RESUMEN
The critical Casimir effect appears when critical fluctuations of an order parameter interact with classical boundaries. We investigate this effect in the setting of a Landau-Ginzburg model with continuous symmetry in the presence of quenched disorder. The quenched free energy is written as an asymptotic series of moments of the model's partition function. Our main result is that, in the presence of a strong disorder, Goldstone modes of the system contribute either with either an attractive or a repulsive force. This result was obtained using the distributional zeta-function method without relying on any particular ansatz in the functional space of the moments of the partition function.
RESUMEN
We describe an analog model for quantum gravity effects in condensed matter physics. The situation discussed is that of phonons propagating in a fluid with a random velocity wave equation. We consider that there are random fluctuations in the reciprocal of the bulk modulus of the system and study free phonons in the presence of Gaussian colored noise with zero mean. We show that, in this model, after performing the random averages over the noise function a free conventional scalar quantum field theory describing free phonons becomes a self-interacting model.