Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Eur Radiol ; 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38243134

RESUMEN

OBJECTIVE: Arterial-phase artifacts are gadoxetic acid (GA)-enhanced MRI's major drawback, ranging from 5 to 39%. We evaluate the effect of dilution and slow injection of GA using automated fluoroscopic triggering on liver MRI arterial-phase (AP) acquisition timing, artifact frequency, and lesion visibility. METHODS AND MATERIALS: Saline-diluted 1:1 GA was injected at 1 ml/s into 1413 patients for 3 T liver MRI. Initially, one senior abdominal radiologist, i.e., principal investigator (PI), assessed all MR exams and compared them to previous and follow-up images, as well as the radiology report on record, determining the standard of reference for lesion detection and characterization. Then, three other readers independently evaluated the AP images for artifact type (truncation (TA), transient severe motion (TSM) or mixed), artifact severity (on a 5-point scale), acquisition timing (on a 4-point scale) and visibility (on a 5-point scale) of hypervascular lesions ≥ 5 mm, selected by the PI. Artifact score ≥ 4 and artifact score ≤ 3 were considered significant and non-significant artifacts, respectively. RESULTS: Of the 1413 exams, diagnostic-quality arterial-phase images included 1100 (77.8%) without artifacts, 220 (15.6%) with minimal, and 77 (5.4%) with moderate artifacts. Only 16 exams (1.1%) had significant artifacts, 13 (0.9%) with severe artifacts (score 4), and three (0.2%) non-diagnostic artifacts (score 5). AP acquisition timing was optimal in 1369 (96.8%) exams. Of the 449 AP hypervascular lesions, 432 (96.2%) were detected. CONCLUSION: Combined dilution and slow injection of GA with MR results in well-timed arterial-phase images in 96.8% and a reduction of exams with significant artifacts to 1.1%. CLINICAL RELEVANCE STATEMENT: Hypervascular lesions, in particular HCC detection, hinge on arterial-phase hyperenhancement, making well-timed, artifact-free arterial-phase images a prerequisite for accurate diagnosis. Saline dilution 1:1, slow injection (1 ml/s), and automated bolus triggering reduce artifacts and optimize acquisition timing. KEY POINTS: • There was substantial agreement among the three readers regarding the presence and type of arterial-phase (AP) artifacts, acquisition timing, and lesion visibility. • Impaired AP hypervascular lesion visibility occurred in 17 (3.8%) cases; in eight lesions due to mistiming and in nine lesions due to significant artifacts. • When AP timing was suboptimal, it was too late in 40 exams (3%) and too early in 4 exams (0.2%) of exams.

2.
Eur Radiol ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38869640

RESUMEN

OBJECTIVES: Our aim was twofold. First, to validate Anali scores with and without gadolinium (ANALIGd and ANALINoGd) in primary sclerosing cholangitis (PSC) patients. Second, to compare the ANALIs prognostic ability with the recently-proposed potential functional stricture (PFS). MATERIALS AND METHODS: This retrospective study included 123 patients with a mean age of 41.5 years, who underwent gadoxetic acid-enahnced MRI (GA-MRI). Five readers independently evaluated all images for calculation of ANALIGd and ANALINoGd scores based upon following criteria: intrahepatic bile duct change severity, hepatic dysmorphia, liver parenchymal heterogeneity, and portal hypertension. In addition, hepatobiliary contrast excretion into first-order bile ducts was evaluated on 20-minute hepatobiliary-phase (HBP) images to assess PFS. Inter- and intrareader agreement were calculated (Fleiss´and Cohen kappas). Kaplan-Meier curves were generated for survival analysis. ANALINoGd, ANALIGd, and PFS were correlated with clinical scores, labs and outcomes (Cox regression analysis). RESULTS: Inter-reader agreement was almost perfect (Ï° = 0.81) for PFS, but only moderate-(Ï° = 0.55) for binary ANALINoGd. For binary ANALIGd, the agreement was slightly better on HBP (Ï° = 0.64) than on arterial-phase (AP) (Ï° = 0.53). Univariate Cox regression showed that outcomes for decompensated cirrhosis, orthotopic liver transplantation or death significantly correlated with PFS (HR (hazard ratio) = 3.15, p < 0.001), ANALINoGd (HR = 6.42, p < 0.001), ANALIGdHBP (HR = 3.66, p < 0.001) and ANALIGdAP (HR = 3.79, p < 0.001). Multivariate analysis identified the PFS, all three ANALI scores, and Revised Mayo Risk Score as independent risk factors for outcomes (HR 3.12, p < 0.001; 6.12, p < 0.001; 3.56, p < 0.001;3.59, p < 0.001; and 4.13, p < 0.001, respectively). CONCLUSION: ANALINoGd and GA-MRI-derived ANALI scores and PFS could noninvasively predict outcomes in PSC patients. CLINICAL RELEVANCE STATEMENT: The combined use of Anali scores and the potential functional stricture (PFS), both derived from unenhanced-, and gadoxetic acid enhanced-MRI, could be applied as a diagnostic and prognostic imaging surrogate for counselling and monitoring primary sclerosing cholangitis patients. KEY POINTS: Primary sclerosing cholangitis patients require radiological monitoring to assess disease stability and for the presence and type of complications. A contrast-enhanced MRI algorithm based on potential functional stricture and ANALI scores risk-stratified these patients. Unenhanced ANALI score had a high negative predictive value, indicating some primary sclerosing cholangitis patients can undergo non-contrast MRI surveillance.

3.
Eur Radiol ; 33(1): 523-534, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35895119

RESUMEN

OBJECTIVES: To investigate the effect of saline-diluted gadoxetic acid, done for arterial-phase (AP) artifact reduction, on signal intensity (SI), and hence focal lesion conspicuity on MR imaging. METHODS: We retrospectively examined 112 patients who each had at least two serial gadoxetic acid-enhanced liver MRIs performed at 1 ml/s, first with non-diluted (ND), then with 1:1 saline-diluted (D) contrast. Two blinded readers independently analyzed the artifacts and graded dynamic images using a 5-point scale. The absolute SI of liver parenchyma, focal liver lesions (if present), aorta, and portal vein at the level of the celiac trunk and the SI of the paraspinal muscle were measured in all phases. The signal-to-norm (SINorm) of the vascular structures, hepatic parenchyma and focal lesions, and the contrast-to-norm (CNorm) of focal liver lesions were calculated. RESULTS: AP artifacts were significantly reduced with dilution. Mean absolute contrast-enhanced liver SI was significantly higher on the D exams compared to the ND exams. Likewise, SINorm of liver parenchyma was significantly higher in all contrast-enhanced phases except transitional phase on the D exams. SINorm values in the AP for the aorta and in the PVP for portal vein were significantly higher on the diluted exams. The CNorm was not significantly different between ND and D exams for lesions in any imaging phase. The interclass correlation coefficient was excellent (0.89). CONCLUSION: Gadoxetic acid dilution injected at 1ml/s produces images with significantly fewer AP artifacts but no significant loss in SINorm or CNorm compared to standard non-diluted images. KEY POINTS: • Diluted gadoxetic acid at slow injection (1 ml/s) yielded images with higher SINorm of the liver parenchyma and preserved CNorm for focal liver lesions. • Gadoxetic acid-enhanced MRI injected at 1 ml/s is associated with arterial-phase (AP) artifacts in 31% of exams, which may degrade image quality and limits focal liver lesion detection. • Saline dilution of gadoxetic acid 1:1 combined with a slow injection rate of 1 ml/s significantly reduced AP artifacts from 31 to 9% and non-diagnostic AP artifacts from 16 to 1%.


Asunto(s)
Artefactos , Neoplasias Hepáticas , Humanos , Estudios Retrospectivos , Medios de Contraste/farmacología , Gadolinio DTPA/farmacología , Imagen por Resonancia Magnética/métodos , Neoplasias Hepáticas/patología , Arteria Hepática/patología , Hígado/diagnóstico por imagen , Hígado/patología , Solución Salina
4.
Eur Radiol ; 33(12): 9022-9037, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37470827

RESUMEN

OBJECTIVES: PSC strictures are routinely diagnosed on T2-MRCP as dominant- (DS) or high-grade stricture (HGS). However, high inter-observer variability limits their utility. We introduce the "potential functional stricture" (PFS) on T1-weighted hepatobiliary-phase images of gadoxetic acid-enhanced MR cholangiography (T1-MRC) to assess inter-reader agreement on diagnosis, location, and prognostic value of PFS on T1-MRC vs. DS or HGS on T2-MRCP in PSC patients, using ERCP as the gold standard. METHODS: Six blinded readers independently reviewed 129 MRIs to diagnose and locate stricture, if present. DS/HGS was determined on T2-MRCP. On T1-MRC, PFS was diagnosed if no GA excretion was seen in the CBD, hilum or distal RHD, or LHD. If excretion was normal, "no functional stricture" (NFS) was diagnosed. T1-MRC diagnoses (NFS = 87; PFS = 42) were correlated with ERCP, clinical scores, labs, splenic volume, and clinical events. Statistical analyses included Kaplan-Meier curves and Cox regression. RESULTS: Interobserver agreement was almost perfect for NFS vs. PFS diagnosis, but fair to moderate for DS and HGS. Forty-four ERCPs in 129 patients (34.1%) were performed, 39 in PFS (92.9%), and, due to clinical suspicion, five in NFS (5.7%) patients. PFS and NFS diagnoses had 100% PPV and 100% NPV, respectively. Labs and clinical scores were significantly worse for PFS vs. NFS. PFS patients underwent more diagnostic and therapeutic ERCPs, experienced more clinical events, and reached significantly more endpoints (p < 0.001) than those with NFS. Multivariate analysis identified PFS as an independent risk factor for liver-related events. CONCLUSION: T1-MRC was superior to T2-MRCP for stricture diagnosis, stricture location, and prognostication. CLINICAL RELEVANCE STATEMENT: Because half of PSC patients will develop clinically-relevant strictures over the course of the disease, earlier more confident diagnosis and correct localization of functional stricture on gadoxetic acid-enhanced MRI may optimize management and improve prognostication. KEY POINTS: • There is no consensus regarding biliary stricture imaging features in PSC that have clinical relevance. • Twenty-minute T1-weighted MRC images correctly classified PSC patients with potential (PFS) vs with no functional stricture (NFS). • T1-MRC diagnoses may reduce the burden of diagnostic ERCPs.


Asunto(s)
Pancreatocolangiografía por Resonancia Magnética , Colangitis Esclerosante , Humanos , Pancreatocolangiografía por Resonancia Magnética/métodos , Constricción Patológica , Colangitis Esclerosante/complicaciones , Colangitis Esclerosante/diagnóstico por imagen , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos , Colangiopancreatografia Retrógrada Endoscópica
5.
Eur Radiol ; 33(11): 7729-7743, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37358613

RESUMEN

OBJECTIVE: To compare unsupervised deep clustering (UDC) to fat fraction (FF) and relative liver enhancement (RLE) on Gd-EOB-DTPA-enhanced MRI to distinguish simple steatosis from non-alcoholic steatohepatitis (NASH), using histology as the gold standard. MATERIALS AND METHODS: A derivation group of 46 non-alcoholic fatty liver disease (NAFLD) patients underwent 3-T MRI. Histology assessed steatosis, inflammation, ballooning, and fibrosis. UDC was trained to group different texture patterns from MR data into 10 distinct clusters per sequence on unenhanced T1- and Gd-EOB-DTPA-enhanced T1-weighted hepatobiliary phase (T1-Gd-EOB-DTPA-HBP), then on T1 in- and opposed-phase images. RLE and FF were quantified on identical sequences. Differences of these parameters between NASH and simple steatosis were evaluated with χ2- and t-tests, respectively. Linear regression and Random Forest classifier were performed to identify associations between histological NAFLD features, RLE, FF, and UDC patterns, and then determine predictors able to distinguish simple steatosis from NASH. ROC curves assessed diagnostic performance of UDC, RLE, and FF. Finally, we tested these parameters on 30 validation cohorts. RESULTS: For the derivation group, UDC-derived features from unenhanced and T1-Gd-EOB-DTPA-HBP, plus from T1 in- and opposed-phase, distinguished NASH from simple steatosis (p ≤ 0.001 and p = 0.02, respectively) with 85% and 80% accuracy, respectively, while RLE and FF distinguished NASH from simple steatosis (p ≤ 0.001 and p = 0.004, respectively), with 83% and 78% accuracy, respectively. On multivariate regression analysis, RLE and FF correlated only with fibrosis (p = 0.040) and steatosis (p ≤ 0.001), respectively. Conversely, UDC features, using Random Forest classifier predictors, correlated with all histologic NAFLD components. The validation group confirmed these results for both approaches. CONCLUSION: UDC, RLE, and FF could independently separate NASH from simple steatosis. UDC may predict all histologic NAFLD components. CLINICAL RELEVANCE STATEMENT: Using gadoxetic acid-enhanced MR, fat fraction (FF > 5%) can diagnose NAFLD, and relative liver enhancement can distinguish NASH from simple steatosis. Adding AI may let us non-invasively estimate the histologic components, i.e., fat, ballooning, inflammation, and fibrosis, the latter the main prognosticator. KEY POINTS: • Unsupervised deep clustering (UDC) and MR-based parameters (FF and RLE) could independently distinguish simple steatosis from NASH in the derivation group. • On multivariate analysis, RLE could predict only fibrosis, and FF could predict only steatosis; however, UDC could predict all histologic NAFLD components in the derivation group. • The validation cohort confirmed the findings for the derivation group.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/diagnóstico por imagen , Enfermedad del Hígado Graso no Alcohólico/patología , Inteligencia Artificial , Medios de Contraste/farmacología , Gadolinio DTPA , Hígado/diagnóstico por imagen , Hígado/patología , Imagen por Resonancia Magnética/métodos , Inflamación/patología , Fibrosis
6.
J Hepatol ; 77(4): 1005-1013, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35525337

RESUMEN

BACKGROUND & AIMS: Functional liver imaging score (FLIS) - derived from gadoxetic acid-enhanced MRI - correlates with liver function and independently predicts liver-related mortality in patients with chronic liver disease (CLD), while splenic craniocaudal diameter (SCCD) is a marker of portal hypertension. The aim of this study was to investigate the accuracy of a combination of FLIS and SCCD for predicting hepatic decompensation, acute-on-chronic liver failure (ACLF), and mortality in patients with advanced CLD (ACLD). METHODS: We included 397 patients with CLD who underwent gadoxetic acid-enhanced liver MRI. The FLIS was calculated by summing the points (0-2) of 3 hepatobiliary-phase features: hepatic enhancement, biliary excretion, and portal vein signal intensity. Patients were stratified into 3 groups according to liver fibrosis severity and presence/history of hepatic decompensation: non-ACLD, compensated ACLD (cACLD), and decompensated ACLD (dACLD). RESULTS: SCCD showed excellent intra- and inter-reader agreement. Importantly, SCCD was an independent risk factor for hepatic decompensation in patients with cACLD (per cm; adjusted hazard ratio [aHR] 1.13; 95% CI 1.04-1.23; p = 0.004). Patients with cACLD and a FLIS of 0-3 points and/or a SCCD of >13 cm were at increased risk of hepatic decompensation (aHR 3.07; 95% CI 1.43-6.59; p = 0.004). In patients with dACLD, a FLIS of 0-3 was independently associated with an increased risk of ACLF (aHR 2.81; 95% CI 1.16-6.84; p = 0.02), even after adjusting for other prognostic factors. Finally, a FLIS and SCCD-based algorithm was independently predictive of transplant-free mortality and stratified the probability of transplant-free survival (TFS) in ACLD (p <0.001): FLIS 4-6 and SCCD ≤13 cm (5-year TFS of 84%) vs. FLIS 4-6 and SCCD >13 cm (5-year TFS of 70%) vs. FLIS 0-3 (5-year TFS of 24%). CONCLUSION: The FLIS and SCCD are simple imaging markers that provide complementary information for risk stratification in patients with compensated and decompensated ACLD. LAY SUMMARY: Magnetic resonance imaging (MRI) can be used to assess the state of the liver. Previously the functional liver imaging score, which is based on MRI criteria, was developed as a measure of liver function and to predict the risk of liver-related complications or death. By combining this score with a measurement of spleen diameter, also using MRI, we generated an algorithm that could predict the risk of adverse liver-related outcomes in patients with advanced chronic liver disease.


Asunto(s)
Insuficiencia Hepática Crónica Agudizada , Hipertensión Portal , Neoplasias Hepáticas , Insuficiencia Hepática Crónica Agudizada/complicaciones , Medios de Contraste , Gadolinio DTPA , Humanos , Hipertensión Portal/complicaciones , Hipertensión Portal/diagnóstico por imagen , Hígado/diagnóstico por imagen , Cirrosis Hepática/complicaciones , Cirrosis Hepática/diagnóstico por imagen , Neoplasias Hepáticas/complicaciones , Imagen por Resonancia Magnética/métodos , Estudios Retrospectivos , Bazo/diagnóstico por imagen
7.
Radiologe ; 61(6): 563-571, 2021 Jun.
Artículo en Alemán | MEDLINE | ID: mdl-34002282

RESUMEN

CLINICAL/METHODOLOGICAL ISSUE: Chronic pancreatitis (CP) is a long-lasting inflammation of the pancreas that changes the normal structure and function of the organ. There are a wide range of inflammatory pancreatic diseases, of which some entities, such as focal pancreatitis (FP) or "mass-forming pancreatitis," can mimic pancreatic ductal adenocarcinoma (PDAC). As a consequence, a misdiagnosis can lead to avoidable and unnecessary surgery or delay of therapy. STANDARD RADIOLOGICAL METHODS: The initial imaging method used in pancreatic diseases is ultrasound due to its availability and low cost, followed by contrast-enhanced computed tomography (CE-CT), which is considered a workhorse in the diagnostic work-up of diseases of the pancreas. Magnetic resonance imaging (MRI) and/or MR cholangiopancreatography (MRCP) can be used as a problem-solving tool to distinguish between solid and cystic lesions, and to rule out abnormalities in the pancreatic ducts, such as those associated with recurrent acute pancreatitis (AP) or to show early signs of CP. MRCP has essentially replaced diagnostic endoscopic retrograde cholangiopancreatography (ERCP) in the initial assessment before any therapeutic intervention. PRACTICAL RECOMMENDATION: The following review article summarizes the relevant features of CT and MRI that can help to make the diagnosis of CP and to aid in the differentiation between focal pancreatitis and PDAC, even in difficult cases.


Asunto(s)
Neoplasias Pancreáticas , Pancreatitis Crónica , Enfermedad Aguda , Colangiopancreatografia Retrógrada Endoscópica , Humanos , Imagen por Resonancia Magnética , Neoplasias Pancreáticas/diagnóstico por imagen , Pancreatitis Crónica/diagnóstico por imagen
8.
Br J Radiol ; 94(1123): 20201214, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34111970

RESUMEN

Increasingly acute and chronic pancreatitis (AP and CP) are considered a continuum of a single entity. Nonetheless, if, after flare-up, the pancreas shows no residual inflammation, it is classified as AP. CP is characterised by a long cycle of worsening and waning glandular inflammation without the pancreas ever returning to its baseline structure or function. According to the International Consensus Guidelines on Early Chronic Pancreatitis, pancreatic inflammation must last at least 6 months before it can be labelled CP. The distinction is important because, unlike AP, CP can destroy endocrine and exocrine pancreatic function, emphasising the importance of early diagnosis. As typical AP can be diagnosed by clinical symptoms plus laboratory tests, imaging is usually reserved for those with recurrent, complicated or CP. Imaging typically starts with ultrasound and more frequently with contrast-enhanced computed tomography (CECT). MRI and/or MR cholangiopancreatography can be used as a problem-solving tool to confirm indirect signs of pancreatic mass, differentiate between solid and cystic lesions, and to exclude pancreatic duct anomalies, as may occur with recurrent AP, or to visualise early signs of CP. MR cholangiopancreatography has replaced diagnostic endoscopic retrograde cholangiopancreatography (ERCP). However, ERCP, and/or endoscopic ultrasound (EUS) remain necessary for transpapillary biliary or pancreatic duct stenting and transgastric cystic fluid drainage or pancreatic tissue sampling, respectively. Finally, positron emission tomography-MRI or positron emission tomography-CT are usually reserved for complicated cases and/or to search for extra pancreatic systemic manifestations. In this article, we discuss a broad spectrum of inflammatory pancreatic disorders and the utility of various modalities in diagnosing acute and chronic pancreatitis.


Asunto(s)
Pancreatitis/diagnóstico por imagen , Enfermedad Aguda , Enfermedad Crónica , Medios de Contraste , Diagnóstico Diferencial , Diagnóstico Precoz , Humanos , Recurrencia
9.
Br J Radiol ; 94(1125): 20210417, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34233488

RESUMEN

Cholangitis refers to inflammation of the bile ducts with or without accompanying infection. When intermittent or persistent inflammation lasts 6 months or more, the condition is classified as chronic cholangitis. Otherwise, it is considered an acute cholangitis. Cholangitis can also be classified according to the inciting agent, e.g. complete mechanical obstruction, which is the leading cause of acute cholangitis, longstanding partial mechanical blockage, or immune-mediated bile duct damage that results in chronic cholangitis.The work-up for cholangitis is based upon medical history, clinical presentation, and initial laboratory tests. Whereas ultrasound is the first-line imaging modality used to identify bile duct dilatation in patients with colicky abdominal pain, cross-sectional imaging is preferable when symptoms cannot be primarily localised to the hepatobiliary system. CT is very useful in oncologic, trauma, or postoperative patients. Otherwise, magnetic resonance cholangiopancreatography is the method of choice to diagnose acute and chronic biliary disorders, providing an excellent anatomic overview and, if gadoxetic acid is injected, simultaneously delivering morphological and functional information about the hepatobiliary system. If brush cytology, biopsy, assessment of the prepapillary common bile duct, stricture dilatation, or stenting is necessary, then endoscopic ultrasound and/or retrograde cholangiography are performed. Finally, when the pathologic duct is inaccessible from the duodenum or stomach, percutaneous transhepatic cholangiography is an option. The pace of the work-up depends upon the severity of cholestasis on presentation. Whereas sepsis, hypotension, and/or Charcot's triad warrant immediate investigation and management, chronic cholestasis can be electively evaluated.This overview article will cover the common cholangitides, emphasising our clinical experience with the chronic cholestatic liver diseases.


Asunto(s)
Colangitis/diagnóstico por imagen , Diagnóstico por Imagen/métodos , Conductos Biliares/diagnóstico por imagen , Humanos
10.
Abdom Radiol (NY) ; 45(11): 3532-3544, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33034671

RESUMEN

The introduction of hepatobiliary contrast agents, most notably gadoxetic acid (GA), has expanded the role of MRI, allowing not only a morphologic but also a functional evaluation of the hepatobiliary system. The mechanism of uptake and excretion of gadoxetic acid via transporters, such as organic anion transporting polypeptides (OATP1,3), multidrug resistance-associated protein 2 (MRP2) and MRP3, has been elucidated in the literature. Furthermore, GA uptake can be estimated on either static images or on dynamic imaging, for example, the hepatic extraction fraction (HEF) and liver perfusion. GA-enhanced MRI has achieved an important role in evaluating morphology and function in chronic liver diseases (CLD), allowing to distinguish between the two subgroups of nonalcoholic fatty liver diseases (NAFLD), simple steatosis and nonalcoholic steatohepatitis (NASH), and help to stage fibrosis and cirrhosis, predict liver transplant graft survival, and preoperatively evaluate the risk of liver failure if major resection is planned. Finally, because of its noninvasive nature, GA-enhanced MRI can be used for long-term follow-up and post-treatment monitoring. This review article aims to describe the current role of GA-enhanced MRI in quantifying liver function in a variety of hepatobiliary disorders.


Asunto(s)
Gadolinio DTPA , Neoplasias Hepáticas , Medios de Contraste , Humanos , Hígado , Imagen por Resonancia Magnética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA