Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Mol Biol Evol ; 39(10)2022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-36134526

RESUMEN

The amplification and diversification of genes into large multi-gene families often mark key evolutionary innovations, but this process often creates genetic redundancy that hinders functional investigations. When the model budding yeast Saccharomyces cerevisiae transitions to anaerobic growth conditions, the cell massively induces the expression of seven serine/threonine-rich anaerobically-induced cell wall mannoproteins (anCWMPs): TIP1, TIR1, TIR2, TIR3, TIR4, DAN1, and DAN4. Here, we show that these genes likely derive evolutionarily from a single ancestral anCWMP locus, which was duplicated and translocated to new genomic contexts several times both prior to and following the budding yeast whole genome duplication (WGD) event. Based on synteny and their phylogeny, we separate the anCWMPs into four gene subfamilies. To resolve prior inconclusive genetic investigations of these genes, we constructed a set of combinatorial deletion mutants to determine their contributions toward anaerobic growth in S. cerevisiae. We found that two genes, TIR1 and TIR3, were together necessary and sufficient for the anCWMP contribution to anaerobic growth. Overexpressing either gene alone was insufficient for anaerobic growth, implying that they encode non-overlapping functional roles in the cell during anaerobic growth. We infer from the phylogeny of the anCWMP genes that these two important genes derive from an ancient duplication that predates the WGD event, whereas the TIR1 subfamily experienced gene family amplification after the WGD event. Taken together, the genetic and molecular evidence suggests that one key anCWMP gene duplication event, several auxiliary gene duplication events, and functional divergence underpin the evolution of anaerobic growth in budding yeasts.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Anaerobiosis , Proteínas Portadoras/genética , Evolución Molecular , Duplicación de Gen , Glicoproteínas/genética , Filogenia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Serina/genética , Treonina/genética
2.
Yeast ; 40(9): 395-400, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37526396

RESUMEN

Humans rely on the ability of budding yeasts to grow without oxygen in industrial scale fermentations that produce beverages, foods, and biofuels. Oxygen is deeply woven into the energy metabolism and biosynthetic capabilities of budding yeasts. While diverse ecological habitats may provide wide varieties of different carbon and nitrogen sources for yeasts to utilize, there is no direct substitute for molecular oxygen, only a range of availability. Understanding how a small subset of budding yeasts evolved the ability to grow without oxygen could expand the set of useful species in industrial scale fermentations as well as provide insight into the cryptic field of yeast ecology. However, we still do not yet appreciate the full breadth of species that can growth without oxygen, what genes underlie this adaptation, and how these genes have evolved.


Asunto(s)
Saccharomycetales , Levaduras , Humanos , Anaerobiosis , Levaduras/metabolismo , Saccharomyces cerevisiae/genética , Saccharomycetales/genética , Saccharomycetales/metabolismo , Fermentación
3.
Metab Eng ; 68: 119-130, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34592433

RESUMEN

Bottlenecks in the efficient conversion of xylose into cost-effective biofuels have limited the widespread use of plant lignocellulose as a renewable feedstock. The yeast Saccharomyces cerevisiae ferments glucose into ethanol with such high metabolic flux that it ferments high concentrations of glucose aerobically, a trait called the Crabtree/Warburg Effect. In contrast to glucose, most engineered S. cerevisiae strains do not ferment xylose at economically viable rates and yields, and they require respiration to achieve sufficient xylose metabolic flux and energy return for growth aerobically. Here, we evolved respiration-deficient S. cerevisiae strains that can grow on and ferment xylose to ethanol aerobically, a trait analogous to the Crabtree/Warburg Effect for glucose. Through genome sequence comparisons and directed engineering, we determined that duplications of genes encoding engineered xylose metabolism enzymes, as well as TKL1, a gene encoding a transketolase in the pentose phosphate pathway, were the causative genetic changes for the evolved phenotype. Reengineered duplications of these enzymes, in combination with deletion mutations in HOG1, ISU1, GRE3, and IRA2, increased the rates of aerobic and anaerobic xylose fermentation. Importantly, we found that these genetic modifications function in another genetic background and increase the rate and yield of xylose-to-ethanol conversion in industrially relevant switchgrass hydrolysate, indicating that these specific genetic modifications may enable the sustainable production of industrial biofuels from yeast. We propose a model for how key regulatory mutations prime yeast for aerobic xylose fermentation by lowering the threshold for overflow metabolism, allowing mutations to increase xylose flux and to redirect it into fermentation products.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Xilosa , Biocombustibles , Fermentación , Glucosa , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Proc Natl Acad Sci U S A ; 115(43): 11030-11035, 2018 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-30297402

RESUMEN

Secondary metabolites are key in how organisms from all domains of life interact with their environment and each other. The iron-binding molecule pulcherrimin was described a century ago, but the genes responsible for its production in budding yeasts have remained uncharacterized. Here, we used phylogenomic footprinting on 90 genomes across the budding yeast subphylum Saccharomycotina to identify the gene cluster associated with pulcherrimin production. Using targeted gene replacements in Kluyveromyces lactis, we characterized the four genes that make up the cluster, which likely encode two pulcherriminic acid biosynthesis enzymes, a pulcherrimin transporter, and a transcription factor involved in both biosynthesis and transport. The requirement of a functional putative transporter to utilize extracellular pulcherrimin-complexed iron demonstrates that pulcherriminic acid is a siderophore, a chelator that binds iron outside the cell for subsequent uptake. Surprisingly, we identified homologs of the putative transporter and transcription factor genes in multiple yeast genera that lacked the biosynthesis genes and could not make pulcherrimin, including the model yeast Saccharomyces cerevisiae We deleted these previously uncharacterized genes and showed they are also required for pulcherrimin utilization in S. cerevisiae, raising the possibility that other genes of unknown function are linked to secondary metabolism. Phylogenetic analyses of this gene cluster suggest that pulcherrimin biosynthesis and utilization were ancestral to budding yeasts, but the biosynthesis genes and, subsequently, the utilization genes, were lost in many lineages, mirroring other microbial public goods systems that lead to the rise of cheater organisms.


Asunto(s)
Familia de Multigenes/genética , Saccharomycetales/genética , Metabolismo Secundario/genética , Hierro/metabolismo , Kluyveromyces/genética , Proteínas de Transporte de Membrana/genética , Filogenia , Biosíntesis de Proteínas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo , Sideróforos/genética , Factores de Transcripción/genética
5.
Syst Biol ; 64(6): 926-35, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26316424

RESUMEN

Microbial species concepts have long been the focus of contentious debate, fueled by technological limitations to the genetic resolution of species, by the daunting task of investigating phenotypic variation among individual microscopic organisms, and by a lack of understanding of gene flow in reproductively asexual organisms that are prone to promiscuous horizontal gene transfer. Population genomics, the emerging approach of analyzing the complete genomes of a multitude of closely related organisms, is poised to overcome these limitations by providing a window into patterns of genome variation revealing the evolutionary processes through which species diverge. This new approach is more than just an extension of previous multilocus sequencing technologies, in that it provides a comprehensive view of interacting evolutionary processes. Here we argue that the application of population genomic tools in a rigorous population genetic framework will help to identify the processes of microbial speciation and ultimately lead to a general species concept based on the unique biology and ecology of microorganisms.


Asunto(s)
Bacterias/clasificación , Especiación Genética , Variación Genética , Genoma Bacteriano/genética , Genómica , Modelos Genéticos
6.
Nature ; 463(7277): 54-60, 2010 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-20054389

RESUMEN

Archaea, one of three major evolutionary lineages of life, encode proteasomes highly related to those of eukaryotes. In contrast, archaeal ubiquitin-like proteins are less conserved and not known to function in protein conjugation. This has complicated our understanding of the origins of ubiquitination and its connection to proteasomes. Here we report two small archaeal modifier proteins, SAMP1 and SAMP2, with a beta-grasp fold and carboxy-terminal diglycine motif similar to ubiquitin, that form protein conjugates in the archaeon Haloferax volcanii. The levels of SAMP-conjugates were altered by nitrogen-limitation and proteasomal gene knockout and spanned various functions including components of the Urm1 pathway. LC-MS/MS-based collision-induced dissociation demonstrated isopeptide bonds between the C-terminal glycine of SAMP2 and the epsilon-amino group of lysines from a number of protein targets and Lys 58 of SAMP2 itself, revealing poly-SAMP chains. The widespread distribution and diversity of pathways modified by SAMPylation suggest that this type of protein conjugation is central to the archaeal lineage.


Asunto(s)
Proteínas Arqueales/metabolismo , Ubiquitinas/metabolismo , Secuencia de Aminoácidos , Proteínas Arqueales/química , Eliminación de Gen , Glicilglicina/metabolismo , Haloferax volcanii/genética , Haloferax volcanii/metabolismo , Inmunoprecipitación , Espectrometría de Masas , Datos de Secuencia Molecular , Nitrógeno/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Alineación de Secuencia , Azufre/metabolismo , Ubiquitinación , Ubiquitinas/química
7.
Mol Cell Proteomics ; 13(1): 220-39, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24097257

RESUMEN

SAMP1 and SAMP2 are ubiquitin-like proteins that function as protein modifiers and are required for the production of sulfur-containing biomolecules in the archaeon Haloferax volcanii. Here we report a novel small archaeal modifier protein (named SAMP3) with a ß-grasp fold and C-terminal diglycine motif characteristic of ubiquitin that is functional in protein conjugation in Hfx. volcanii. SAMP3 conjugates were dependent on the ubiquitin-activating E1 enzyme homolog of archaea (UbaA) for synthesis and were cleaved by the JAMM/MPN+ domain metalloprotease HvJAMM1. Twenty-three proteins (28 lysine residues) were found to be isopeptide-linked to the C-terminal carboxylate of SAMP3, and 331 proteins were reproducibly found associated with SAMP3 in a UbaA-dependent manner based on tandem mass spectrometry (MS/MS) analysis. The molybdopterin (MPT) synthase large subunit homolog MoaE, found samp3ylated at conserved active site lysine residues in MS/MS analysis, was also shown to be covalently bound to SAMP3 by immunoprecipitation and tandem affinity purifications. HvJAMM1 was demonstrated to catalyze the cleavage of SAMP3 from MoaE, suggesting a mechanism of controlling MPT synthase activity. The levels of samp3ylated proteins and samp3 transcripts were found to be increased by the addition of dimethyl sulfoxide to aerobically growing cells. Thus, we propose a model in which samp3ylation is covalent and reversible and controls the activity of enzymes such as MPT synthase. Sampylation of MPT synthase may govern the levels of molybdenum cofactor available and thus facilitate the scavenging of oxygen prior to the transition to respiration with molybdenum-cofactor-containing terminal reductases that use alternative electron acceptors such as dimethyl sulfoxide. Overall, our study of SAMP3 provides new insight into the diversity of functional ubiquitin-like protein modifiers and the network of ubiquitin-like protein targets in Archaea.


Asunto(s)
Proteínas Arqueales/aislamiento & purificación , Haloferax volcanii/metabolismo , Enzimas Activadoras de Ubiquitina/metabolismo , Ubiquitina/metabolismo , Secuencia de Aminoácidos , Proteínas Arqueales/biosíntesis , Proteínas Arqueales/metabolismo , Glicilglicina/metabolismo , Haloferax volcanii/genética , Azufre/metabolismo , Espectrometría de Masas en Tándem
8.
PLoS Biol ; 10(2): e1001265, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22363207

RESUMEN

Despite a growing appreciation of their vast diversity in nature, mechanisms of speciation are poorly understood in Bacteria and Archaea. Here we use high-throughput genome sequencing to identify ongoing speciation in the thermoacidophilic Archaeon Sulfolobus islandicus. Patterns of homologous gene flow among genomes of 12 strains from a single hot spring in Kamchatka, Russia, demonstrate higher levels of gene flow within than between two persistent, coexisting groups, demonstrating that these microorganisms fit the biological species concept. Furthermore, rates of gene flow between two species are decreasing over time in a manner consistent with incipient speciation. Unlike other microorganisms investigated, we do not observe a relationship between genetic divergence and frequency of recombination along a chromosome, or other physical mechanisms that would reduce gene flow between lineages. Each species has its own genetic island encoding unique physiological functions and a unique growth phenotype that may be indicative of ecological specialization. Genetic differentiation between these coexisting groups occurs in large genomic "continents," indicating the topology of genomic divergence during speciation is not uniform and is not associated with a single locus under strong diversifying selection. These data support a model where species do not require physical barriers to gene flow but are maintained by ecological differentiation.


Asunto(s)
Ecosistema , Flujo Génico/genética , Especiación Genética , Fenotipo , Filogenia , Sulfolobus/genética , Secuencia de Bases , Genética de Población , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Recombinación Homóloga/genética , Funciones de Verosimilitud , Modelos Genéticos , Datos de Secuencia Molecular , Federación de Rusia , Especificidad de la Especie , Sulfolobus/clasificación
9.
Proc Natl Acad Sci U S A ; 108(11): 4417-22, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21368171

RESUMEN

Based on our recent work with Haloferax volcanii, ubiquitin-like (Ubl) proteins (SAMP1 and SAMP2) are known to be covalently attached to proteins in archaea. Here, we investigated the enzymes required for the formation of these Ubl-protein conjugates (SAMPylation) and whether this system is linked to sulfur transfer. Markerless in-frame deletions were generated in H. volcanii target genes. The mutants were examined for: (i) the formation of Ubl protein conjugates, (ii) growth under various conditions, including those requiring the synthesis of the sulfur-containing molybdenum cofactor (MoCo), and (iii) the thiolation of tRNA. With this approach we found that UbaA of the E1/MoeB/ThiF superfamily was required for the formation of both SAMP1- and SAMP2-protein conjugates. In addition, UbaA, SAMP1, and MoaE (a homolog of the large subunit of molybdopterin synthase) were essential for MoCo-dependent dimethyl sulfoxide reductase activity, suggesting that these proteins function in MoCo-biosynthesis. UbaA and SAMP2 were also crucial for optimal growth at high temperature and the thiolation of tRNA. Based on these results, we propose a working model for archaea in which the E1-like UbaA can activate multiple Ubl SAMPs for protein conjugation as well as for sulfur transfer. In sulfur transfer, SAMP1 and SAMP2 appear specific for MoCo biosynthesis and the thiolation of tRNA, respectively. Overall, this study provides a fundamental insight into the diverse cellular functions of the Ubl system.


Asunto(s)
Proteínas Arqueales/metabolismo , Haloferax volcanii/metabolismo , Azufre/metabolismo , Enzimas Activadoras de Ubiquitina/metabolismo , Ubiquitinas/metabolismo , Secuencia de Aminoácidos , Proteínas Arqueales/química , Técnicas de Inactivación de Genes , Genes Arqueales/genética , Haloferax volcanii/genética , Haloferax volcanii/crecimiento & desarrollo , Modelos Biológicos , Datos de Secuencia Molecular , Molibdeno/metabolismo , ARN de Transferencia/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Temperatura , Ubiquitinación
10.
Biotechnol Biofuels Bioprod ; 17(1): 20, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38321504

RESUMEN

BACKGROUND: Cost-effective production of biofuels from lignocellulose requires the fermentation of D-xylose. Many yeast species within and closely related to the genera Spathaspora and Scheffersomyces (both of the order Serinales) natively assimilate and ferment xylose. Other species consume xylose inefficiently, leading to extracellular accumulation of xylitol. Xylitol excretion is thought to be due to the different cofactor requirements of the first two steps of xylose metabolism. Xylose reductase (XR) generally uses NADPH to reduce xylose to xylitol, while xylitol dehydrogenase (XDH) generally uses NAD+ to oxidize xylitol to xylulose, creating an imbalanced redox pathway. This imbalance is thought to be particularly consequential in hypoxic or anoxic environments. RESULTS: We screened the growth of xylose-fermenting yeast species in high and moderate aeration and identified both ethanol producers and xylitol producers. Selected species were further characterized for their XR and XDH cofactor preferences by enzyme assays and gene expression patterns by RNA-Seq. Our data revealed that xylose metabolism is more redox balanced in some species, but it is strongly affected by oxygen levels. Under high aeration, most species switched from ethanol production to xylitol accumulation, despite the availability of ample oxygen to accept electrons from NADH. This switch was followed by decreases in enzyme activity and the expression of genes related to xylose metabolism, suggesting that bottlenecks in xylose fermentation are not always due to cofactor preferences. Finally, we expressed XYL genes from multiple Scheffersomyces species in a strain of Saccharomyces cerevisiae. Recombinant S. cerevisiae expressing XYL1 from Scheffersomyces xylosifermentans, which encodes an XR without a cofactor preference, showed improved anaerobic growth on xylose as the primary carbon source compared to S. cerevisiae strain expressing XYL genes from Scheffersomyces stipitis. CONCLUSION: Collectively, our data do not support the hypothesis that xylitol accumulation occurs primarily due to differences in cofactor preferences between xylose reductase and xylitol dehydrogenase; instead, gene expression plays a major role in response to oxygen levels. We have also identified the yeast Sc. xylosifermentans as a potential source for genes that can be engineered into S. cerevisiae to improve xylose fermentation and biofuel production.

11.
Biochem Soc Trans ; 41(1): 458-62, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23356328

RESUMEN

Sulfolobus islandicus has been developed as a model system for combining approaches of evolutionary and molecular biology in Archaea. We describe how the application of this interdisciplinary approach can lead to novel hypotheses derived from patterns of natural variation that can be tested in the laboratory when combined with a diversity of natural variants and versatile genetic markers. We review how this approach has highlighted the importance of recombination as an evolutionary parameter and provided insight into a molecular mechanism of recombination that may be unique in the archaeal domain. We review the development and improvement of the model system S. islandicus that will enable us to study the mechanism and genomic architecture of recombination guided by evolutionary genomic analysis of Nature's ongoing experiments in wild populations.


Asunto(s)
Evolución Molecular , Genómica , Modelos Biológicos , Sulfolobus/genética , Filogenia , Sulfolobus/clasificación
12.
Appl Environ Microbiol ; 79(18): 5539-49, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23835176

RESUMEN

Sulfolobus species have become the model organisms for studying the unique biology of the crenarchaeal division of the archaeal domain. In particular, Sulfolobus islandicus provides a powerful opportunity to explore natural variation via experimental functional genomics. To support these efforts, we further expanded genetic tools for S. islandicus by developing a stringent positive selection for agmatine prototrophs in strains in which the argD gene, encoding arginine decarboxylase, has been deleted. Strains with deletions in argD were shown to be auxotrophic for agmatine even in nutrient-rich medium, but growth could be restored by either supplementation of exogenous agmatine or reintroduction of a functional copy of the argD gene from S. solfataricus P2 into the ΔargD host. Using this stringent selection, a robust targeted gene knockout system was established via an improved next generation of the MID (marker insertion and unmarked target gene deletion) method. Application of this novel system was validated by targeted knockout of the upsEF genes involved in UV-inducible cell aggregation formation.


Asunto(s)
Agmatina/metabolismo , Marcación de Gen/métodos , Genética Microbiana/métodos , Biología Molecular/métodos , Selección Genética , Sulfolobus/genética , Sulfolobus/metabolismo , Carboxiliasas/genética , Eliminación de Gen , Técnicas de Inactivación de Genes , Prueba de Complementación Genética , Sulfolobus/crecimiento & desarrollo
13.
G3 (Bethesda) ; 10(11): 4287-4294, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-32963084

RESUMEN

CRISPR/Cas9 is a powerful tool for editing genomes, but design decisions are generally made with respect to a single reference genome. With population genomic data becoming available for an increasing number of model organisms, researchers are interested in manipulating multiple strains and lines. CRISpy-pop is a web application that generates and filters guide RNA sequences for CRISPR/Cas9 genome editing for diverse yeast and bacterial strains. The current implementation designs and predicts the activity of guide RNAs against more than 1000 Saccharomyces cerevisiae genomes, including 167 strains frequently used in bioenergy research. Zymomonas mobilis, an increasingly popular bacterial bioenergy research model, is also supported. CRISpy-pop is available as a web application (https://CRISpy-pop.glbrc.org/) with an intuitive graphical user interface. CRISpy-pop also cross-references the human genome to allow users to avoid the selection of guide RNAs with potential biosafety concerns. Additionally, CRISpy-pop predicts the strain coverage of each guide RNA within the supported strain sets, which aids in functional population genetic studies. Finally, we validate how CRISpy-pop can accurately predict the activity of guide RNAs across strains using population genomic data.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Genoma Humano , Humanos , ARN Guía de Kinetoplastida/genética
14.
Nat Rev Microbiol ; 15(8): 492-501, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28502981

RESUMEN

Archaea are diverse, ecologically important, single-celled microorganisms. They have unique functions and features, such as methanogenesis and the composition of their cell envelope, although many characteristics are shared with the other domains of life, either through ancestry or through promiscuous horizontal gene transfer. The exchange of genetic material is a major driving force for genome evolution across the tree of life and has a role in archaeal speciation, adaptation and maintenance of diversity. In this Review, we discuss our current knowledge of archaeal mechanisms of DNA transfer and highlight the role of gene transfer in archaeal evolution.


Asunto(s)
Archaea/genética , Flujo Génico , Genoma Arqueal , Evolución Molecular , Transferencia de Gen Horizontal , Genes Bacterianos , Genómica
15.
Genome Biol Evol ; 6(1): 170-8, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24391154

RESUMEN

Variation in recombination rates across chromosomes has been shown to be a primary force shaping the architecture of genome divergence. In archaea, little is known about variation in recombination across the chromosome or how it shapes genome evolution. We identified significant variations in polymorphism occurring across the chromosomes of ten closely related sympatric strains of the thermoacidophilic archaeon Sulfolobus islandicus. Statistical analyses show that recombination varies across the genome and interacts with selection to define large genomic regions with reduced polymorphism, particularly in the regions surrounding the three origins of replication. Our findings demonstrate how recombination defines the mosaic of variation in this asexually reproducing microorganism and provide insight into the evolutionary origins of genome architecture in this organism from the Archaeal domain.


Asunto(s)
Genoma Arqueal , Recombinación Genética , Sulfolobus/genética , Evolución Molecular , Polimorfismo Genético , Origen de Réplica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA