell type-dependent deconvolution of bulk RNA sequencing and microarray data combined with single-sample scoring of molecular phenotypes (Singscoring). Clinical pEMT-Singscores served as molecular classifiers in multivariable Cox proportional hazard models and high scores prognosticated poor overall survival and reduced response to irradiation as independent parameters in large HNSCC cohorts [The Cancer Genome Atlas (TCGA), MD Anderson Cancer Centre (MDACC), Fred Hutchinson Cancer Research Center (FHCRC)]. Differentially expressed genes confirmed enhanced cell motility and reduced oxidative phosphorylation and epithelial differentiation in pEMThigh patients. In patients and cell lines, the EMT transcription factor SLUG correlated most strongly with pEMT-Singscores and promoted pEMT, enhanced invasion, and resistance to irradiation in vitro. SLUG protein levels in HNSCC predicted disease-free survival, and its peripheral expression at the interphase to the tumor microenvironment was significantly increased in relapsing patients. Hence, pEMT-Singscores represent a novel risk predictor for HNSCC stratification regarding clinical outcome and therapy response that is partly controlled by SLUG.


Asunto(s)
Transición Epitelial-Mesenquimal/fisiología , Neoplasias de Cabeza y Cuello/patología , Factores de Transcripción de la Familia Snail/fisiología , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Transcriptoma , Línea Celular Tumoral , Estudios de Cohortes , Supervivencia sin Enfermedad , Neoplasias de Cabeza y Cuello/genética , Humanos , Metástasis Linfática , Recurrencia Local de Neoplasia , Fosforilación Oxidativa , Pronóstico , Modelos de Riesgos Proporcionales , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Microambiente Tumoral
7.
iScience ; 24(10): 103179, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34693227

RESUMEN

Transmembrane epithelial cell adhesion molecule (EpCAM) is expressed in epithelia, carcinoma, teratoma, and embryonic stem cells (ESCs). EpCAM displays spatiotemporal patterning during embryogenesis, tissue morphogenesis, cell differentiation, and epithelial-to-mesenchymal transition (EMT) in carcinomas. Potential interactors of EpCAM were identified in murine F9 teratoma cells using a stable isotope labeling with amino acids in cell culture-based proteomic approach (n = 77, enrichment factor >3, p value ≤ 0.05). Kyoto Encyclopedia of Genes and Genomes and gene ontology terms revealed interactions with regulators of endosomal trafficking and membrane recycling, which were further validated for Rab5, Rab7, and Rab11. Endocytosis and membrane recycling of EpCAM were confirmed in mF9 cells, E14TG2α ESC, and Kyse30 carcinoma cells. Reduction of EpCAM during mesodermal differentiation and TGFß-induced EMT correlated with enhanced endocytosis and block or reduction of recycling in ESCs and esophageal carcinoma cells. Hence, endocytosis and membrane recycling are means of regulation of EpCAM protein levels during differentiation of ESC and EMT induction in carcinoma cells.

8.
Curr Oncol ; 28(4): 2763-2774, 2021 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-34287293

RESUMEN

Cancer stem cells (CSCs) are accountable for the progress of head and neck squamous cell carcinoma (HNSCC). This exploratory study evaluated the expression of molecular CSC markers in different tissues of HNSCC patients. Tissue specimens of primary tumor, lymph node metastases and macroscopically healthy mucosa of 12 consecutive HNSCC patients, that were treated with surgery and adjuvant radio(chemo)therapy upon indication, were collected. Samples were assessed for the expression of p16 as a surrogate for HPV-related disease and different molecular stem cell markers (ALDH1A1, BCL11B, BMI-1, and CD44). In the cohort, seven patients had HPV-related HNSCC; six thereof were oropharyngeal squamous cell carcinoma. While expression of BMI-1 and BCL11B was significantly lower in healthy mucosa than both tumor and lymph node metastasis, there were no differences between tumor and lymph node metastasis. In the HPV-positive sub-cohort, these differences remained significant for BMI-1. However, no significant differences in these three tissues were found for ALDH1A1 and CD44. In conclusion, this exploratory study shows that CSC markers BMI-1 and BCL11B discriminate between healthy and cancerous tissue, whereas ALDH1A1 and CD44 were expressed to a comparable extent in healthy mucosa and cancerous tissues.


Asunto(s)
Neoplasias de Cabeza y Cuello , Carcinoma de Células Escamosas de Cabeza y Cuello , Familia de Aldehído Deshidrogenasa 1/genética , Neoplasias de Cabeza y Cuello/genética , Humanos , Receptores de Hialuranos/genética , Células Madre Neoplásicas , Complejo Represivo Polycomb 1/genética , Proteínas Represoras/genética , Retinal-Deshidrogenasa/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Proteínas Supresoras de Tumor/genética
9.
Mol Oncol ; 15(4): 1040-1053, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33340247

RESUMEN

Head and neck squamous cell carcinomas (HNSCCs) have poor clinical outcome owing to therapy resistance and frequent recurrences that are among others attributable to tumor cells in partial epithelial-to-mesenchymal transition (pEMT). We compared side-by-side software-based and visual quantification of immunohistochemistry (IHC) staining of epithelial marker EpCAM and EMT regulator Slug in n = 102 primary HNSCC to assess optimal analysis protocols. IHC scores incorporated expression levels and percentages of positive cells. Digital and visual evaluation of membrane-associated EpCAM yielded correlating scorings, whereas visual evaluation of nuclear Slug resulted in significantly higher overall scores. Multivariable Cox proportional hazard analysis defined the median EpCAM expression levels resulting from visual quantification as an independent prognostic factor of overall survival. Slug expression levels resulting from digital quantification were an independent prognostic factor of recurrence-free survival, locoregional recurrence-free survival, and disease-specific survival. Hence, we propose to use visual assessment for the membrane-associated EpCAM protein, whereas nuclear protein Slug assessment was more accurate following digital measurement.


Asunto(s)
Molécula de Adhesión Celular Epitelial/genética , Transición Epitelial-Mesenquimal , Factores de Transcripción de la Familia Snail/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/diagnóstico , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/genética , Femenino , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Pronóstico , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Adulto Joven
10.
Sci Adv ; 5(6): eaav4275, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31223646

RESUMEN

Carcinoma cells undergo epithelial-mesenchymal transition (EMT); however, contributions of EMT heterogeneity to disease progression remain a matter of debate. Here, we addressed the EMT status of ex vivo cultured circulating and disseminated tumor cells (CTCs/DTCs) in a syngeneic mouse model of metastatic breast cancer (MBC). Epithelial-type CTCs with a restricted mesenchymal transition had the strongest lung metastases formation ability, whereas mesenchymal-type CTCs showed limited metastatic ability. EpCAM expression served as a surrogate marker to evaluate the EMT heterogeneity of clinical samples from MBC, including metastases, CTCs, and DTCs. The proportion of epithelial-type CTCs, and especially DTCs, correlated with distant metastases and poorer outcome of patients with MBC. This study fosters our understanding of EMT in metastasis and underpins heterogeneous EMT phenotypes as important parameters for tumor prognosis and treatment. We further suggest that EpCAM-dependent CTC isolation systems will underestimate CTC numbers but will quantify clinically relevant metastatic cells.


Asunto(s)
Neoplasias de la Mama/patología , Células Epiteliales/patología , Transición Epitelial-Mesenquimal/fisiología , Metástasis de la Neoplasia/patología , Animales , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/metabolismo , Línea Celular , Molécula de Adhesión Celular Epitelial/metabolismo , Células Epiteliales/metabolismo , Femenino , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones , Pronóstico
11.
Sci Rep ; 8(1): 14582, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30275505

RESUMEN

Locally advanced head and neck squamous cell carcinomas (HNSCC) have limited prognosis due to frequent treatment failure. Currently, TNM-classification and human papillomavirus (HPV) infection are the sole clinical prognosticators of outcome. Tumor heterogeneity and stemness based on epithelial-mesenchymal-transition reportedly associate with therapy resistance. The capacity of epithelial marker EpCAM (EpEX), stemness regulator Sox2 and mesenchymal marker vimentin to predict clinical outcome of HSNCC patients was assessed upon immunohistochemistry staining in two cohorts of HNSCC patients treated with surgery and adjuvant radio (chemo) therapy (n = 94) and primary radio (chemo) therapy (n = 94), respectively. Prognostic values with respect to overall, disease-free and disease-specific survival were assessed in uni- and multivariate cox proportional hazard models to generate integrated risk scores. EpEX, Sox2 and vimentin displayed substantial inter- and intratumoral heterogeneity. EpEXhigh and Sox2high predicted improved clinical outcome in the discovery cohort and in the HPV-negative sub-cohort. EpEXhigh and Sox2high were confirmed as prognosticators of clinical outcome in the validation cohort treated with definitive radio(chemo)therapy. Importantly, EpEXhigh identified patients with improved survival within the HPV-negative subgroup of the validation cohort. Hence, Sox2high and particularly EpEXhigh have potential as tools to predict clinical performance of HNSCC patients, foremost HPV-negative cases, in the frame of molecular-guided treatment decision-making.


Asunto(s)
Biomarcadores de Tumor/análisis , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/patología , Molécula de Adhesión Celular Epitelial/análisis , Neoplasias de Cabeza y Cuello/diagnóstico , Neoplasias de Cabeza y Cuello/patología , Factores de Transcripción SOXB1/análisis , Adulto , Anciano , Carcinoma de Células Escamosas/radioterapia , Carcinoma de Células Escamosas/cirugía , Pruebas Diagnósticas de Rutina/métodos , Femenino , Perfilación de la Expresión Génica , Neoplasias de Cabeza y Cuello/radioterapia , Neoplasias de Cabeza y Cuello/cirugía , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Pronóstico , Análisis de Supervivencia , Resultado del Tratamiento , Adulto Joven
12.
Sci Rep ; 8(1): 1801, 2018 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-29379062

RESUMEN

Epithelial cell adhesion molecule EpCAM is expressed in pluripotent embryonic stem cells (ESC) in vitro, but is repressed in differentiated cells, except epithelia and carcinomas. Molecular functions of EpCAM, possibly imposing such repression, were primarily studied in malignant cells and might not apply to non-pathologic differentiation. Here, we comprehensively describe timing and rationale for EpCAM regulation in early murine gastrulation and ESC differentiation using single cell RNA-sequencing datasets, in vivo and in vitro models including CRISPR-Cas9-engineered ESC-mutants. We demonstrate expression of EpCAM in inner cell mass, epiblast, primitive/visceral endoderm, and strict repression in the most primitive, nascent Flk1+ mesoderm progenitors at E7.0. Selective expression of EpCAM was confirmed at mid-gestation and perinatal stages. The rationale for strict patterning was studied in ESC differentiation. Gain/loss-of-function demonstrated supportive functions of EpCAM in achieving full pluripotency and guided endodermal differentiation, but repressive functions in mesodermal differentiation as exemplified with cardiomyocyte formation. We further identified embryonic Ras (ERas) as novel EpCAM interactor of EpCAM and an EpCAM/ERas/AKT axis that is instrumental in differentiation regulation. Hence, spatiotemporal patterning of EpCAM at the onset of gastrulation, resulting in early segregation of interdependent EpCAM+ endodermal and EpCAM-/vimentin+ mesodermal clusters represents a novel regulatory feature during ESC differentiation.


Asunto(s)
Diferenciación Celular/fisiología , Células Madre Embrionarias/metabolismo , Endodermo/metabolismo , Molécula de Adhesión Celular Epitelial/metabolismo , Mesodermo/metabolismo , Animales , Línea Celular , Linaje de la Célula/fisiología , Gastrulación/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Estratos Germinativos/metabolismo , Ratones , Ratones Endogámicos C57BL , Células Madre Pluripotentes/metabolismo , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA