Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Biophys J ; 122(5): 784-801, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36738106

RESUMEN

Islets of Langerhans operate as multicellular networks in which several hundred ß cells work in synchrony to produce secretory pulses of insulin, a hormone crucial for controlling metabolic homeostasis. Their collective rhythmic activity is facilitated by gap junctional coupling and affected by their functional heterogeneity, but the details of this robust and coordinated behavior are still not fully understood. Recent advances in multicellular imaging and optogenetic and photopharmacological strategies, as well as in network science, have led to the discovery of specialized ß cell subpopulations that were suggested to critically determine the collective dynamics in the islets. In particular hubs, i.e., ß cells with many functional connections, are believed to significantly enhance communication capacities of the intercellular network and facilitate an efficient spreading of intercellular Ca2+ waves, whereas wave-initiator cells trigger intercellular signals in their cohorts. Here, we determined Ca2+ signaling characteristics of these two ß cell subpopulations and the relationship between them by means of functional multicellular Ca2+ imaging in mouse pancreatic tissue slices in combination with methods of complex network theory. We constructed network layers based on individual Ca2+ waves to identify wave initiators, and functional correlation-based networks to detect hubs. We found that both cell types exhibit a higher-than-average active time under both physiological and supraphysiological glucose concentrations, but also that they differ significantly in many other functional characteristics. Specifically, Ca2+ oscillations in hubs are more regular, and their role appears to be much more stable over time than for initiator cells. Moreover, in contrast to wave initiators, hubs transmit intercellular signals faster than other cells, which implies a stronger intercellular coupling. Our research indicates that hubs and wave-initiator cell subpopulations are both natural features of healthy pancreatic islets, but their functional roles in principle do not overlap and should thus not be considered equal.


Asunto(s)
Células Secretoras de Insulina , Islotes Pancreáticos , Ratones , Animales , Señalización del Calcio/fisiología , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Insulina/metabolismo , Secreción de Insulina , Calcio/metabolismo , Glucosa/metabolismo
2.
Am J Physiol Endocrinol Metab ; 324(1): E42-E55, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36449570

RESUMEN

The release of peptide hormones is predominantly regulated by a transient increase in cytosolic Ca2+ concentration ([Ca2+]c). To trigger exocytosis, Ca2+ ions enter the cytosol from intracellular Ca2+ stores or from the extracellular space. The molecular events of late stages of exocytosis, and their dependence on [Ca2+]c, were extensively described in isolated single cells from various endocrine glands. Notably, less work has been done on endocrine cells in situ to address the heterogeneity of [Ca2+]c events contributing to a collective functional response of a gland. For this, ß cell collectives in a pancreatic islet are particularly well suited as they are the smallest, experimentally manageable functional unit, where [Ca2+]c dynamics can be simultaneously assessed on both cellular and collective level. Here, we measured [Ca2+]c transients across all relevant timescales, from a subsecond to a minute time range, using high-resolution imaging with a low-affinity Ca2+ sensor. We quantified the recordings with a novel computational framework for automatic image segmentation and [Ca2+]c event identification. Our results demonstrate that under physiological conditions the duration of [Ca2+]c events is variable, and segregated into three reproducible modes, subsecond, second, and tens of seconds time range, and are a result of a progressive temporal summation of the shortest events. Using pharmacological tools we show that activation of intracellular Ca2+ receptors is both sufficient and necessary for glucose-dependent [Ca2+]c oscillations in ß cell collectives, and that a subset of [Ca2+]c events could be triggered even in the absence of Ca2+ influx across the plasma membrane. In aggregate, our experimental and analytical platform was able to readily address the involvement of intracellular Ca2+ receptors in shaping the heterogeneity of [Ca2+]c responses in collectives of endocrine cells in situ.NEW & NOTEWORTHY Physiological glucose or ryanodine stimulation of ß cell collectives generates a large number of [Ca2+]c events, which can be rapidly assessed with our newly developed automatic image segmentation and [Ca2+]c event identification pipeline. The event durations segregate into three reproducible modes produced by a progressive temporal summation. Using pharmacological tools, we show that activation of ryanodine intracellular Ca2+ receptors is both sufficient and necessary for glucose-dependent [Ca2+]c oscillations in ß cell collectives.


Asunto(s)
Células Secretoras de Insulina , Islotes Pancreáticos , Citosol/metabolismo , Rianodina/metabolismo , Rianodina/farmacología , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Glucosa/metabolismo , Calcio/metabolismo , Señalización del Calcio
3.
PLoS Comput Biol ; 17(5): e1009002, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33974632

RESUMEN

NMDA receptors promote repolarization in pancreatic beta cells and thereby reduce glucose-stimulated insulin secretion. Therefore, NMDA receptors are a potential therapeutic target for diabetes. While the mechanism of NMDA receptor inhibition in beta cells is rather well understood at the molecular level, its possible effects on the collective cellular activity have not been addressed to date, even though proper insulin secretion patterns result from well-synchronized beta cell behavior. The latter is enabled by strong intercellular connectivity, which governs propagating calcium waves across the islets and makes the heterogeneous beta cell population work in synchrony. Since a disrupted collective activity is an important and possibly early contributor to impaired insulin secretion and glucose intolerance, it is of utmost importance to understand possible effects of NMDA receptor inhibition on beta cell functional connectivity. To address this issue, we combined confocal functional multicellular calcium imaging in mouse tissue slices with network science approaches. Our results revealed that NMDA receptor inhibition increases, synchronizes, and stabilizes beta cell activity without affecting the velocity or size of calcium waves. To explore intercellular interactions more precisely, we made use of the multilayer network formalism by regarding each calcium wave as an individual network layer, with weighted directed connections portraying the intercellular propagation. NMDA receptor inhibition stabilized both the role of wave initiators and the course of waves. The findings obtained with the experimental antagonist of NMDA receptors, MK-801, were additionally validated with dextrorphan, the active metabolite of the approved drug dextromethorphan, as well as with experiments on NMDA receptor KO mice. In sum, our results provide additional and new evidence for a possible role of NMDA receptor inhibition in treatment of type 2 diabetes and introduce the multilayer network paradigm as a general strategy to examine effects of drugs on connectivity in multicellular systems.


Asunto(s)
Células Secretoras de Insulina/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Animales , Diabetes Mellitus Tipo 2/metabolismo , Maleato de Dizocilpina/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Glucosa/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Ratones , Ratones Noqueados
4.
Am J Physiol Endocrinol Metab ; 321(2): E305-E323, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34280052

RESUMEN

Many details of glucose-stimulated intracellular calcium changes in ß cells during activation, activity, and deactivation, as well as their concentration-dependence, remain to be analyzed. Classical physiological experiments indicated that in islets, functional differences between individual cells are largely attenuated, but recent findings suggest considerable intercellular heterogeneity, with some cells possibly coordinating the collective responses. To address the above with an emphasis on heterogeneity and describing the relations between classical physiological and functional network properties, we performed functional multicellular calcium imaging in mouse pancreas tissue slices over a wide range of glucose concentrations. During activation, delays to activation of cells and any-cell-to-first-responder delays are shortened, and the sizes of simultaneously responding clusters increased with increasing glucose concentrations. Exactly the opposite characterized deactivation. The frequency of fast calcium oscillations during activity increased with increasing glucose up to 12 mM glucose concentration, beyond which oscillation duration became longer, resulting in a homogenous increase in active time. In terms of functional connectivity, islets progressed from a very segregated network to a single large functional unit with increasing glucose concentration. A comparison between classical physiological and network parameters revealed that the first-responders during activation had longer active times during plateau and the most active cells during the plateau tended to deactivate later. Cells with the most functional connections tended to activate sooner, have longer active times, and deactivate later. Our findings provide a common ground for recent differing views on ß cell heterogeneity and an important baseline for future studies of stimulus-secretion and intercellular coupling.NEW & NOTEWORTHY We assessed concentration-dependence in coupled ß cells, degree of functional heterogeneity, and uncovered possible specialized subpopulations during the different phases of the response to glucose at the level of many individual cells. To this aim, we combined acute mouse pancreas tissue slices with functional multicellular calcium imaging over a wide range from threshold (7 mM) and physiological (8 and 9 mM) to supraphysiological (12 and 16 mM) glucose concentrations, classical physiological, and advanced network analyses.


Asunto(s)
Glucosa/metabolismo , Células Secretoras de Insulina/metabolismo , Animales , Señalización del Calcio , Femenino , Masculino , Ratones
5.
Front Endocrinol (Lausanne) ; 14: 1225486, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37701894

RESUMEN

Beta cells couple stimulation by glucose with insulin secretion and impairments in this coupling play a central role in diabetes mellitus. Cyclic adenosine monophosphate (cAMP) amplifies stimulus-secretion coupling via protein kinase A and guanine nucleotide exchange protein 2 (Epac2A). With the present research, we aimed to clarify the influence of cAMP-elevating diterpene forskolin on cytoplasmic calcium dynamics and intercellular network activity, which are two of the crucial elements of normal beta cell stimulus-secretion coupling, and the role of Epac2A under normal and stimulated conditions. To this end, we performed functional multicellular calcium imaging of beta cells in mouse pancreas tissue slices after stimulation with glucose and forskolin in wild-type and Epac2A knock-out mice. Forskolin evoked calcium signals in otherwise substimulatory glucose and beta cells from Epac2A knock-out mice displayed a faster activation. During the plateau phase, beta cells from Epac2A knock-out mice displayed a slightly higher active time in response to glucose compared with wild-type littermates, and stimulation with forskolin increased the active time via an increase in oscillation frequency and a decrease in oscillation duration in both Epac2A knock-out and wild-type mice. Functional network properties during stimulation with glucose did not differ in Epac2A knock-out mice, but the presence of Epac2A was crucial for the protective effect of stimulation with forskolin in preventing a decline in beta cell functional connectivity with time. Finally, stimulation with forskolin prolonged beta cell activity during deactivation, especially in Epac2A knock-out mice.


Asunto(s)
Calcio de la Dieta , Calcio , Animales , Ratones , Colforsina/farmacología , AMP Cíclico , Glucosa/farmacología , Ratones Noqueados
6.
Front Endocrinol (Lausanne) ; 14: 1315520, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38292770

RESUMEN

Tight control of beta cell stimulus-secretion coupling is crucial for maintaining homeostasis of energy-rich nutrients. While glucose serves as a primary regulator of this process, incretins augment beta cell function, partly by enhancing cytosolic [Ca2+] dynamics. However, the details of how precisely they affect beta cell recruitment during activation, their active time, and functional connectivity during plateau activity, and how they influence beta cell deactivation remain to be described. Performing functional multicellular Ca2+ imaging in acute mouse pancreas tissue slices enabled us to systematically assess the effects of the GLP-1 receptor agonist exendin-4 (Ex-4) simultaneously in many coupled beta cells with high resolution. In otherwise substimulatory glucose, Ex-4 was able to recruit approximately a quarter of beta cells into an active state. Costimulation with Ex-4 and stimulatory glucose shortened the activation delays and accelerated beta cell activation dynamics. More specifically, active time increased faster, and the time required to reach half-maximal activation was effectively halved in the presence of Ex-4. Moreover, the active time and regularity of [Ca2+]IC oscillations increased, especially during the first part of beta cell response. In contrast, subsequent addition of Ex-4 to already active cells did not significantly enhance beta cell activity. Network analyses further confirmed increased connectivity during activation and activity in the presence of Ex-4, with hub cell roles remaining rather stable in both control experiments and experiments with Ex-4. Interestingly, Ex-4 demonstrated a biphasic effect on deactivation, slightly prolonging beta cell activity at physiological concentrations and shortening deactivation delays at supraphysiological concentrations. In sum, costimulation by Ex-4 and glucose increases [Ca2+]IC during beta cell activation and activity, indicating that the effect of incretins may, to an important extent, be explained by enhanced [Ca2+]IC signals. During deactivation, previous incretin stimulation does not critically prolong cellular activity, which corroborates their low risk of hypoglycemia.


Asunto(s)
Incretinas , Células Secretoras de Insulina , Ratones , Animales , Exenatida/farmacología , Incretinas/farmacología , Calcio , Glucosa/farmacología , Calcio de la Dieta
7.
Metabolites ; 12(3)2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35323702

RESUMEN

Obesity and accompanying type 2 diabetes are among major and increasing worldwide problems that occur fundamentally due to excessive energy intake during its expenditure. Endotherms continuously consume a certain amount of energy to maintain core body temperature via thermogenic processes, mainly in brown adipose tissue and skeletal muscle. Skeletal muscle glucose utilization and heat production are significant and directly linked to body glucose homeostasis at rest, and especially during physical activity. However, this glucose balance is impaired in diabetic and obese states in humans and mice, and manifests as glucose resistance and altered muscle cell metabolism. Uncoupling proteins have a significant role in converting electrochemical energy into thermal energy without ATP generation. Different homologs of uncoupling proteins were identified, and their roles were linked to antioxidative activity and boosting glucose and lipid metabolism. From this perspective, uncoupling proteins were studied in correlation to the pathogenesis of diabetes and obesity and their possible treatments. Mice were extensively used as model organisms to study the physiology and pathophysiology of energy homeostasis. However, we should be aware of interstrain differences in mice models of obesity regarding thermogenesis and insulin resistance in skeletal muscles. Therefore, in this review, we gathered up-to-date knowledge on skeletal muscle uncoupling proteins and their effect on insulin sensitivity in mouse models of obesity and diabetes.

8.
Antioxidants (Basel) ; 11(8)2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-36009191

RESUMEN

The accumulation of oxidative damage to DNA and other biomolecules plays an important role in the etiology of aging and age-related diseases such as type 2 diabetes mellitus (T2D), atherosclerosis, and neurodegenerative disorders. Mitochondrial DNA (mtDNA) is especially sensitive to oxidative stress. Mitochondrial dysfunction resulting from the accumulation of mtDNA damage impairs normal cellular function and leads to a bioenergetic crisis that accelerates aging and associated diseases. Age-related mitochondrial dysfunction decreases ATP production, which directly affects insulin secretion by pancreatic beta cells and triggers the gradual development of the chronic metabolic dysfunction that characterizes T2D. At the same time, decreased glucose oxidation in skeletal muscle due to mitochondrial damage leads to prolonged postprandial blood glucose rise, which further worsens glucose homeostasis. ROS are not only highly reactive by-products of mitochondrial respiration capable of oxidizing DNA, proteins, and lipids but can also function as signaling and effector molecules in cell membranes mediating signal transduction and inflammation. Mitochondrial uncoupling proteins (UCPs) located in the inner mitochondrial membrane of various tissues can be activated by ROS to protect cells from mitochondrial damage. Mitochondrial UCPs facilitate the reflux of protons from the mitochondrial intermembrane space into the matrix, thereby dissipating the proton gradient required for oxidative phosphorylation. There are five known isoforms (UCP1-UCP5) of mitochondrial UCPs. UCP1 can indirectly reduce ROS formation by increasing glutathione levels, thermogenesis, and energy expenditure. In contrast, UCP2 and UCP3 regulate fatty acid metabolism and insulin secretion by beta cells and modulate insulin sensitivity. Understanding the functions of UCPs may play a critical role in developing pharmacological strategies to combat T2D. This review summarizes the current knowledge on the protective role of various UCP homologs against age-related oxidative stress in T2D.

9.
Front Endocrinol (Lausanne) ; 13: 867663, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35399951

RESUMEN

Although mice are a very instrumental model in islet beta cell research, possible phenotypic differences between strains and substrains are largely neglected in the scientific community. In this study, we show important phenotypic differences in beta cell responses to glucose between C57BL/6J, C57BL/6N, and NMRI mice, i.e., the three most commonly used strains. High-resolution multicellular confocal imaging of beta cells in acute pancreas tissue slices was used to measure and quantitatively compare the calcium dynamics in response to a wide range of glucose concentrations. Strain- and substrain-specific features were found in all three phases of beta cell responses to glucose: a shift in the dose-response curve characterizing the delay to activation and deactivation in response to stimulus onset and termination, respectively, and distinct concentration-encoding principles during the plateau phase in terms of frequency, duration, and active time changes with increasing glucose concentrations. Our results underline the significance of carefully choosing and reporting the strain to enable comparison and increase reproducibility, emphasize the importance of analyzing a number of different beta cell physiological parameters characterizing the response to glucose, and provide a valuable standard for future studies on beta cell calcium dynamics in health and disease in tissue slices.


Asunto(s)
Glucosa , Células Secretoras de Insulina , Animales , Calcio , Glucosa/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Reproducibilidad de los Resultados
10.
Front Endocrinol (Lausanne) ; 13: 1013697, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36387857

RESUMEN

Adrenaline inhibits insulin secretion from pancreatic beta cells to allow an organism to cover immediate energy needs by unlocking internal nutrient reserves. The stimulation of α2-adrenergic receptors on the plasma membrane of beta cells reduces their excitability and insulin secretion mostly through diminished cAMP production and downstream desensitization of late step(s) of exocytotic machinery to cytosolic Ca2+ concentration ([Ca2+]c). In most studies unphysiologically high adrenaline concentrations have been used to evaluate the role of adrenergic stimulation in pancreatic endocrine cells. Here we report the effect of physiological adrenaline levels on [Ca2+]c dynamics in beta cell collectives in mice pancreatic tissue slice preparation. We used confocal microscopy with a high spatial and temporal resolution to evaluate glucose-stimulated [Ca2+]c events and their sensitivity to adrenaline. We investigated glucose concentrations from 8-20 mM to assess the concentration of adrenaline that completely abolishes [Ca2+]c events. We show that 8 mM glucose stimulation of beta cell collectives is readily inhibited by the concentration of adrenaline available under physiological conditions, and that sequent stimulation with 12 mM glucose or forskolin in high nM range overrides this inhibition. Accordingly, 12 mM glucose stimulation required at least an order of magnitude higher adrenaline concentration above the physiological level to inhibit the activity. To conclude, higher glucose concentrations stimulate beta cell activity in a non-linear manner and beyond levels that could be inhibited with physiologically available plasma adrenaline concentration.


Asunto(s)
Células Secretoras de Insulina , Islotes Pancreáticos , Ratones , Animales , Células Secretoras de Insulina/metabolismo , Epinefrina , Islotes Pancreáticos/metabolismo , Insulina/metabolismo , Glucosa/metabolismo , Hormonas Pancreáticas/metabolismo
11.
Front Endocrinol (Lausanne) ; 13: 922640, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35784543

RESUMEN

Islets of Langerhans are multicellular microorgans located in the pancreas that play a central role in whole-body energy homeostasis. Through secretion of insulin and other hormones they regulate postprandial storage and interprandial usage of energy-rich nutrients. In these clusters of hormone-secreting endocrine cells, intricate cell-cell communication is essential for proper function. Electrical coupling between the insulin-secreting beta cells through gap junctions composed of connexin36 is particularly important, as it provides the required, most important, basis for coordinated responses of the beta cell population. The increasing evidence that gap-junctional communication and its modulation are vital to well-regulated secretion of insulin has stimulated immense interest in how subpopulations of heterogeneous beta cells are functionally arranged throughout the islets and how they mediate intercellular signals. In the last decade, several novel techniques have been proposed to assess cooperation between cells in islets, including the prosperous combination of multicellular imaging and network science. In the present contribution, we review recent advances related to the application of complex network approaches to uncover the functional connectivity patterns among cells within the islets. We first provide an accessible introduction to the basic principles of network theory, enumerating the measures characterizing the intercellular interactions and quantifying the functional integration and segregation of a multicellular system. Then we describe methodological approaches to construct functional beta cell networks, point out possible pitfalls, and specify the functional implications of beta cell network examinations. We continue by highlighting the recent findings obtained through advanced multicellular imaging techniques supported by network-based analyses, giving special emphasis to the current developments in both mouse and human islets, as well as outlining challenges offered by the multilayer network formalism in exploring the collective activity of islet cell populations. Finally, we emphasize that the combination of these imaging techniques and network-based analyses does not only represent an innovative concept that can be used to describe and interpret the physiology of islets, but also provides fertile ground for delineating normal from pathological function and for quantifying the changes in islet communication networks associated with the development of diabetes mellitus.


Asunto(s)
Células Secretoras de Insulina , Islotes Pancreáticos , Animales , Comunicación Celular , Insulina , Ratones , Páncreas
12.
J Vis Exp ; (170)2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33938876

RESUMEN

The acute mouse pancreatic tissue slice is a unique in situ preparation with preserved intercellular communication and tissue architecture that entails significantly fewer preparation-induced changes than isolated islets, acini, ducts, or dispersed cells described in typical in vitro studies. By combining the acute pancreatic tissue slice with live-cell calcium imaging in confocal laser scanning microscopy (CLSM), calcium signals can be studied in a large number of endocrine and exocrine cells simultaneously, with a single-cell or even subcellular resolution. The sensitivity permits the detection of changes and enables the study of intercellular waves and functional connectivity as well as the study of the dependence of physiological responses of cells on their localization within the islet and paracrine relationship with other cells. Finally, from the perspective of animal welfare, recording signals from a large number of cells at a time lowers the number of animals required in experiments, contributing to the 3R-replacement, reduction, and refinement-principle.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Confocal/métodos , Páncreas/metabolismo , Animales , Ratones , Páncreas/citología
13.
Cells ; 10(7)2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34359828

RESUMEN

Pancreatic beta cells secrete insulin in response to stimulation with glucose and other nutrients, and impaired insulin secretion plays a central role in development of diabetes mellitus. Pharmacological management of diabetes includes various antidiabetic drugs, including incretins. The incretin hormones, glucagon-like peptide-1 and gastric inhibitory polypeptide, potentiate glucose-stimulated insulin secretion by binding to G protein-coupled receptors, resulting in stimulation of adenylate cyclase and production of the secondary messenger cAMP, which exerts its intracellular effects through activation of protein kinase A or the guanine nucleotide exchange protein 2A. The molecular mechanisms behind these two downstream signaling arms are still not fully elucidated and involve many steps in the stimulus-secretion coupling cascade, ranging from the proximal regulation of ion channel activity to the central Ca2+ signal and the most distal exocytosis. In addition to modifying intracellular coupling, the effect of cAMP on insulin secretion could also be at least partly explained by the impact on intercellular coupling. In this review, we systematically describe the possible roles of cAMP at these intra- and inter-cellular signaling nodes, keeping in mind the relevance for the whole organism and translation to humans.


Asunto(s)
AMP Cíclico/metabolismo , Células Secretoras de Insulina/metabolismo , Espacio Intracelular/metabolismo , Animales , Glucosa/metabolismo , Humanos , Resistencia a la Insulina , Modelos Biológicos
14.
Steroids ; 73(14): 1465-74, 2008 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-18793662

RESUMEN

Progesterone in sublethal concentrations temporarily inhibits growth of Hortaea werneckii. This study investigates some of the compensatory mechanisms which are activated in the presence of progesterone and are most probably contributing to escape from growth inhibition. These mechanisms lead on the one hand to progesterone biotransformation/detoxification but, on the other, are suggested to increase the resistance of H. werneckii to the steroid. Biotransformation can detoxify progesterone efficiently in the early logarithmic phase, with mostly inducible steroid transforming enzymes, while progesterone biotransformation/detoxification in the late logarithmic and stationary phases of growth is not very efficient. The relative contribution of constitutive steroid transforming enzymes to progesterone biotransformation is increased in these latter phases of growth. In the presence of progesterone, activation of the cell wall integrity pathway is suggested by the overexpression of Pck2 which was detected in the stationary as well as the logarithmic phase of growth of the yeast. Progesterone treated H. werneckii cells were found to be more resistant to cell lysis than mock treated cells, indicating for the first time changes in the yeast cell wall as a result of treatment with progesterone.


Asunto(s)
Ascomicetos/crecimiento & desarrollo , Pared Celular/química , Proteínas Fúngicas/metabolismo , Progesterona/farmacología , Progestinas/farmacología , Esteroides/metabolismo , Ascomicetos/metabolismo , Biotransformación , Northern Blotting , Pared Celular/metabolismo , Exophiala/metabolismo , Espectrometría de Masas , ARN Mensajero/genética , ARN Mensajero/metabolismo
15.
Eur J Obstet Gynecol Reprod Biol ; 134(2): 213-9, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17540495

RESUMEN

OBJECTIVE: To evaluate the rate and type of aneuploidies of chromosomes 13, 16, 18, 21 and 22, with respect to the length of in vitro maturation (IVM) period, and to compare the results to previously published studies on aneuploidy rates of unfertilized, uninseminated mature oocytes and first polar bodies. STUDY DESIGN: Two hundred and twelve immature germinal vesicle stage oocytes were assigned to two groups. After successful IVM, depending on their maturational period of 24h (Group A) or 36h (Group B), chromosomal analysis was performed by five color fluorescence in situ hybridization (FISH). In Groups A and B the rates of aneuploid oocytes were calculated and compared by chi-square test. Also the rates of hyperhaploidy, hypohaploidy, disomy and nullisomy were determined and compared by chi-square test. The difference was considered statistically significant at p-value of <0.05. RESULTS: The prolonged IVM did not significantly affect the aneuploidy rate compared to the shorter maturation period (48.1% and 45.0%, respectively). Regarding the unbalanced premature chromatid separation, no statistically significant difference was found between hyperhaploidy and hypohaploidy (14.8% versus 8.3%). For chromosome nondisjunction, higher frequency of disomy than nullisomy was observed (30.6% versus 14.8%; p<0.05). The estimated global aneuploidy rate was between 42% and 63%. CONCLUSIONS: The aneuploidy rate of IVM GV-oocytes is comparable to the aneuploidy rate of in vivo matured oocytes and first polar bodies, regardless of the length of maturation period. This suggests that the immature oocytes can be used in infertility treatment after they complete maturation.


Asunto(s)
Aneuploidia , Cromosomas Humanos/genética , Fertilización In Vitro/métodos , Oocitos/crecimiento & desarrollo , Adulto , Femenino , Humanos , Hibridación Fluorescente in Situ , Infertilidad Femenina/terapia , Recuperación del Oocito/métodos , Inducción de la Ovulación/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA