Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Phys Chem A ; 122(30): 6292-6302, 2018 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-29993247

RESUMEN

Hydroxymethyl hydroperoxide (HMHP), formed in the reaction of the C1 Criegee intermediate with water, is among the most abundant organic peroxides in the atmosphere. Although reaction with OH is thought to represent one of the most important atmospheric removal processes for HMHP, this reaction has been largely unstudied in the laboratory. Here, we present measurements of the kinetics and products formed in the reaction of HMHP with OH. HMHP was oxidized by OH in an environmental chamber; the decay of the hydroperoxide and the formation of formic acid and formaldehyde were monitored over time using CF3O- chemical ionization mass spectrometry (CIMS) and laser-induced fluorescence (LIF). The loss of HMHP by reaction with OH is measured relative to the loss of 1,2-butanediol [ k1,2-butanediol+OH = (27.0 ± 5.6) × 10-12 cm3 molecule-1s-1]. We find that HMHP reacts with OH at 295 K with a rate coefficient of (7.1 ± 1.5) × 10-12 cm3 molecule-1s-1, with the formic acid to formaldehyde yield in a ratio of 0.88 ± 0.21 and independent of NO concentration (3 × 1010 - 1.5 × 1013 molecules cm-3). We suggest that, exclusively, abstraction of the methyl hydrogen of HMHP results in formic acid, while abstraction of the hydroperoxy hydrogen results in formaldehyde. We further evaluate the relative importance of HMHP sinks and use global simulations from GEOS-Chem to estimate that HMHP oxidation by OH contributes 1.7 Tg yr-1 (1-3%) of global annual formic acid production.

2.
J Food Sci ; 83(4): 911-921, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29574726

RESUMEN

Browning index (BI, ABS520 nm /ABS420 nm ) is a measure of anthocyanin-rich fruit juice pigmentation quality. This study sought to determine the extent to which BI describes anthocyanin quality and degradation in fruit juices. Commercial fruit juices were assayed for monomeric anthocyanin (MA) content, percent polymeric color (%PC), pH, and BI. BI varied, 0.29 to 1.72, among cranberry, cherry, grape, aronia, and pomegranate juices. Principal component analysis (PCA) revealed that BI was strongly inversely associated with %PC, and positively correlated with MAs to a lesser extent. The BI of grape and cherry juices varied linearly with pH from 2.0 to 4.0 in pH-adjusted juices. Cherry and grape juices at pH approximately 2.0 to 4.0 were incubated at 50 °C to induce juice browning. BI and MA decreased, and %PC increased, but the amount of MA degradation was not explained by %PC. In the aged juices, BI and MA were strongly correlated using PCA. In aged grape juice, chromatographic analysis was used characterize anthocyanins, proanthocyanidins, and anthocyanin scission products. Anthocyanin loss and a gain of unresolved components absorbing at 420 nm decreased BI. Proanthocyanidins and co-eluting pigments with varying BI decreased during aging. Scission products did not account for anthocyanin loss. Thus, MA loss more so than the gain in pigments associated with juice proanthocyanidins contribute to the increase in %PC and decline of the BI during accelerated aging of grape juice. Thus, BI is a useful marker of fruit juice quality within juices of the same pH and anthocyanin composition. PRACTICAL APPLICATION: Fruit juice pigmentation depends on anthocyanins, pH, and other matrix components. Spectrophotometric methods to determine pigmentation include the browning index (ABS520 nm /ABS420 nm ), pH differential method for monomeric anthocyanin (MA) content, and bisulfite bleaching to determine percent polymeric color (%PC). In this study, anthocyanin-rich fruit juice browning index was strongly dependent on pH and MA content. MA loss, and to a lesser extent, a gain in newly-formed pigments at 420 nm contributed to the browning index change during aging. Therefore, browning index is strongly associated with MA content and is useful for assessing fruit juice quality.


Asunto(s)
Antocianinas/análisis , Color , Jugos de Frutas y Vegetales/análisis , Frutas/química , Pigmentación , Extractos Vegetales/análisis , Calidad de los Alimentos , Humanos , Concentración de Iones de Hidrógeno , Lythraceae/química , Photinia/química , Proantocianidinas/análisis , Prunus/química , Vitis/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA