Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34074754

RESUMEN

The virulence factor PlaB promotes lung colonization, tissue destruction, and intracellular replication of Legionella pneumophila, the causative agent of Legionnaires' disease. It is a highly active phospholipase exposed at the bacterial surface and shows an extraordinary activation mechanism by tetramer deoligomerization. To unravel the molecular basis for enzyme activation and localization, we determined the crystal structure of PlaB in its tetrameric form. We found that the tetramer is a dimer of identical dimers, and a monomer consists of an N-terminal α/ß-hydrolase domain expanded by two noncanonical two-stranded ß-sheets, ß-6/ß-7 and ß-9/ß-10. The C-terminal domain reveals a fold displaying a bilobed ß-sandwich with a hook structure required for dimer formation and structural complementation of the enzymatic domain in the neighboring monomer. This highlights the dimer as the active form. Δß-9/ß-10 mutants showed a decrease in the tetrameric fraction and altered activity profiles. The variant also revealed restricted binding to membranes resulting in mislocalization and bacterial lysis. Unexpectedly, we observed eight NAD(H) molecules at the dimer/dimer interface, suggesting that these molecules stabilize the tetramer and hence lead to enzyme inactivation. Indeed, addition of NAD(H) increased the fraction of the tetramer and concomitantly reduced activity. Together, these data reveal structural elements and an unprecedented NAD(H)-mediated tetramerization mechanism required for spatial and enzymatic control of a phospholipase virulence factor. The allosteric regulatory process identified here is suited to fine tune PlaB in a way that protects Legionella pneumophila from self-inflicted lysis while ensuring its activity at the pathogen-host interface.


Asunto(s)
Proteínas Bacterianas/química , Legionella pneumophila/enzimología , NAD/química , Fosfolipasas/química , Multimerización de Proteína , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Legionella pneumophila/genética , NAD/genética , Fosfolipasas/genética , Conformación Proteica en Lámina beta , Estructura Cuaternaria de Proteína
2.
J Biol Chem ; 295(37): 13065-13078, 2020 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-32694223

RESUMEN

Bacterial formation of trimethylamine (TMA) from carnitine in the gut microbiome has been linked to cardiovascular disease. During this process, the two-component carnitine monooxygenase (CntAB) catalyzes the oxygen-dependent cleavage of carnitine to TMA and malic semialdehyde. Individual redox states of the reductase CntB and the catalytic component CntA were investigated based on mutagenesis and electron paramagnetic resonance (EPR) spectroscopic approaches. Protein ligands of the flavin mononucleotide (FMN) and the plant-type [2Fe-2S] cluster of CntB and also of the Rieske-type [2Fe-2S] cluster and the mononuclear [Fe] center of CntA were identified. EPR spectroscopy of variant CntA proteins suggested a hierarchical metallocenter maturation, Rieske [2Fe-2S] followed by the mononuclear [Fe] center. NADH-dependent electron transfer via the redox components of CntB and within the trimeric CntA complex for the activation of molecular oxygen was investigated. EPR experiments indicated that the two electrons from NADH were allocated to the plant-type [2Fe-2S] cluster and to FMN in the form of a flavin semiquinone radical. Single-turnover experiments of this reduced CntB species indicated the translocation of the first electron onto the [Fe] center and the second electron onto the Rieske-type [2Fe-2S] cluster of CntA to finally allow for oxygen activation as a basis for carnitine cleavage. EPR spectroscopic investigation of CntA variants indicated an unusual intermolecular electron transfer between the subunits of the CntA trimer via the "bridging" residue Glu-205. On the basis of these data, a redox catalytic cycle for carnitine monooxygenase was proposed.


Asunto(s)
Acinetobacter baumannii/enzimología , Proteínas Bacterianas/química , Oxigenasas de Función Mixta/química , Acinetobacter baumannii/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Microbioma Gastrointestinal , Humanos , Intestinos/microbiología , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo
3.
Biochem J ; 475(10): 1739-1753, 2018 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-29717023

RESUMEN

The molybdenum cofactor (Moco) is a redox-active prosthetic group found in the active site of Moco-dependent enzymes, which are vitally important for life. Moco biosynthesis involves several enzymes that catalyze the subsequent conversion of GTP into cyclic pyranopterin monophosphate (cPMP), molybdopterin (MPT), adenylated MPT (MPT-AMP), and finally Moco. While the underlying principles of cPMP, MPT, and MPT-AMP formation are well understood, the molybdenum insertase (Mo-insertase)-catalyzed final Moco maturation step is not. In the present study, we analyzed high-resolution X-ray datasets of the plant Mo-insertase Cnx1E that revealed two molybdate-binding sites within the active site, hence improving the current view on Cnx1E functionality. The presence of molybdate anions in either of these sites is tied to a distinctive backbone conformation, which we suggest to be essential for Mo-insertase molybdate selectivity and insertion efficiency.


Asunto(s)
Coenzimas/metabolismo , Eucariontes/enzimología , Metaloproteínas/metabolismo , Molibdeno/metabolismo , Pteridinas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Catálisis , Dominio Catalítico , Coenzimas/química , Metaloproteínas/química , Metaloproteínas/genética , Molibdeno/química , Cofactores de Molibdeno , Mutación , Conformación Proteica , Pteridinas/química , Homología de Secuencia
4.
J Gen Virol ; 99(9): 1187-1198, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30084768

RESUMEN

The haemagglutinin (HA) of H1N1 and H3N2 influenza A virus (IAV) subtypes has to be activated by host proteases. Previous studies showed that H1N1 virus cannot replicate efficiently in Tmprss2-/- knock-out mice whereas H3N2 viruses are able to replicate to the same levels in Tmprss2-/- as in wild type (WT) mice. Here, we investigated the sequence requirements for the HA molecule that allow IAV to replicate efficiently in the absence of TMPRSS2. We showed that replacement of the H3 for the H1-loop sequence (amino acids 320 to 329, at the C-terminus of HA1) was not sufficient for equal levels of virus replication or severe pathology in Tmprss2-/- knock-out mice compared to WT mice. However, exchange of a distant amino acid from H1 to H3 sequence (E31D) in addition to the HA-loop substitution resulted in virus replication in Tmprss2-/- knock-out mice that was comparable to WT mice. The higher virus replication and lung damage was associated with increased epithelial damage and higher mortality. Our results provide further evidence and insights into host proteases as a promising target for therapeutic intervention of IAV infections.


Asunto(s)
Hemaglutininas/metabolismo , Virus de la Influenza A/fisiología , Infecciones por Orthomyxoviridae/virología , Serina Endopeptidasas/metabolismo , Replicación Viral/fisiología , Sustitución de Aminoácidos , Animales , Clonación Molecular , Perros , Regulación Viral de la Expresión Génica/fisiología , Hemaglutininas/química , Células de Riñón Canino Madin Darby , Ratones , Ratones Noqueados , Modelos Moleculares , Mutagénesis , Conformación Proteica , Serina Endopeptidasas/genética
5.
Biochem J ; 474(1): 163-178, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27803248

RESUMEN

The molybdenum cofactor (Moco) is a redox active prosthetic group, essentially required for numerous enzyme-catalyzed two electron transfer reactions. Moco is synthesized by an evolutionarily old and highly conserved multistep pathway. In the last step of Moco biosynthesis, the molybdenum center is inserted into the final Moco precursor adenylated molybdopterin (MPT-AMP). This unique and yet poorly characterized maturation reaction finally yields physiologically active Moco. In the model plant Arabidopsis, the two domain enzyme, Cnx1, is required for Moco formation. Recently, a genetic screen identified novel Arabidopsis cnx1 mutant plant lines each harboring a single amino acid exchange in the N-terminal Cnx1E domain. Biochemical characterization of the respective recombinant Cnx1E variants revealed two different amino acid exchanges (S197F and G175D) that impair Cnx1E dimerization, thus linking Cnx1E oligomerization to Cnx1 functionality. Analysis of the Cnx1E structure identified Cnx1E active site-bound molybdate and magnesium ions, which allowed to fine-map the Cnx1E MPT-AMP-binding site.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Calnexina , Multimerización de Proteína/fisiología , Sustitución de Aminoácidos , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Calnexina/química , Calnexina/genética , Calnexina/metabolismo , Dominio Catalítico , Coenzimas/química , Coenzimas/genética , Coenzimas/metabolismo , Metaloproteínas/química , Metaloproteínas/genética , Metaloproteínas/metabolismo , Cofactores de Molibdeno , Mutación Missense , Estructura Secundaria de Proteína , Pteridinas/química , Pteridinas/metabolismo
6.
Proc Natl Acad Sci U S A ; 112(34): 10691-6, 2015 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-26261323

RESUMEN

The cytoplasmic membrane is probably the most important physical barrier between microbes and the surrounding habitat. Aminoacylation of the polar head group of the phospholipid phosphatidylglycerol (PG) catalyzed by Ala-tRNA(Ala)-dependent alanyl-phosphatidylglycerol synthase (A-PGS) or by Lys-tRNA(Lys)-dependent lysyl-phosphatidylglycerol synthase (L-PGS) enables bacteria to cope with cationic peptides that are harmful to the integrity of the cell membrane. Accordingly, these synthases also have been designated as multiple peptide resistance factors (MprF). They consist of a separable C-terminal catalytic domain and an N-terminal transmembrane flippase domain. Here we present the X-ray crystallographic structure of the catalytic domain of A-PGS from the opportunistic human pathogen Pseudomonas aeruginosa. In parallel, the structure of the related lysyl-phosphatidylglycerol-specific L-PGS domain from Bacillus licheniformis in complex with the substrate analog L-lysine amide is presented. Both proteins reveal a continuous tunnel that allows the hydrophobic lipid substrate PG and the polar aminoacyl-tRNA substrate to access the catalytic site from opposite directions. Substrate recognition of A-PGS versus L-PGS was investigated using misacylated tRNA variants. The structural work presented here in combination with biochemical experiments using artificial tRNA or artificial lipid substrates reveals the tRNA acceptor stem, the aminoacyl moiety, and the polar head group of PG as the main determinants for substrate recognition. A mutagenesis approach yielded the complementary amino acid determinants of tRNA interaction. These results have broad implications for the design of L-PGS and A-PGS inhibitors that could render microbial pathogens more susceptible to antimicrobial compounds.


Asunto(s)
Aminoaciltransferasas/química , Bacillus/enzimología , Proteínas Bacterianas/química , Fosfatidilgliceroles/metabolismo , Pseudomonas aeruginosa/enzimología , Factores R , ARN de Transferencia de Alanina/metabolismo , ARN de Transferencia de Lisina/metabolismo , Aminoacilación , Aminoaciltransferasas/metabolismo , Bacillus/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Dominio Catalítico , Cristalografía por Rayos X , Interacciones Hidrofóbicas e Hidrofílicas , Lisina/biosíntesis , Modelos Moleculares , Simulación del Acoplamiento Molecular , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Conformación de Ácido Nucleico , Fosfatidilgliceroles/biosíntesis , Conformación Proteica , Pseudomonas aeruginosa/genética , Proteínas Recombinantes de Fusión/química , Relación Estructura-Actividad , Especificidad por Sustrato
7.
Proc Natl Acad Sci U S A ; 112(21): 6694-9, 2015 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-25947153

RESUMEN

Kaposi sarcoma herpesvirus (KSHV) persists as a latent nuclear episome in dividing host cells. This episome is tethered to host chromatin to ensure proper segregation during mitosis. For duplication of the latent genome, the cellular replication machinery is recruited. Both of these functions rely on the constitutively expressed latency-associated nuclear antigen (LANA) of the virus. Here, we report the crystal structure of the KSHV LANA DNA-binding domain (DBD) in complex with its high-affinity viral target DNA, LANA binding site 1 (LBS1), at 2.9 Šresolution. In contrast to homologous proteins such as Epstein-Barr virus nuclear antigen 1 (EBNA-1) of the related γ-herpesvirus Epstein-Barr virus, specific DNA recognition by LANA is highly asymmetric. In addition to solving the crystal structure, we found that apart from the two known LANA binding sites, LBS1 and LBS2, LANA also binds to a novel site, denoted LBS3. All three sites are located in a region of the KSHV terminal repeat subunit previously recognized as a minimal replicator. Moreover, we show that the LANA DBD can coat DNA of arbitrary sequence by virtue of a characteristic lysine patch, which is absent in EBNA-1 of the Epstein-Barr virus. Likely, these higher-order assemblies involve the self-association of LANA into supermolecular spirals. One such spiral assembly was solved as a crystal structure of 3.7 Šresolution in the absence of DNA. On the basis of our data, we propose a model for the controlled nucleation of higher-order LANA oligomers that might contribute to the characteristic subnuclear KSHV microdomains ("LANA speckles"), a hallmark of KSHV latency.


Asunto(s)
Antígenos Virales/química , Herpesvirus Humano 8/química , Proteínas Nucleares/química , Secuencia de Aminoácidos , Antígenos Virales/genética , Antígenos Virales/metabolismo , Secuencia de Bases , Sitios de Unión , Cristalografía por Rayos X , ADN Viral/genética , ADN Viral/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/metabolismo , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Dispersión del Ángulo Pequeño , Electricidad Estática , Difracción de Rayos X
8.
J Biol Chem ; 291(38): 20068-84, 2016 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-27466367

RESUMEN

Violacein is a natural purple pigment of Chromobacterium violaceum with potential medical applications as antimicrobial, antiviral, and anticancer drugs. The initial step of violacein biosynthesis is the oxidative conversion of l-tryptophan into the corresponding α-imine catalyzed by the flavoenzyme l-tryptophan oxidase (VioA). A substrate-related (3-(1H-indol-3-yl)-2-methylpropanoic acid) and a product-related (2-(1H-indol-3-ylmethyl)prop-2-enoic acid) competitive VioA inhibitor was synthesized for subsequent kinetic and x-ray crystallographic investigations. Structures of the binary VioA·FADH2 and of the ternary VioA·FADH2·2-(1H-indol-3-ylmethyl)prop-2-enoic acid complex were resolved. VioA forms a "loosely associated" homodimer as indicated by small-angle x-ray scattering experiments. VioA belongs to the glutathione reductase family 2 of FAD-dependent oxidoreductases according to the structurally conserved cofactor binding domain. The substrate-binding domain of VioA is mainly responsible for the specific recognition of l-tryptophan. Other canonical amino acids were efficiently discriminated with a minor conversion of l-phenylalanine. Furthermore, 7-aza-tryptophan, 1-methyl-tryptophan, 5-methyl-tryptophan, and 5-fluoro-tryptophan were efficient substrates of VioA. The ternary product-related VioA structure indicated involvement of protein domain movement during enzyme catalysis. Extensive structure-based mutagenesis in combination with enzyme kinetics (using l-tryptophan and substrate analogs) identified Arg(64), Lys(269), and Tyr(309) as key catalytic residues of VioA. An increased enzyme activity of protein variant H163A in the presence of l-phenylalanine indicated a functional role of His(163) in substrate binding. The combined structural and mutational analyses lead to the detailed understanding of VioA substrate recognition. Related strategies for the in vivo synthesis of novel violacein derivatives are discussed.


Asunto(s)
Proteínas Bacterianas , Chromobacterium , Indoles/metabolismo , Triptófano Oxigenasa , Triptófano , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Chromobacterium/química , Chromobacterium/genética , Chromobacterium/metabolismo , Flavina-Adenina Dinucleótido/análogos & derivados , Flavina-Adenina Dinucleótido/química , Flavina-Adenina Dinucleótido/genética , Flavina-Adenina Dinucleótido/metabolismo , Cinética , Dominios Proteicos , Relación Estructura-Actividad , Triptófano/química , Triptófano/genética , Triptófano/metabolismo , Triptófano Oxigenasa/química , Triptófano Oxigenasa/genética , Triptófano Oxigenasa/metabolismo
9.
Adv Exp Med Biol ; 925: 147-161, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27957709

RESUMEN

The sophisticated biochemistry of nitrogenase plays a fundamental role for the biosynthesis of tetrapyrrole molecules, acting as key components of photosynthesis and methanogenesis. Three nitrogenase-like metalloenzymes have been characterized to date. Synthesis of chlorophylls and bacteriochlorophylls involves the reduction of the C17-C18 double bond of the conjugated ring system of protochlorophyllide which is catalyzed by the multi-subunit enzyme dark operative protochlorophyllide oxidoreductase (DPOR). Subsequently, biosynthesis of all bacteriochlorophylls requires the reduction of the C7-C8 double bond by a second nitrogenase-like enzyme termed chlorophyllide oxidoreductase (COR). Mechanistically, DPOR and COR make use of a reductase component which links ATP hydrolysis to conformational changes. This dynamic switch protein is triggering the transient association between the reductase and the core catalytic protein complex, thereby facilitating the transduction of electrons via two [4Fe4S] clusters. X-ray crystallographic structural investigations in combination with biochemical experiments revealed the molecular basis of the underlying energy transduction mechanism. The unique nickel-containing tetrapyrrole cofactor F430 is located in the active site of methyl-coenzyme M reductase, which is catalyzing the final step of methane formation in methanogenic archaea. The nitrogenase-like protein NflH/NflD has been proposed to catalyze one or more ring reduction steps during the biosynthesis of F430. The present working hypothesis mirrors a DPOR and COR related enzyme mechanism of NflH/NflD. Furthermore, nfl-encoded proteins were suggested as "simplified" ancestors lying basal in the phylogenetic tree between nitrogenase and DPOR/COR.


Asunto(s)
Proteínas Bacterianas/química , Bacterioclorofilas/química , Nitrogenasa/química , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/química , Oxidorreductasas/química , Tetrapirroles/química , Azotobacter vinelandii/genética , Azotobacter vinelandii/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacterioclorofilas/biosíntesis , Biocatálisis , Expresión Génica , Nitrogenasa/genética , Nitrogenasa/metabolismo , Oxidación-Reducción , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Fotosíntesis/genética , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Estructura Terciaria de Proteína , Rhodobacter capsulatus/genética , Rhodobacter capsulatus/metabolismo , Roseobacter/genética , Roseobacter/metabolismo , Tetrapirroles/biosíntesis
10.
Proc Natl Acad Sci U S A ; 110(6): 2094-8, 2013 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-23341615

RESUMEN

Photosynthesis uses chlorophylls for the conversion of light into chemical energy, the driving force of life on Earth. During chlorophyll biosynthesis in photosynthetic bacteria, cyanobacteria, green algae and gymnosperms, dark-operative protochlorophyllide oxidoreductase (DPOR), a nitrogenase-like metalloenzyme, catalyzes the chemically challenging two-electron reduction of the fully conjugated ring system of protochlorophyllide a. The reduction of the C-17=C-18 double bond results in the characteristic ring architecture of all chlorophylls, thereby altering the absorption properties of the molecule and providing the basis for light-capturing and energy-transduction processes of photosynthesis. We report the X-ray crystallographic structure of the substrate-bound, ADP-aluminium fluoride-stabilized (ADP·AlF(3)-stabilized) transition state complex between the DPOR components L(2) and (NB)(2) from the marine cyanobacterium Prochlorococcus marinus. Our analysis permits a thorough investigation of the dynamic interplay between L(2) and (NB)(2). Upon complex formation, substantial ATP-dependent conformational rearrangements of L(2) trigger the protein-protein interactions with (NB)(2) as well as the electron transduction via redox-active [4Fe-4S] clusters. We also present the identification of artificial "small-molecule substrates" of DPOR in correlation with those of nitrogenase. The catalytic differences and similarities between DPOR and nitrogenase have broad implications for the energy transduction mechanism of related multiprotein complexes that are involved in the reduction of chemically stable double and/or triple bonds.


Asunto(s)
Adenosina Difosfato/química , Adenosina Difosfato/metabolismo , Compuestos de Aluminio/química , Compuestos de Aluminio/metabolismo , Fluoruros/química , Fluoruros/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/química , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Protoclorofilida/química , Protoclorofilida/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Estabilidad de Enzimas , Sustancias Macromoleculares/química , Sustancias Macromoleculares/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Mutagénesis Sitio-Dirigida , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Prochlorococcus/enzimología , Prochlorococcus/genética , Conformación Proteica , Subunidades de Proteína , Homología de Secuencia de Aminoácido
11.
J Biol Chem ; 289(27): 18657-66, 2014 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-24811180

RESUMEN

The intracellularly replicating lung pathogen Legionella pneumophila consists of an extraordinary variety of phospholipases, including at least 15 different phospholipases A (PLA). Among them, PlaB, the first characterized member of a novel lipase family, is a hemolytic virulence factor that exhibits the most prominent PLA activity in L. pneumophila. We analyzed here protein oligomerization, the importance of oligomerization for activity, addressed further essential regions for activity within the PlaB C terminus, and the significance of PlaB-derived lipolytic activity for L. pneumophila intracellular replication. We determined by means of analytical ultracentrifugation and small angle x-ray scattering analysis that PlaB forms homodimers and homotetramers. The C-terminal 5, 10, or 15 amino acids, although the individual regions contributed to PLA activity, were not essential for protein tetramerization. Infection of mouse macrophages with L. pneumophila wild type, plaB knock-out mutant, and plaB complementing or various mutated plaB-harboring strains showed that catalytic activity of PlaB promotes intracellular replication. We observed that PlaB was most active in the lower nanomolar concentration range but not at or only at a low level at concentration above 0.1 µm where it exists in a dimer/tetramer equilibrium. We therefore conclude that PlaB is a virulence factor that, on the one hand, assembles in inactive tetramers at micromolar concentrations. On the other hand, oligomer dissociation at nanomolar concentrations activates PLA activity. Our data highlight the first example of concentration-dependent phospholipase inactivation by tetramerization, which may protect the bacterium from internal PLA activity, but enzyme dissociation may allow its activation after export.


Asunto(s)
Legionella pneumophila/enzimología , Fosfolipasas/química , Fosfolipasas/metabolismo , Multimerización de Proteína , Animales , Biocatálisis , Línea Celular , Espacio Intracelular/microbiología , Lipólisis , Macrófagos/citología , Macrófagos/microbiología , Ratones , Modelos Moleculares , Fosfolipasas/antagonistas & inhibidores , Estructura Cuaternaria de Proteína
12.
Plant Mol Biol ; 89(1-2): 67-81, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26260516

RESUMEN

Kelch repeat-containing proteins are involved in diverse cellular processes, but only a small subset of plant kelch proteins has been functionally characterized. Thiocyanate-forming protein (TFP) from field-penny cress, Thlaspi arvense (Brassicaceae), is a representative of specifier proteins, a group of kelch proteins involved in plant specialized metabolism. As components of the glucosinolate-myrosinase system of the Brassicaceae, specifier proteins determine the profile of bioactive products formed when plant tissue is disrupted and glucosinolates are hydrolyzed by myrosinases. Here, we describe the crystal structure of TaTFP at a resolution of 1.4 Å. TaTFP crystallized as homodimer. Each monomer forms a six-blade ß-propeller with a wide "top" and a narrower "bottom" opening with distinct strand-connecting loops protruding far beyond the lower propeller surface. Molecular modeling and mutational analysis identified residues for glucosinolate aglucone and Fe(2+) cofactor binding within these loops. As the first experimentally determined structure of a plant kelch protein, the crystal structure of TaTFP not only enables more detailed mechanistic studies on glucosinolate breakdown product formation, but also provides a new basis for research on the diverse roles and mechanisms of other kelch proteins in plants.


Asunto(s)
Glucosinolatos/metabolismo , Proteínas de Plantas/química , Thlaspi/fisiología , Dominio Catalítico , Cristalografía por Rayos X , Simulación del Acoplamiento Molecular , Proteínas de Plantas/fisiología , Estructura Terciaria de Proteína , Tiocianatos/metabolismo , Thlaspi/metabolismo
13.
PLoS Pathog ; 9(10): e1003640, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24146614

RESUMEN

Kaposi sarcoma-associated herpesvirus (KSHV) establishes a lifelong latent infection and causes several malignancies in humans. Murine herpesvirus 68 (MHV-68) is a related γ2-herpesvirus frequently used as a model to study the biology of γ-herpesviruses in vivo. The KSHV latency-associated nuclear antigen (kLANA) and the MHV68 mLANA (orf73) protein are required for latent viral replication and persistence. Latent episomal KSHV genomes and kLANA form nuclear microdomains, termed 'LANA speckles', which also contain cellular chromatin proteins, including BRD2 and BRD4, members of the BRD/BET family of chromatin modulators. We solved the X-ray crystal structure of the C-terminal DNA binding domains (CTD) of kLANA and MHV-68 mLANA. While these structures share the overall fold with the EBNA1 protein of Epstein-Barr virus, they differ substantially in their surface characteristics. Opposite to the DNA binding site, both kLANA and mLANA CTD contain a characteristic lysine-rich positively charged surface patch, which appears to be a unique feature of γ2-herpesviral LANA proteins. Importantly, kLANA and mLANA CTD dimers undergo higher order oligomerization. Using NMR spectroscopy we identified a specific binding site for the ET domains of BRD2/4 on kLANA. Functional studies employing multiple kLANA mutants indicate that the oligomerization of native kLANA CTD dimers, the characteristic basic patch and the ET binding site on the kLANA surface are required for the formation of kLANA 'nuclear speckles' and latent replication. Similarly, the basic patch on mLANA contributes to the establishment of MHV-68 latency in spleen cells in vivo. In summary, our data provide a structural basis for the formation of higher order LANA oligomers, which is required for nuclear speckle formation, latent replication and viral persistence.


Asunto(s)
Antígenos Virales/metabolismo , Cromatina/metabolismo , Herpesvirus Humano 8/fisiología , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Rhadinovirus/fisiología , Factores de Transcripción/metabolismo , Proteínas Virales/metabolismo , Animales , Antígenos Virales/química , Antígenos Virales/genética , Proteínas de Ciclo Celular , Cromatina/genética , Cromatina/virología , Proteínas Cromosómicas no Histona , Cristalografía por Rayos X , Células HEK293 , Células HeLa , Herpesvirus Humano 8/química , Humanos , Ratones , Proteínas Nucleares/química , Proteínas Nucleares/genética , Multimerización de Proteína , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Estructura Cuaternaria de Proteína , Rhadinovirus/química , Bazo/metabolismo , Bazo/virología , Relación Estructura-Actividad , Factores de Transcripción/química , Factores de Transcripción/genética , Proteínas Virales/química , Proteínas Virales/genética , Latencia del Virus/fisiología
14.
J Biol Chem ; 288(20): 14657-14671, 2013 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-23539622

RESUMEN

Nitrate reductase (NR) is a complex molybdenum cofactor (Moco)-dependent homodimeric metalloenzyme that is vitally important for autotrophic organism as it catalyzes the first and rate-limiting step of nitrate assimilation. Beside Moco, eukaryotic NR also binds FAD and heme as additional redox active cofactors, and these are involved in electron transfer from NAD(P)H to the enzyme molybdenum center where reduction of nitrate to nitrite takes place. We report the first biochemical characterization of a Moco-free eukaryotic NR from the fungus Neurospora crassa, documenting that Moco is necessary and sufficient to induce dimer formation. The molybdenum center of NR reconstituted in vitro from apo-NR and Moco showed an EPR spectrum identical to holo-NR. Analysis of mutants unable to bind heme or FAD revealed that insertion of Moco into NR occurs independent from the insertion of any other NR redox cofactor. Furthermore, we showed that at least in vitro the active site formation of NR is an autonomous process.


Asunto(s)
Coenzimas/metabolismo , Metaloproteínas/metabolismo , Neurospora crassa/enzimología , Nitrito Reductasas/metabolismo , Pteridinas/metabolismo , Secuencia de Aminoácidos , Clonación Molecular , Dimerización , Espectroscopía de Resonancia por Spin del Electrón , Hemo/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Molibdeno/metabolismo , Cofactores de Molibdeno , NADP/metabolismo , Nitrato-Reductasa/metabolismo , Oxidación-Reducción , Unión Proteica , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Ultracentrifugación
15.
Sci Adv ; 10(25): eadm9404, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38896613

RESUMEN

In the quest for new bioactive substances, nonribosomal peptide synthetases (NRPS) provide biodiversity by synthesizing nonproteinaceous peptides with high cellular activity. NRPS machinery consists of multiple modules, each catalyzing a unique series of chemical reactions. Incomplete understanding of the biophysical principles orchestrating these reaction arrays limits the exploitation of NRPSs in synthetic biology. Here, we use nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry to solve the conundrum of how intermodular recognition is coupled with loaded carrier protein specificity in the tomaymycin NRPS. We discover an adaptor domain that directly recruits the loaded carrier protein from the initiation module to the elongation module and reveal its mechanism of action. The adaptor domain of the type found here has specificity rules that could potentially be exploited in the design of engineered NRPS machinery.


Asunto(s)
Péptido Sintasas , Péptido Sintasas/metabolismo , Péptido Sintasas/química , Especificidad por Sustrato , Dominios Proteicos , Unión Proteica , Espectroscopía de Resonancia Magnética/métodos
16.
Protein Expr Purif ; 88(2): 243-7, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23384479

RESUMEN

The glycolytic enzyme pyruvate kinase (PK) generates ATP from ADP through substrate-level phosphorylation powered by the conversion of phosphoenolpyruvate to pyruvate. In contrast to other bacteria, Enterobacteriaceae, such as pathogenic yersiniae, harbour two pyruvate kinases encoded by pykA and pykF. The individual roles of these isoenzymes are poorly understood. In an attempt to make the Yersinia enterocolitica pyruvate kinases PykA and PykF amenable to structural and functional characterisation, we produced them untagged in Escherichia coli and purified them to near homogeneity through a combination of ion exchange and size exclusion chromatography, yielding more than 180 mg per litre of batch culture. The solution structure of PykA and PykF was analysed through small angle X-ray scattering which revealed the formation of PykA and PykF tetramers and confirmed the binding of the allosteric effector fructose-1,6-bisphosphate (FBP) to PykF but not to PykA.


Asunto(s)
Piruvato Quinasa/química , Piruvato Quinasa/genética , Yersinia enterocolitica/enzimología , Cromatografía en Gel , Cromatografía por Intercambio Iónico , Escherichia coli/genética , Expresión Génica , Vectores Genéticos/genética , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/aislamiento & purificación , Isoenzimas/metabolismo , Modelos Moleculares , Multimerización de Proteína , Piruvato Quinasa/aislamiento & purificación , Piruvato Quinasa/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Yersinia enterocolitica/química , Yersinia enterocolitica/genética
17.
Artículo en Inglés | MEDLINE | ID: mdl-23695583

RESUMEN

AlsR from Bacillus subtilis, a member of the LysR-type transcriptional regulator (LTTR) family, regulates the transcription of the alsSD operon encoding enzymes involved in acetoin biosynthesis. LTTRs represent the largest known family of transcriptional regulators in bacteria. In this study, AlsR82-302S100A, representing the effector domain, was produced in Escherichia coli, purified and crystallized using the sitting-drop vapour-diffusion method in the presence of 2.1 M DL-malic acid pH 7.0 at 293 K. The crystals belonged to space group C2, with unit-cell parameters a = 142.91, b = 74.96, c = 94.39 Å, ß = 110.543°. X-ray data extending to a resolution of 2.6 Šwere collected.


Asunto(s)
Bacillus subtilis , Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Elementos Reguladores de la Transcripción , Proteínas Bacterianas/genética , Cristalización , Cristalografía por Rayos X , Estructura Terciaria de Proteína , Elementos Reguladores de la Transcripción/genética , Factores de Transcripción/química , Factores de Transcripción/genética
18.
BMC Biol ; 10: 62, 2012 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-22809326

RESUMEN

BACKGROUND: The family of lysosome-associated membrane proteins (LAMP) comprises the multifunctional, ubiquitous LAMP-1 and LAMP-2, and the cell type-specific proteins DC-LAMP (LAMP-3), BAD-LAMP (UNC-46, C20orf103) and macrosialin (CD68). LAMPs have been implicated in a multitude of cellular processes, including phagocytosis, autophagy, lipid transport and aging. LAMP-2 isoform A acts as a receptor in chaperone-mediated autophagy. LAMP-2 deficiency causes the fatal Danon disease. The abundant proteins LAMP-1 and LAMP-2 are major constituents of the glycoconjugate coat present on the inside of the lysosomal membrane, the 'lysosomal glycocalyx'. The LAMP family is characterized by a conserved domain of 150 to 200 amino acids with two disulfide bonds. RESULTS: The crystal structure of the conserved domain of human DC-LAMP was solved. It is the first high-resolution structure of a heavily glycosylated lysosomal membrane protein. The structure represents a novel ß-prism fold formed by two ß-sheets bent by ß-bulges and connected by a disulfide bond. Flexible loops and a hydrophobic pocket represent possible sites of molecular interaction. Computational models of the glycosylated luminal regions of LAMP-1 and LAMP-2 indicate that the proteins adopt a compact conformation in close proximity to the lysosomal membrane. The models correspond to the thickness of the lysosomal glycoprotein coat of only 5 to 12 nm, according to electron microscopy. CONCLUSION: The conserved luminal domain of lysosome-associated membrane proteins forms a previously unknown ß-prism fold. Insights into the structure of the lysosomal glycoprotein coat were obtained by computational models of the LAMP-1 and LAMP-2 luminal regions.


Asunto(s)
Secuencia Conservada , Glicocálix/metabolismo , Proteína 3 de la Membrana Asociada a Lisosoma/química , Proteína 3 de la Membrana Asociada a Lisosoma/metabolismo , Lisosomas/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , Glicosilación , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Membranas Intracelulares/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
19.
J Biol Chem ; 286(30): 26754-67, 2011 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-21632530

RESUMEN

During the biosynthesis of heme d(1), the essential cofactor of cytochrome cd(1) nitrite reductase, the NirE protein catalyzes the methylation of uroporphyrinogen III to precorrin-2 using S-adenosyl-L-methionine (SAM) as the methyl group donor. The crystal structure of Pseudomonas aeruginosa NirE in complex with its substrate uroporphyrinogen III and the reaction by-product S-adenosyl-L-homocysteine (SAH) was solved to 2.0 Å resolution. This represents the first enzyme-substrate complex structure for a SAM-dependent uroporphyrinogen III methyltransferase. The large substrate binds on top of the SAH in a "puckered" conformation in which the two pyrrole rings facing each other point into the same direction either upward or downward. Three arginine residues, a histidine, and a methionine are involved in the coordination of uroporphyrinogen III. Through site-directed mutagenesis of the nirE gene and biochemical characterization of the corresponding NirE variants the amino acid residues Arg-111, Glu-114, and Arg-149 were identified to be involved in NirE catalysis. Based on our structural and biochemical findings, we propose a potential catalytic mechanism for NirE in which the methyl transfer reaction is initiated by an arginine catalyzed proton abstraction from the C-20 position of the substrate.


Asunto(s)
Proteínas Bacterianas/química , Metiltransferasas/química , Pseudomonas aeruginosa/enzimología , Uroporfirinógenos/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Catálisis , Cristalografía por Rayos X , Hemo/análogos & derivados , Hemo/biosíntesis , Hemo/química , Hemo/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Mutagénesis Sitio-Dirigida , Mutación Missense , Estructura Terciaria de Proteína , Pseudomonas aeruginosa/genética , Uroporfirinógenos/genética , Uroporfirinógenos/metabolismo
20.
Nat Chem ; 13(8): 758-765, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34183818

RESUMEN

The molybdenum cofactor (Moco) is found in the active site of numerous important enzymes that are critical to biological processes. The bidentate ligand that chelates molybdenum in Moco is the pyranopterin dithiolene (molybdopterin, MPT). However, neither the mechanism of molybdate insertion into MPT nor the structure of Moco prior to its insertion into pyranopterin molybdenum enzymes is known. Here, we report this final maturation step, where adenylated MPT (MPT-AMP) and molybdate are the substrates. X-ray crystallography of the Arabidopsis thaliana Mo-insertase variant Cnx1E S269D D274S identified adenylated Moco (Moco-AMP) as an unexpected intermediate in this reaction sequence. X-ray absorption spectroscopy revealed the first coordination sphere geometry of Moco trapped in the Cnx1E active site. We have used this structural information to deduce a mechanism for molybdate insertion into MPT-AMP. Given their high degree of structural and sequence similarity, we suggest that this mechanism is employed by all eukaryotic Mo-insertases.


Asunto(s)
Proteínas de Arabidopsis , Coenzimas , Molibdeno , Oxidorreductasas , Pteridinas , Adenosina Monofosfato/análogos & derivados , Arabidopsis/enzimología , Proteínas de Arabidopsis/química , Coenzimas/química , Cristalografía por Rayos X , Modelos Químicos , Molibdeno/química , Cofactores de Molibdeno , Oxidorreductasas/química , Pteridinas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA