Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Opt Lett ; 49(10): 2569-2572, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748107

RESUMEN

Measuring temperature in complex two-phase flows is crucial for understanding the dynamics of heat and mass transfer. In this Letter, we introduce a novel, to the best of our knowledge, optical approach based on the combination of two-photon laser-induced fluorescence (2p-LIF) imaging and two-color laser-induced fluorescence (2CLIF) for instantaneous temperature mapping of complex liquid media. Using Kiton Red (KR) and Rhodamine 560 (R560), a temperature sensitivity of 1.54%/∘C has been achieved over a range of 17-60°C. The monitoring of two-dimensional transient temperature dynamics in the heating and degassing of water shows the efficiency of the 2p-2CLIF. This new approach contributes to the toolkit of optical temperature measurement techniques, providing a robust solution for studying transient scattering media and high-speed two-phase flows.

2.
Opt Lett ; 48(15): 4065-4068, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37527119

RESUMEN

Previous research has shown that the polarization ratio technique allows the characterization of the surface mean diameter, D21, of droplets forming dilute sprays. However, its application to optically dense sprays has posed significant challenges due to the presence of multiple light scattering. Additionally, errors in measurement can arise from the angular dependence of the signal. In this Letter, we present a novel, to the best of our knowledge, method that addresses these challenges. Our approach combines the use of a telecentric objective with structured laser illumination, to both optimize light detection and suppress the unwanted intensity from multiple scattering. This approach enables the utilization of the polarization ratio technique for measuring the droplet size of challenging atomizing sprays. The method offers a promising solution for accurate and comprehensive spray characterization. It is applied, here, to a hollow-cone water spray running at 30, 50, and 70 bar injection pressure, reaching an optical depth up to three.

3.
Opt Express ; 29(5): 7232-7246, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33726229

RESUMEN

Stray light is a known strong interference in spectroscopic measurements. Photons from high-intensity signals that are scattered inside the spectrometer, or photons that enter the detector through unintended ways, will be added to the spectrum as an interference signal. A general experimental solution to this problem is presented here by introducing a customized fiber for signal collection. The fiber-mount to the spectrometer consists of a periodically arranged fiber array that, combined with lock-in analysis of the data, is capable of suppressing stray light for improved spectroscopy. The method, which is referred to as fiber-based periodic shadowing, was applied to Raman spectroscopy in combustion. The fiber-based stray-light suppression method is implemented in an experimental setup with a high-power high-repetition-rate laser system used for Raman measurements in different room-temperature gas mixtures and a premixed flame. It is shown that the stray-light level is reduced by up to a factor of 80. Weak spectral lines can be distinguished, and therefore better molecular species identification, as well as concentration and temperature evaluation, were performed. The results show that the method is feasible and efficient in practical use and that it can be employed as a general tool for improving spectroscopic accuracy.

4.
Opt Lett ; 46(22): 5723-5726, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34780446

RESUMEN

Periodic shadowing, a concept used in spectroscopy for stray light reduction, has been implemented to improve the temporal contrast of streak camera imaging. The capabilities of this technique are first proven by imaging elastically scattered picosecond laser pulses and are further applied to fluorescence lifetime imaging, where more accurate descriptions of fluorescence decay curves were observed. This all-optical approach can be adapted to various streak camera imaging systems, resulting in a robust technique to minimize space-charge induced temporal dispersion in streak cameras while maintaining temporal coverage and spatial information.

5.
Opt Express ; 28(12): 17906-17922, 2020 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-32679993

RESUMEN

In contrast to static objects, liquid structures such as drops, blobs, as well as waves and ripples on water surfaces are challenging to image in 3D due to two main reasons: first, the transient nature of those phenomena requires snapshot imaging that is fast enough to freeze the motion of the liquid. Second, the transparency of liquids and the specular reflections from their surfaces induce complex image artefacts. In this article we present a novel imaging approach to reconstruct in 3D the surface of irregular liquid structures that only requires a single snapshot. The technique is named Fringe Projection - Laser Induced Fluorescence (FP-LIF) and uses a high concentration of fluorescent dye in the probed liquid. By exciting this dye with a fringe projection structured laser beam, fluorescence is generated primarily at the liquid surface and imaged at a backward angle. By analysing the deformation of the initial projected fringes using phase-demodulation image post-processing, the 3D coordinates of the liquid surface are deduced. In this article, the approach is first numerically tested by considering a simulated pending drop, in order to analyse its performance. Then, FP-LIF is applied for two experimental cases: a quasi-static pending drop as well as a transient liquid sheet. We demonstrate reconstruction RMS errors of 1.4% and 6.1% for the simulated and experimental cases respectively. The technique presented here demonstrates, for the first time, a fringe projection approach based on LIF detection to reconstruct liquid surfaces in 3D. FP-LIF is promising for the study of more complex liquid structures and is paving the way for high-speed 3D videography of liquid surfaces.

6.
Opt Express ; 28(7): 9572-9586, 2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-32225563

RESUMEN

The behaviour and function of dynamic samples can be investigated using optical imaging approaches with high temporal resolution and multidimensional acquisition. Snapshot techniques have been developed in order to meet these demands, however they are often designed to study a specific parameter, such as spectral properties, limiting their applicability. Here we present and demonstrate a frequency recognition algorithm for multiple exposures (FRAME) snapshot imaging approach, which can be reconfigured to capture polarization, temporal, depth-of-focus and spectral information by simply changing the filters used. FRAME is implemented by splitting the emitted light from a sample into four channels, filtering the light and then applying a unique spatial modulation encoding before recombining all the channels. The multiplexed information is collected in a single exposure using a single detector and extracted in post processing of the Fourier transform of the collected image, where each channel image is located in a distinct region of the Fourier domain. The approach allows for individual intensity control in each channel, has easily interchangeable filters and can be used in conjunction with, in principle, all 2D detectors, making it a low cost and versatile snapshot multidimensional imaging technique.

7.
Opt Express ; 25(15): 17211-17226, 2017 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-28789215

RESUMEN

An instantaneous multispectral imaging setup based on frequency recognition algorithm for multiple exposures (FRAME) is presented and demonstrated experimentally. With this implementation of FRAME, each light source is uniquely encoded with a spatial modulation and the corresponding fluorescent responses pertaining to each maintain the same unique encoding. This allows the extraction of each source response from a single captured image by filtering in the Fourier domain. As a result, a multispectral imaging system based on FRAME can perform all the illumination and corresponding fluorescence detection simultaneously, where the latter is recorded in a single exposure and on a single detector and is thus capable of recording true 'snapshot' multispectral images. The results presented here demonstrate that the technique is capable of distinguishing source responses for well separated and co-localized fluorophores as well as providing z-sectioning capabilities. This implementation of FRAME demonstrates its viability as a tool for multispectral imaging of dynamic samples. Additionally, since all the spectral images are captured simultaneously, the method has potential for studying samples prone to photobleaching. Finally, this application of FRAME makes it possible to discriminate between signals due to infinitely spectrally close sources which, to the best of the authors' knowledge, has not been possible in snapshot multispectral imaging schemes before.

8.
Opt Express ; 25(1): 212-222, 2017 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-28085814

RESUMEN

We present an optical solution called DMD-PS to boost the dynamic range of 2D imaging spectroscopic measurements up to 22 bits by incorporating a digital micromirror device (DMD) prior to detection in combination with the periodic shadowing (PS) approach. In contrast to high dynamic range (HDR), where the dynamic range is increased by recording several images at different exposure times, the current approach has the potential of improving the dynamic range from a single exposure and without saturation of the CCD sensor. In the procedure, the spectrum is imaged onto the DMD that selectively reduces the reflection from the intense spectral lines, allowing the signal from the weaker lines to be increased by a factor of 28 via longer exposure times, higher camera gains or increased laser power. This manipulation of the spectrum can either be based on a priori knowledge of the spectrum or by first performing a calibration measurement to sense the intensity distribution. The resulting benefits in detection sensitivity come, however, at the cost of strong generation of interfering stray light. To solve this issue the Periodic Shadowing technique, which is based on spatial light modulation, is also employed. In this proof-of-concept article we describe the full methodology of DMD-PS and demonstrate - using the calibration-based concept - an improvement in dynamic range by a factor of ~100 over conventional imaging spectroscopy. The dynamic range of the presented approach will directly benefit from future technological development of DMDs and camera sensors.

9.
Appl Opt ; 56(13): 3929-3938, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28463287

RESUMEN

A comparison between the commonly used absorption spectrophotometry and a more recent approach known as structured laser illumination planar imaging (SLIPI) is presented for the characterization of scattering and absorbing liquids. Water solutions of milk and coffee are, respectively, investigated for 10 different levels of turbidity. For the milk solutions, scattering is the dominant process, while the coffee solutions have a high level of absorption. Measurements of the extinction coefficient are performed at both λ=450 nm and λ=638 nm and the ratio of their values has been extracted. We show that the turbidity limit of valid transmission measurements is reached at an optical depth of OD∼2.4, corresponding here to an extinction coefficient of µe=0.60 mm-1 when using a modern absorption spectrometer having a spatial Fourier filter prior to detection. Above this value, errors are induced due to the contribution of scattered and multiply scattered photons reaching the detector. On the contrary, the SLIPI measurements were found to be very reliable, even for an extinction coefficient three times as high, where µe=1.80 mm-1. This improvement is due to the capability of the technique in efficiently suppressing the contribution from multiple light scattering.

10.
Opt Express ; 24(5): 4949-4963, 2016 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-29092322

RESUMEN

In imaging, the detection of light originating from multiple scattering, indirect reflections and surrounding backgrounds are known to produce errors especially in intensity-ratio based measurements. SLIPI (Structured Laser Illumination Planar Imaging) is an imaging technique that significantly reduces the impact of such issues. In this study, SLIPI is combined with the two-color LIF (Laser Induced Fluorescence) ratio thermometry approach for measuring water temperature in both a cuvette and a hollow-cone spray. By removing the unwanted background interferences using SLIPI, we observe both significant improvements in terms of temperature sensitivity as well as more pronounced temperature gradients within the spray.

11.
Opt Lett ; 41(23): 5612-5615, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27906252

RESUMEN

We show in this Letter a novel approach for high-contrast imaging through scattering media by combining structured illumination and Fourier filtering (SIF). To assess the image contrast enhancement at different image spatial frequencies, the modulation transfer function is calculated for four detection schemes: (1) no filtering, (2) Fourier filtering, (3) structured illumination, and (4) SIF filtering. A scattering solution consisting of D=7.3 µm polystyrene spheres immersed in distilled water and illuminated at λ=671 nm is used here. We demonstrate the possibility of obtaining, with SIF, an image contrast up to 60% at an optical depth of OD=10, improving the contrast by a factor of 40 over conventional transmission imaging.

12.
Opt Lett ; 41(23): 5422-5425, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27906203

RESUMEN

We report in this Letter a two-phase structured laser illumination planar imaging [two-pulse SLIPI (2p-SLIPI)] optical setup where the "lines structure" is spatially shifted by exploiting the birefringence property of a calcite crystal. By using this optical component and two cross-polarized laser pulses, the shift of the modulated pattern is not "time-limited" anymore. Consequently, two sub-images with spatially mismatched phases can be recorded within a few hundred of nanoseconds only, freezing the motion of the illuminated transient flow. In comparison with previous setups for instantaneous imaging based on structured illumination, the current optical design presents the advantage of having a single optical path, greatly simplifying its complexity. Due to its virtue of suppressing the effects from multiple light scattering, the 2p-SLIPI technique is applied here in an optically dense multi-jet direct-injection spark-ignition (DISI) ethanol spray. The fast formation of polydispersed droplets and appearance of voids after fuel injection are investigated by simultaneous detection of Mie scattering and liquid laser-induced fluorescence. The results allow for significantly improved analysis of the spray structure.

13.
Opt Lett ; 40(21): 5019-22, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26512508

RESUMEN

A laser method to suppress background interferences in pump-probe measurements is presented and demonstrated. The method is based on structured illumination, where the intensity profile of the pump beam is spatially modulated to make its induced photofragment signal distinguishable from that created solely by the probe beam. A spatial lock-in algorithm is then applied on the acquired data, extracting only those image components that are characterized by the encoded structure. The concept is demonstrated for imaging of OH photofragments in a laminar methane/air flame, where the signal from the OH photofragments produced by the pump beam is spatially overlapping with that from the naturally present OH radicals. The purpose was to perform for the first time, to the best of our knowledge, single-shot imaging of HO(2) in a flame. These results show an increase in signal-to-interference ratio of about 20 for single-shot data.

14.
Opt Express ; 22(4): 4480-92, 2014 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-24663769

RESUMEN

In this article, Structured Laser Illumination Planar Imaging (SLIPI) is used in combination with the LIF/Mie ratio technique for extracting a reliable two-dimensional mapping of the droplets Sauter Mean Diameter (SMD). We show that even for the case of a fairly dilute spray, where single scattering events are in majority, the conventional LIF/Mie technique still remains largely affected by errors introduced by multiple light scattering. To remove this unwanted light intensity on both the LIF and Mie images SLIPI is used prior to apply the image ratio. For the first time, the SLIPI LIF/Mie results are calibrated and compared with measurement data from Phase Doppler Interferometry (PDI).

15.
Opt Express ; 22(7): 7711-21, 2014 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-24718147

RESUMEN

It is well known that spectroscopic measurements suffer from an interference known as stray light, causing spectral distortion that reduces measurement accuracy. In severe situations, stray light may even obscure the existence of spectral lines. Here a novel general method is presented, named Periodic Shadowing, that enables effective stray light elimination in spectroscopy and experimental results are provided to demonstrate its capabilities and versatility. Besides its efficiency, implementing it in a spectroscopic arrangement comes at virtually no added experimental complexity.

16.
Opt Lett ; 39(9): 2584-7, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24784051

RESUMEN

Structured illumination (SI), which is an imaging technique that is employed in a variety of fields, permits unique possibilities to suppress unwanted signal contributions that carry misguiding information such as out-of-focus light or multiply scattered light. So far SI has been applied mostly for averaged imaging or for imaging of slowly occurring events because it requires three acquisitions (subimages) to construct the final SI image. This prerequisite puts technological constraints on SI that make "instantaneous" imaging of fast transient processes (occurring on submicrosecond time scales) very challenging and expensive. Operating SI with fewer subimages generates errors in the form of residual lines that stretch across the image. Here, a new approach that circumvents this limiting factor is presented and experimentally demonstrated. By judiciously choosing the intensity modulation, it is possible to extract an SI image from two subimages only. This development will allow standard double-pulsed lasers and interline transfer CCD or scientific CMOS cameras to be used to acquire temporally frozen SI images of rapidly occurring processes as well as to boost the frame-rate of current SI video systems; a technical advancement that will benefit both macro- and microscopic imaging applications.

17.
Sci Rep ; 14(1): 16116, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38997410

RESUMEN

The study of rapid and stochastic events that involve multiple species, such as chemical reactions and plasma dynamics, requires means to capture multispectral information in two dimensions at both high temporal- and spatial resolution. Commercially available cameras that provide high temporal resolution are based on either signal intensification or rapid data acquisition. Intensified cameras provide extremely short acquisition times using intensification by means of micro channel plates, but the conversion between electrons and photons makes these cameras inherently monochrome. In contrast, high-speed cameras can achieve color-sensitivity through integrated Bayer filters but suffer from a reduced light collection efficiency and a fixed spectral composition. In this article we present a non-integrated optical arrangement for instantaneous multispectral imaging based on FRAME image multiplexing. By spectrally separating the signal using lossless dichroic mirrors, a 16-fold increase in light-collection efficiency is gained (compared to past solutions), resulting in an equivalent increase in temporal resolution. This improvement provides new avenues for multispectral imaging of rapid events. We demonstrate the system's versatility and suitability for studies of such processes by applying it for (i) temperature mapping using a high-resolution CCD camera, (ii) high-speed videography up to 10 kHz at four spectral channels and (iii) dual-species visualization in a plasma discharge using an intensified sCMOS camera.

18.
Sci Rep ; 13(1): 3066, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36810512

RESUMEN

Fluorescence lifetime determination has proven to be useful, e.g. identification of molecules, quantitative estimation of species concentration and determination of temperatures. Lifetime determination of exponentially decaying signals is challenging if signals of different decay rates are being mixed, resulting in erroneous results. Such issues occur when the contrast of the measurement object is low, which can be limiting in applied measurements due to spurious light scattering. A solution is presented here where structured illumination is used to enhance image contrast in fluorescence lifetime wide-field imaging. Lifetime imaging determination was carried out using Dual Imaging Modeling Evaluation (DIME), and spatial lock-in analysis was used for removing spurious scattered signal to enable fluorescence lifetime imaging through scattering media.

19.
Sci Rep ; 12(1): 19018, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36347904

RESUMEN

Schlieren photography is widely used for visualizing phenomena within transparent media. The technique, which comes in a variety of configurations, is based on detecting or extracting the degree to which light is deflected whilst propagating through a sample. To date, high-speed schlieren videography can only be achieved using high-speed cameras, thus limiting the frame rate of such configurations to the capabilities of the camera. Here we demonstrate, for the first time, optically multiplexed schlieren videography, a concept that allows such hardware limitations to be bypassed, opening up for, in principle, an unlimited frame rate. By illuminating the sample with a rapid burst of uniquely spatially modulated light pulses, a temporally resolved sequence can be captured in a single photograph. The refractive index variations are thereafter measured by quantifying the local phase shift of the superimposed intensity modulations. The presented results demonstrate the ability to acquire a series of images of flame structures at frame rates up to 1 Mfps using a standard 50 fps sCMOS camera.

20.
Opt Lett ; 36(9): 1656-8, 2011 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-21540959

RESUMEN

We demonstrate a technique, named dual structured laser illumination planar imaging (SLIPI), capable of acquiring depth-resolved images of the extinction coefficient. This is achieved by first suppressing the multiply scattered light intensity and then measuring the intensity reduction caused by signal attenuation between two laser sheets separated by Δz mm. Unlike other methods also able to measure this quantity, the presented approach is based solely on side-scattering detection. The main advantages of dual SLIPI is that it accounts for multiple scattering, provides two-dimensional information, and can be applied on inhomogeneous media.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA