Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Biophys J ; 119(3): 705-716, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32697975

RESUMEN

The function of photoreceptors relies on efficient transfer of absorbed light energy from the chromophore to the protein to drive conformational changes that ultimately generate an output signal. In retinal-binding proteins, mainly two mechanisms exist to store the photon energy after photoisomerization: 1) conformational distortion of the prosthetic group retinal, and 2) charge separation between the protonated retinal Schiff base (RSBH+) and its counterion complex. Accordingly, energy transfer to the protein is achieved by chromophore relaxation and/or reduction of the charge separation in the RSBH+-counterion complex. Combining FTIR and UV-Vis spectroscopy along with molecular dynamics simulations, we show here for the widely used, red-activatable Volvox carteri channelrhodopsin-1 derivate ReaChR that energy storage and transfer into the protein depends on the protonation state of glutamic acid E163 (Ci1), one of the counterions of the RSBH+. Ci1 retains a pKa of 7.6 so that both its protonated and deprotonated forms equilibrate at physiological conditions. Protonation of Ci1 leads to a rigid hydrogen-bonding network in the active-site region. This stabilizes the distorted conformation of the retinal after photoactivation and decelerates energy transfer into the protein by impairing the release of the strain energy. In contrast, with deprotonated Ci1 or removal of the Ci1 glutamate side chain, the hydrogen-bonded system is less rigid, and energy transfer by chromophore relaxation is accelerated. Based on the hydrogen out-of-plane (HOOP) band decay kinetics, we determined the activation energy for these processes in dependence of the Ci1 protonation state.


Asunto(s)
Simulación de Dinámica Molecular , Bases de Schiff , Channelrhodopsins , Transferencia de Energía , Enlace de Hidrógeno
2.
Biochemistry ; 58(9): 1275-1286, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30702875

RESUMEN

In recent years, gating and transient ion-pathway formation in the light-gated channelrhodopsins (ChRs) have been intensively studied. Despite these efforts, a profound understanding of the mechanistic details is still lacking. To track structural changes concomitant with the formation and subsequent collapse of the ion-conducting pore, we site-specifically introduced the artificial polarity-sensing probe p-azido-l-phenylalanine (azF) into several ChRs by amber stop codon suppression. The frequently used optogenetic actuator ReaChR (red-activatable ChR) exhibited the best expression properties of the wild type and the azF mutants. By exploiting the unique infrared spectral absorption of azF [νas(N3) ∼ 2100 cm-1] and its sensitivity to polarity changes, we monitored hydration changes at various sites of the pore region and the inner gate by stationary and time-resolved infrared spectroscopy. Our data imply that channel closure coincides with a dehydration event occurring between the interface of the central and the inner gate. In contrast, the extracellular ion pathway seems to be hydrated in the open and closed states to similar extents. Mutagenesis of sites in the inner gate suggests that it acts as an intracellular entry funnel, whose architecture and composition modulate water influx and efflux within the channel pore. Our results highlight the potential of genetic code expansion technology combined with biophysical methods to investigate channel gating, particularly hydration dynamics at specific sites, with a so far unprecedented spatial resolution.


Asunto(s)
Channelrhodopsins/química , Channelrhodopsins/metabolismo , Azidas/química , Channelrhodopsins/genética , Codón de Terminación , Células HEK293 , Humanos , Sondas Moleculares/química , Mutagénesis Sitio-Dirigida , Fenilalanina/análogos & derivados , Fenilalanina/química , Espectroscopía Infrarroja por Transformada de Fourier
3.
J Biol Chem ; 292(34): 14205-14216, 2017 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-28659342

RESUMEN

Channelrhodopsins (ChRs) are light-gated ion channels widely used for activating selected cells in large cellular networks. ChR variants with a red-shifted absorption maximum, such as the modified Volvox carteri ChR1 red-activatable channelrhodopsin ("ReaChR," λmax = 527 nm), are of particular interest because longer wavelengths allow optical excitation of cells in deeper layers of organic tissue. In all ChRs investigated so far, proton transfer reactions and hydrogen bond changes are crucial for the formation of the ion-conducting pore and the selectivity for protons versus cations, such as Na+, K+, and Ca2+ (1). By using a combination of electrophysiological measurements and UV-visible and FTIR spectroscopy, we characterized the proton transfer events in the photocycle of ReaChR and describe their relevance for its function. 1) The central gate residue Glu130 (Glu90 in Chlamydomonas reinhardtii (Cr) ChR2) (i) undergoes a hydrogen bond change in D → K transition and (ii) deprotonates in K → M transition. Its negative charge in the open state is decisive for proton selectivity. 2) The counter-ion Asp293 (Asp253 in CrChR2) receives the retinal Schiff base proton during M-state formation. Starting from M, a photocycle branching occurs involving (i) a direct M → D transition and (ii) formation of late photointermediates N and O. 3) The DC pair residue Asp196 (Asp156 in CrChR2) deprotonates in N → O transition. Interestingly, the D196N mutation increases 15-syn-retinal at the expense of 15-anti, which is the predominant isomer in the wild type, and abolishes the peak current in electrophysiological measurements. This suggests that the peak current is formed by 15-anti species, whereas 15-syn species contribute only to the stationary current.


Asunto(s)
Proteínas Algáceas/metabolismo , Chlamydomonas reinhardtii/metabolismo , Chlorophyta/metabolismo , Modelos Moleculares , Proteínas de Plantas/metabolismo , Rodopsina/metabolismo , Proteínas Algáceas/química , Proteínas Algáceas/genética , Sustitución de Aminoácidos , Dominio Catalítico/efectos de la radiación , Chlamydomonas reinhardtii/efectos de la radiación , Chlorophyta/efectos de la radiación , Fenómenos Electrofisiológicos , Células HEK293 , Humanos , Enlace de Hidrógeno/efectos de la radiación , Luz , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Mutación , Proteínas de Plantas/química , Proteínas de Plantas/genética , Conformación Proteica/efectos de la radiación , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estabilidad Proteica , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Rodopsina/química , Rodopsina/genética , Espectroscopía Infrarroja por Transformada de Fourier
4.
Biophys J ; 112(6): 1166-1175, 2017 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-28355544

RESUMEN

Channelrhodopsins (ChRs) are light-activated ion channels widely employed for photostimulation of excitable cells. This study focuses on ReaChR, a chimeric ChR variant with optimal properties for optogenetic applications. We combined electrophysiological recordings with infrared and UV-visible spectroscopic measurements to investigate photocurrents and photochemical properties of ReaChR. Our data imply that ReaChR is green-light activated (λmax = 532 nm) with a non-rhodopsin-like action spectrum peaking at 610 nm for stationary photocurrents. This unusual spectral feature is associated with photoconversion of a previously unknown light-sensitive, blue-shifted photocycle intermediate L (λmax = 495 nm), which is accumulated under continuous illumination. To explain the complex photochemical reactions, we propose a symmetrical two-cycle-model based on the two C15=N isomers of the retinal cofactor with either syn- or anti-configuration, each comprising six consecutive states D, K, L, M, N, and O. Ion conduction involves two states per cycle, the late M- (M2) with a deprotonated retinal Schiff base and the consecutive green-absorbing N-state that both equilibrate via reversible reprotonation. In our model, a fraction of the deprotonated M-intermediate of the anti-cycle may be photoconverted-as the L-state-back to its inherent dark state, or to its M-state pendant (M') of the syn-cycle. The latter reaction pathway requires a C13=C14, C15=N double-isomerization of the retinal chromophore, whereas the intracircular photoconversion of M back to D involves only one C13=C14 double-bond isomerization.


Asunto(s)
Absorción de Radiación , Procesos Fotoquímicos , Rodopsina/química , Rodopsina/metabolismo , Color , Células HEK293 , Humanos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
5.
J Biol Chem ; 291(8): 4121-7, 2016 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-26740624

RESUMEN

Chloride conducting channelrhodopsins (ChloCs) are new members of the optogenetic toolbox that enable neuronal inhibition in target cells. Originally, ChloCs have been engineered from cation conducting channelrhodopsins (ChRs), and later identified in a cryptophyte alga genome. We noticed that the sequence of a previously described Proteomonas sulcata ChR (PsChR1) was highly homologous to the naturally occurring and previously reported ChloCs GtACR1/2, but was not recognized as an anion conducting channel. Based on electrophysiological measurements obtained under various ionic conditions, we concluded that the PsChR1 photocurrent at physiological conditions is strongly inward rectifying and predominantly carried by chloride. The maximum activation was noted at excitation with light of 540 nm. An initial spectroscopic characterization of purified protein revealed that the photocycle and the transport mechanism of PsChR1 differ significantly from cation conducting ChRs. Hence, we concluded that PsChR1 is an anion conducting ChR, now renamed PsACR1, with a red-shifted absorption suited for multicolor optogenetic experiments in combination with blue light absorbing cation conducting ChRs.


Asunto(s)
Canales de Cloruro/química , Criptófitas/química , Luz , Rodopsina/química , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Criptófitas/genética , Criptófitas/metabolismo , Transporte Iónico/fisiología , Rodopsina/genética , Rodopsina/metabolismo
6.
Phys Chem Chem Phys ; 19(45): 30402-30409, 2017 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-29125160

RESUMEN

Anion channelrhodopsins (ACRs) are of great interest due to their ability to inhibit electrical signaling in optogenetic experiments. The photochemistry of ACRs is currently poorly understood and an improved understanding would be beneficial for rational design of ACRs with modified properties. Activation/deactivation of ACRs involves a series of photoreactions ranging from femtoseconds to seconds, thus real-time observation is essential to comprehend the full complexity of the photochemical processes. Here we investigate the photocycle of an ACR from Proteomonas sulcata (PsACR1), which is valuable for optogenetic applications due to the red-shifted absorption and action spectra compared to the prototype ACRs from Guillardia theta: GtACR1 and GtACR2, and the fast channel closing properties. From femto-to-submillisecond transient absorption spectroscopy, flash photolysis, and point mutations of acidic residues near the retinal Schiff base (RSB), E64, and D230, we found that the photoisomerization occurs in ∼500 fs independent of the protonation state of E64. Notably, E64 is involved in the rearrangement of the hydrogen-bond network near the RSB after photoisomerization. Furthermore, we suggest that E64 works as a primary proton acceptor during deprotonation of the RSB as has been proposed for GtACR1. Our findings allow for a deeper understanding of the photochemistry on the activation/deactivation of ACRs.

7.
J Phys Chem Lett ; 14(6): 1485-1493, 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36745035

RESUMEN

Chrimson is a red-light absorbing channelrhodopsin useful for deep-tissue optogenetics applications. Here, we present the Chrimson reaction dynamics from femtoseconds to seconds, analyzed with target analysis methods to disentangle spectrally and temporally overlapping excited- and product-state dynamics. We found multiple phases ranging from ≈100 fs to ≈20 ps in the excited-state decay, where spectral features overlapping with stimulated emission components were assigned to early dynamics of K-like species on a 10 ps time scale. Selective excitation at the maximum or the blue edge of the absorption spectrum resulted in spectrally distinct but kinetically similar excited-state and product-state species, which gradually became indistinguishable on the µs to 100 µs time scales. Hence, by removing specific protein conformations within an inhomogeneously broadened ensemble, we resolved slow protein backbone and amino acid side-chain motions in the dark that underlie inhomogeneous broadening, demonstrating that the latter represents a dynamic interconversion between protein substates.


Asunto(s)
Luz , Channelrhodopsins , Cinética , Movimiento (Física)
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA