Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Chem Biodivers ; 20(8): e202300552, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37345919

RESUMEN

Light-emitting plants (LEPs) provides light in areas without electricity. The phosphorescent compound was used as a lighting material for LEP development. However, using the phosphorescent compound for LEPs development required optimization and phytotoxicity evaluation. Strontium aluminate (SrAl2 O4 ) is a phosphorescent compound that can glow for a long time and is easily recharged by visible light. In this study, using SrAl2 O4 to develop LEPs was evaluated. Additionally, plant stress under SrAl2 O4 was investigated. Metabolomic analysis can explain the possible mechanism of plants' stress under SrAl2 O4 . After, injecting 3 mL of 5 % (w/v) SrAl2 O4 products 1, 2, and 3 into the stem of Ipomoea aquatica, the result showed that SrAl2 O4 products 2 and 3 caused oxidative stress. The metabolomic analysis also indicated that I. aquatica responded to SrAl2 O4 product 1 by increasing pipecolic acid and salicylic acid, while I. aquatica injected with SrAl2 O4 products 2 and 3 showed a decrease in salicylic acid around 0.005 and 0.061-fold, respectively, compared to control plants. and an excess accumulation of MDA around 10.00-12.00 µmol g-1 FW. A 15 % concentration of SrAl2 O4 can be used for LEPs development, enabling photoemission 18-fold for 50 min. SrAl2 O4 product 1 has the potential to be a material for LEPs.


Asunto(s)
Luz , Estroncio , Desarrollo de la Planta
2.
Int J Mol Sci ; 24(15)2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37569391

RESUMEN

Brevibacillus sp. SPR20 produced potentially antibacterial substances against methicillin-resistant Staphylococcus aureus (MRSA). The synthesis of these substances is controlled by their biosynthetic gene clusters. Several mutagenesis methods are used to overcome the restriction of gene regulations when genetic information is absent. Atmospheric and room temperature plasma (ARTP) is a powerful technique to initiate random mutagenesis for microbial strain improvement. This study utilized an argon-based ARTP to conduct the mutations on SPR20. The positive mutants of 40% occurred. The M27 mutant exhibited an increase in anti-MRSA activity when compared to the wild-type strain, with the MIC values of 250-500 and 500 µg/mL, respectively. M27 had genetic stability because it exhibited constant activity throughout fifteen generations. This mutant had similar morphology and antibiotic susceptibility to the wild type. Comparative proteomic analysis identified some specific proteins that were upregulated in M27. These proteins were involved in the metabolism of amino acids, cell structure and movement, and catalytic enzymes. These might result in the enhancement of the anti-MRSA activity of the ARTP-treated SPR20 mutant. This study supports the ARTP technology designed to increase the production of valuable antibacterial agents.


Asunto(s)
Brevibacillus , Staphylococcus aureus Resistente a Meticilina , Staphylococcus aureus Resistente a Meticilina/genética , Brevibacillus/genética , Temperatura , Proteómica , Mutagénesis , Antibacterianos/farmacología
3.
Medicina (Kaunas) ; 59(8)2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37629666

RESUMEN

Background and Objectives: Natural products have proven to be a valuable source for the discovery of new candidate drugs for cancer treatment. This study aims to investigate the potential therapeutic effects of "Kerra™", a natural extract derived from a mixture of nine medicinal plants mentioned in the ancient Thai scripture named the Takxila Scripture, on HCT116 cells. Materials and Methods: In this study, the effect of the Kerra™ extract on cancer cells was assessed through cell viability assays. Apoptotic activity was evaluated by examining the apoptosis characteristic features. A proteomics analysis was conducted to identify proteins and pathways associated with the extract's mechanism of action. The expression levels of apoptotic protein markers were measured to validate the extract's efficacy. Results: The Kerra™ extract demonstrated a dose-dependent inhibitory effect on the cells, with higher concentrations leading to decreased cell viability. Treatment with the extract for 72 h induced characteristic features of early and late apoptosis, as well as cell death. An LC-MS/MS analysis identified a total of 3406 proteins. The pathway analysis revealed that the Kerra™ extract stimulated apoptosis and cell death in colorectal cancer cell lines and suppressed cell proliferation in adenocarcinoma cell lines through the EIF2 signaling pathway. Upstream regulatory proteins, including cyclin-dependent kinase inhibitor 1A (CDKN1A) and MYC proto-oncogene, bHLH transcription factor (MYC), were identified. The expressions of caspase-8 and caspase-9 were significantly elevated by the Kerra™ extract compared to the chemotherapy drug Doxorubicin (Dox). Conclusions: These findings provide strong evidence for the ability of the Kerra™ extract to induce apoptosis in HCT116 colon cancer cells. The extract's efficacy was demonstrated by its dose-dependent inhibitory effect, induction of apoptotic activity, and modulation of key proteins involved in cell death and proliferation pathways. This study highlights the potential of Kerra™ as a promising therapeutic agent in cancer treatment.


Asunto(s)
Antineoplásicos , Células HCT116 , Extractos Vegetales , Proteómica , Cromatografía Liquida , Células HCT116/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Espectrometría de Masas en Tándem , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Tailandia , Medicina Tradicional
4.
Proteome Sci ; 20(1): 9, 2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35578244

RESUMEN

BACKGROUND: The epidermal growth factor receptor (EGFR) overexpression is found in metastatic colorectal cancer (mCRC). Targeted molecular therapies such as monoclonal antibodies (mAbs) and tyrosine kinase inhibitors (TKI) are becoming more precise, targeting specifically for cancer therapeutics. However, there are adverse effects of currently available anti-EGFR drugs, including drug-resistant and side effects. Nanobodies can overcome these limitations. Our previous study has found that cell-penetrable nanobodies targeted at EGFR-tyrosine kinase were significantly reduced EGFR-positive lung cancer cells viability and proliferation. The aim of the present study was to determine the effect of cell-penetrable nanobody (R9VH36) on cell viability and proteomic profile in EGFR-positive human colorectal cancer cell lines. METHODS: The human colorectal carcinoma cell line (SW480) was treated with R9VH36, compared with gefitinib. Cell viability was monitored using the MTT cell viability assay. The proteomic profiling was analyzed by LC-MS/MS . RESULTS: The half-maximal inhibitory concentration (IC50) values determined for R9VH36 and gefitinib against SW480 were 527 ± 0.03 nM and 13.31 ± 0.02 µM, respectively. Moreover, both the gefitinib-treated group and nanobody-treated group had completely different proteome profiles. A total 6626 differentially expressed proteins were identified. PCA analysis revealed different proteome profiling in R9VH36 experiment. There were 8 proteins in R9VH36 that significantly exhibited opposite expression directions when compared to gefitinib. These proteins are involved in DNA-damage checkpoint processes. CONCLUSION: The proteomics explored those 6,626 proteins had different expressions between R9VH36 and gefitinib. There were 8 proteins in R9VH36 exhibited opposite expression direction when comparing to gefitinib. Our findings suggest that R9VH36 has the potential to be an alternative remedy for treating EGFR-positive colon cancer.

5.
Molecules ; 27(23)2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36500545

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) is listed as a high-priority pathogen because its infection is associated with a high mortality rate. It is urgent to search for new agents to treat such an infection. Our previous study isolated a soil bacterium (Brevibacillus sp. SPR-20), showing the highest antimicrobial activity against S. aureus TISTR 517 and MRSA strains. The present study aimed to purify and characterize anti-MRSA substances produced by SPR-20. The result showed that five active substances (P1-P5) were found, and they were identified by LC-MS/MS that provided the peptide sequences of 14-15 residues. Circular dichroism showed that all peptides contained ß-strand and disordered conformations as the major secondary structures. Only P1-P4 adopted more α-helix conformations when incubated with 50 mM SDS. These anti-MRSA peptides could inhibit S. aureus and MRSA in concentrations of 2-32 µg/mL. P1 (NH2-VVVNVLVKVLPPPVV-COOH) had the highest activity and was identified as a novel antimicrobial peptide (AMP). The stability study revealed that P1 was stable in response to temperature, proteolytic enzymes, surfactant, and pH. The electron micrograph showed that P1 induced bacterial membrane damage when treated at 1× MIC in the first hour of incubation. The killing kinetics of P1 was dependent on concentration and time. Mechanisms of P1 on tested pathogens involved membrane permeability, leakage of genetic material, and cell lysis. The P1 peptide at a concentration up to 32 µg/mL showed hemolysis of less than 10%, supporting its safety for human erythrocytes. This study provides promising anti-MRSA peptides that might be developed for effective antibiotics in the post-antibiotic era.


Asunto(s)
Brevibacillus , Staphylococcus aureus Resistente a Meticilina , Humanos , Staphylococcus aureus , Pruebas de Sensibilidad Microbiana , Cromatografía Liquida , Espectrometría de Masas en Tándem , Antibacterianos/química , Péptidos/química
6.
Molecules ; 27(14)2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35889537

RESUMEN

Cholangiocarcinoma (CCA) is a heterogenous group of malignancies in the bile duct, which proliferates aggressively. CCA is highly prevalent in Northeastern Thailand wherein it is associated with liver fluke infection, or Opisthorchis viverrini (OV). Most patients are diagnosed in advanced stages, when the cancer has metastasized or severely progressed, thereby limiting treatment options. Several studies investigate the effect of traditional Thai medicinal plants that may be potential therapeutic options in combating CCA. Galangin is one such herbal flavonoid that has medicinal properties and exhibits anti-tumor properties in various cancers. In this study, we investigate the role of Galangin in inhibiting cell proliferation, invasion, and migration in OV-infected CCA cell lines. We discovered that Galangin reduced cell viability and colony formation by inducing apoptosis in CCA cell lines in a dose-dependent manner. Further, Galangin also effectively inhibited invasion and migration in OV-infected CCA cells by reduction of MMP2 and MMP9 enzymatic activity. Additionally, using proteomics, we identified proteins affected post-treatment with Galangin. Enrichment analysis revealed that several kinase pathways were affected by Galangin, and the signature corroborated with that of small molecule kinase inhibitors. Hence, we identified putative targets of Galangin using an in silico approach which highlighted c-Met as candidate target. Galangin effectively inhibited c-Met phosphorylation and subsequent signaling in in vitro CCA cells. In addition, Galangin was able to inhibit HGF, a mediator of c-Met signaling, by suppressing HGF-stimulated invasion, as well as migration and MMP9 activity. This shows that Galangin can be a useful anti-metastatic therapeutic strategy in a subtype of CCA patients.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Opistorquiasis , Opisthorchis , Animales , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Neoplasias de los Conductos Biliares/metabolismo , Conductos Biliares Intrahepáticos/metabolismo , Conductos Biliares Intrahepáticos/patología , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/metabolismo , Flavonoides/metabolismo , Flavonoides/farmacología , Humanos , Metaloproteinasa 9 de la Matriz/metabolismo , Opistorquiasis/complicaciones
7.
Planta ; 253(3): 68, 2021 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-33594587

RESUMEN

MAIN CONCLUSION: Secretome analysis of a salt-tolerant and control Chlamydomonas reinhardtii revealed 514 differentially expressed proteins. Membrane transport and trafficking, signal transduction and channel proteins were up-regulated in the ST secretome. Salinity is a major abiotic stress that limits crop production worldwide. Multiple adverse effects have been reported in many living organisms exposed to high-saline concentrations. Chlamydomonas reinhardtii is known for secreting proteins in response to many environmental stresses. A salinity-tolerant (ST) strain of Chlamydomonas has been developed, whose cells were able to grow at 300 mM NaCl. The current study analyzed the secretomes of ST grown in TAP medium supplemented with 300 mM NaCl and the laboratory strain CC-503 grown in TAP medium without NaCl supplement. In total, 514 secreted proteins were identified of which 203 were up-regulated and 110 were down-regulated. Bioinformatic analysis predicted 168 proteins to be secreted or in the conventional secretory pathway. Out of these, 70 were up-regulated, while 51 proteins were down-regulated. Proteins involved in membrane transport and trafficking, signal transduction and channel proteins were altered in their expression in the ST secretome, suggesting the response of saline stress acts toward not only the intracellular pool of proteins but also the extracellular proteins. This also suggested that the secreted proteins might have roles in the extracellular space. Signal peptide (SP) prediction revealed that almost 40% of the predicted secreted proteins contained a signal peptide; however, a high proportion of proteins lacked an SP, suggesting that these proteins might be secreted through an unconventional protein secretion pathway.


Asunto(s)
Chlamydomonas reinhardtii , Chlamydomonas reinhardtii/genética , Biología Computacional , Señales de Clasificación de Proteína , Salinidad , Estrés Fisiológico
8.
Planta Med ; 87(7): 560-569, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33757145

RESUMEN

Despite the efficacy of chemotherapy, the adverse effects of chemotherapeutic drugs are considered a limitation of leukemia treatment. Therefore, a chemotherapy drug with minimal side effects is currently needed. One interesting molecule for this purpose is a bioactive peptide isolated from plants since it has less toxicity to normal cells. In this study, we extracted protein from the Zingiber officinale rhizome and performed purification to acquire the peptide fraction with the highest cytotoxicity using ultrafiltration, reverse-phase chromatography, and off-gel fractionation to get the peptide fraction that contained the highest cytotoxicity. Finally, a novel antileukemic peptide, P2 (sequence: RALGWSCL), was identified from the highest cytotoxicity fraction. The P2 peptide reduced the cell viability of NB4, MOLT4, and Raji cell lines without an effect on the normal peripheral blood mononuclear cells. The combination of P2 and daunorubicin significantly decreased leukemic cell viability when compared to treatment with either P2 or daunorubicin alone. In addition, leukemic cells treated with P2 demonstrated increased apoptosis and upregulation of caspase 3, 8, and 9 gene expression. Moreover, we also examined the effects of P2 on p53, which is the key regulator of apoptosis. Our results showed that treatment of leukemic cells with P2 led to the upregulation of p53 and Bcl-2-associated X protein, and the downregulation of B-cell lymphoma 2, indicating that p53 is involved in apoptosis induction by P2. The results of this study are anticipated to be useful for the development of P2 as an alternative drug for the treatment of leukemia.


Asunto(s)
Zingiber officinale , Apoptosis , Línea Celular , Leucocitos Mononucleares/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteína p53 Supresora de Tumor , Proteína X Asociada a bcl-2
9.
Arch Pharm (Weinheim) ; 354(11): e2100204, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34313364

RESUMEN

Ganoderma lucidum or Lingzhi (Chinese) is a medicinal fungus widely used in traditional medicine as a health supplement. This study was conducted to identify an approach to enhance the anti-tyrosinase activity of a peptide from G. lucidum by chemical modification of its C-terminus. The original peptide was obtained from protease-digested Lingzhi proteins, followed by ultrafiltration (molecular weight cut-off 3 kDa) and C18 solid-phase extraction. The hexapeptide (NH2 -VLTCGF-COOH) possessing the anti-tyrosinase activity was identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). This hexapeptide was subjected to shortening to enhance the anti-tyrosinase activity. Both the original peptide and the shortened peptides were synthesized by solid-phase peptide synthesis. The purity and mass of the synthetic peptide and the modified peptide were evaluated by high-performance liquid chromatography and LC-MS, respectively. Comparison of the tyrosinase activities showed that the modified peptide demonstrated more than 23.27 ± 1.07% activity, which was better than that of the hexapeptide. The structure-related biological activity was explained by molecular docking, wherein the VLT-tyrosinase complex showed two interaction forces: Asn260 and Gly281 through H-bonding and Glu256 through electrostatic interaction. This information could help toward gaining further understanding of the correlation between the anti-tyrosinase activity and the molecular structure of the modified hexapeptide and support its potential use as a safe cosmetic ingredient with tyrosinase-suppressing ability.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Monofenol Monooxigenasa/antagonistas & inhibidores , Oligopéptidos/farmacología , Reishi/química , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/aislamiento & purificación , Simulación del Acoplamiento Molecular , Oligopéptidos/química , Oligopéptidos/aislamiento & purificación , Relación Estructura-Actividad , Espectrometría de Masas en Tándem
10.
BMC Vet Res ; 16(1): 373, 2020 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-33008399

RESUMEN

BACKGROUND: Cryptorchidism is a condition that occurs when one or both testes fail to descend into the scrotum. It is a common congenital disorder, causing economic loss in pig production. However, there have been only limited studies of differential protein expression profiles in undescended testes (UDTs) in the abdomen and descended testes (DTs) in cryptorchid pigs, especially at the peptidome and proteome levels. The present study aimed to analyze the peptidome of UDTs and DTs in unilateral cryptorchid pigs aged 1-2, 6, 15 and 20 weeks and in normal testes of healthy pigs aged 1-2 and 12 weeks, using peptide mass fingerprinting and three-dimensional principal component analysis (3D-PCA) with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and to identify potential protein candidates, using in-gel digestion coupled with mass spectrometry (GeLC-MS/MS). Western blot analysis was used to verify protein expression. Protein sequence was affirmed by liquid chromatography-tandem mass spectrometry. RESULTS: A PCA plot showed a discrete cluster for each sample group. Peptide mass fingerprints (PMFs) demonstrated unique peptide fragments in UDTs at different ages. A number of markedly expressed proteins from GeLC-MS/MS were identified, including the multifunctional tumor necrosis factor receptor superfamily member 18 (TNFRSF18), in DTs at 1-2 and 6 weeks and in UDTs at 15 and 20 weeks of age. Using western blot analysis, high expression of TNFRSF18 was observed in the UDTs at 15 weeks. Using the STITCH database, this protein was found to be related to apoptosis, corresponding to the previous report in the UDTs at the same age. CONCLUSIONS: The present study revealed the specific PMFs and clusters for porcine cryptorchidism, and a novel protein, TNFRSF18, associated with the disease mechanism. These results could provide further insights into the pathogenesis of the disease.


Asunto(s)
Criptorquidismo/veterinaria , Proteína Relacionada con TNFR Inducida por Glucocorticoide/metabolismo , Proteoma/análisis , Enfermedades de los Porcinos/metabolismo , Testículo/metabolismo , Factores de Edad , Animales , Cromatografía Liquida/veterinaria , Criptorquidismo/metabolismo , Masculino , Fragmentos de Péptidos/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/veterinaria , Porcinos , Enfermedades de los Porcinos/congénito , Espectrometría de Masas en Tándem/veterinaria
12.
Data Brief ; 55: 110570, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38952951

RESUMEN

Bioactive compounds derived from natural products demonstrate a wide range of beneficial properties in cancer treatment. One popular approach to inhibiting cancer cell growth is by stimulating apoptosis. Interestingly, our research has discovered that traditional mushroom and isolated compounds from traditional herbs can induce apoptosis in A549 cells while inhibiting tyrosine kinase activities. We have identified two extracts from traditional mushrooms, Phallus indusiatus and Fomes rimosus (Berk.) Cooke, which exhibit promising abilities to activate apoptotic events in cells. Additionally, isolated compounds such as Chamuangone, Cannabigerol (CBG), Cannabidiol (CBD), and NP1-cyclic peptide have also demonstrated significant apoptotic activation capabilities. To further our understanding, we analyzed phosphoprotein changes in A549 cells exposed to these extracts and compounds, both with and without epidermal growth factor (EGF) stimulation. Our positive controls were two known drugs, Afatinib and Osimertinib, which are tyrosine kinase inhibitors with apoptotic stimulation abilities. In order to enrich our understanding of the kinase pathway, we conducted phosphoprotein enrichment analysis and identified altered phosphoproteins using LC-MS/MS. Across these testing conditions, we found that 1228 phosphoproteins were altered, providing valuable insights into the biochemical mechanisms underlying cell apoptosis in A549 cells through post-translational modifications of proteins. Furthermore, our findings not only shed light on the mechanisms of cell apoptosis in A549 cells but also offer promising avenues for future research and therapeutic development.

13.
Poult Sci ; 103(1): 103261, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37992618

RESUMEN

This study investigated the impacts of Wooden Breast (WB) abnormality on in vitro protein digestibility and cytotoxicity of cooked chicken breast meat. Chicken breasts without (non-WB, n = 6) or with severe WB condition (WB, n = 6) were cooked and subjected to static in vitro protein digestion. The results showed no significant differences in free-NH2, degree of hydrolysis and distribution of peptide molecular weight between non-WB and WB samples at late intestinal digestion (P5), suggesting no adverse effects of WB on protein digestibility. Based on peptidomic analysis, P5 fraction of WB showed greater content of peptides with oxidative modification than that of non-WB. Untargeted metabolomics did not find any metabolites with potential toxicity either in non-WB and WB. Hydrolyzed non-WB and WB (1.56-100 µg/mL) did not affect viability of Caco-2 and Vero cells but addition of WB samples reduced Caco-2 cell viability compared with non-WB.


Asunto(s)
Pollos , Enfermedades Musculares , Chlorocebus aethiops , Animales , Humanos , Células CACO-2 , Células Vero , Músculos Pectorales/química , Carne/análisis , Enfermedades Musculares/etiología , Enfermedades Musculares/veterinaria , Proteínas/análisis
14.
Environ Pollut ; 355: 124199, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38788990

RESUMEN

Phytoremediation has become famous for removing particulate matter (PM) and volatile organic compounds (VOCs), but the ability is affected by plant health. Lately, the priming technique was a simple approach to studying improving plant tolerance against abiotic stress by specific metabolites that accumulated, known as "memory", but the mechanism underlying this mechanism and how long this "memory" was retained in the plant was a lack of study. Sansevieria trifasciata was primed for one week for PM and VOC stress to improve plant efficiency on PM and VOC. After that, the plant was recovered for two- or five-weeks, then re-exposed to the same stress with similar PM and VOC concentrations from cigarette smoke. Primed S. trifasciata showed improved removal of PMs entirely within 2 h and VOC within 24 h. The primed plant can maintain a malondialdehyde (MDA) level and retain the "memory" for two weeks. Metabolomics analysis showed that an ornithine-related compound was accumulated as a responsive metabolite under exposure to PM and VOC stress. Exogenous ornithine can maintain plant efficiency and prevent stress by increasing proline and antioxidant enzymes. This study is the first to demonstrate plant "memory" mechanisms under PM and VOC stress.


Asunto(s)
Biodegradación Ambiental , Material Particulado , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/metabolismo , Contaminantes Atmosféricos/metabolismo , Asparagaceae/metabolismo , Malondialdehído/metabolismo
15.
Sci Rep ; 14(1): 2366, 2024 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-38287097

RESUMEN

Sericin, a silk protein from Bombyx mori (silkworms), has many applications, including cosmetics, anti-inflammation, and anti-cancer. Sericin complexes with nanoparticles have shown promise for breast cancer cell lines. Apoptosis, a programmed cell death mechanism, stops cancer cell growth. This study found that Sericin urea extract significantly affected HCT116 cell viability (IC50 = 42.00 ± 0.002 µg/mL) and caused apoptosis in over 80% of treated cells. S-FTIR analysis showed significant changes in Sericin-treated cells' macromolecule composition, particularly in the lipid and nucleic acid areas, indicating major cellular modifications. A transcriptomics study found upregulation of the apoptotic signaling genes FASLG, TNFSF10, CASP3, CASP7, CASP8, and CASP10. Early apoptotic proteins also showed that BAD, AKT, CASP9, p53, and CASP8 were significantly upregulated. A proteomics study illuminated Sericin-treated cells' altered protein patterns. Our results show that Sericin activated the extrinsic apoptosis pathway via the caspase cascade (CASP8/10 and CASP3/7) and the death receptor pathway, involving TNFSF10 or FASLG, in HCT116 cells. Upregulation of p53 increases CASP8, which activates CASP3 and causes HCT116 cell death. This multi-omics study illuminates the molecular mechanisms of Sericin-induced apoptosis, sheds light on its potential cancer treatment applications, and helps us understand the complex relationship between silk-derived proteins and cellular processes.


Asunto(s)
Bombyx , Sericinas , Animales , Humanos , Sericinas/metabolismo , Células HCT116 , Caspasa 3/metabolismo , Proteómica , Proteína p53 Supresora de Tumor/metabolismo , Seda/metabolismo , Bombyx/genética , Perfilación de la Expresión Génica
16.
bioRxiv ; 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38915640

RESUMEN

Antibacterial proteins inhibiting Pseudomonas aeruginosa have been identified in various phages and explored as antibiotic alternatives. Here, we isolated a phiKZ-like phage, Churi, which encodes 364 open reading frames. We examined 15 early-expressed phage proteins for their ability to inhibit bacterial growth, and found that gp335, closely related to phiKZ-gp14, exhibits antibacterial activity. Similar to phiKZ-gp14, recently shown to form a complex with the P. aeruginosa ribosome, we predict experimentally that gp335 interacts with ribosomal proteins, suggesting its involvement in protein translation. GFP-tagged gp335 clusters around the phage nucleus as early as 15 minutes post-infection and remains associated with it throughout the infection, suggesting its role in protein expression in the cell cytoplasm. CRISPR-Cas13-mediated deletion of gp355 reveals that the mutant phage has a prolonged latent period. Altogether, we demonstrate that gp335 is an antibacterial protein of nucleus-forming phages that associates with the ribosomes at the phage nucleus.

17.
Data Brief ; 47: 108937, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36819907

RESUMEN

Grammatophyllum speciosum is a traditional plant with beneficial functionalities for health. G. speciosum extracts can inhibit collagenase and nitric oxide without cellular toxicity in keratinocytes. The extracts have shown potential for use and formulation as cosmeceutical ingredients. However, the molecular mechanisms underlying these activities remain unknown. In this dataset, we used a proteomics approach to clarify the proteins that participate in the response of RAW264.7 macrophage cells to G. speciosum extracts. Cells were divided into two experimental groups, i.e., the control and treatment groups. In turn, the treatment group included two subgroups that were treated with 20 and 100  µg/mL of the extracts, respectively. The experiments were conducted using two biological replicates. The dataset was obtained from label-free proteomics using high-resolution tandem mass spectroscopy (LC-MS/MS) with four technical replicates. The quality control (QC) of the proteomics dataset was carried out using chromatography at the MS1 and MS2 levels, peptide mass deviation, peptide mass cleavage, sequence length, and total peptide intensity. The global proteome profile was analyzed using a principal component analysis (PCA). These datasets can clarify the potential pathways or proteins involved in the response to the extracts, to support their potential applicability for the development of cosmeceutical ingredients.

18.
Foods ; 12(21)2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37959013

RESUMEN

Coffee, a widely consumed beverage worldwide, undergoes postharvest methods that influence its physicochemical characteristics, while roasting modulates its composition, affecting sensory attributes. This study investigates the impact of distinct postharvest methods (washed and natural) on the antidiabetic activities, including α-amylase and DPP4, as well as the phytochemical profiling of geological indicator (GI) coffee beans (Coffea arabica L.). The results indicate notable differences in antidiabetic activity and phytochemical profiles between washed and natural processing methods. Coffee beans processed naturally exhibit significant suppression of DPP4 and α-amylase activities (p-value < 0.01) compared to beans processed using the washed technique. TLC profiling using the ratios of the solvent systems of ethyl acetate/dichloromethane (DCM) and acetone/DCM as separation solvents reveals dominant spots for the washed technique. LC-MS/MS-based untargeted metabolomics analysis using principle component analysis (PCA) clearly segregates samples processed by the natural and washed techniques without any overlap region. A total of 1114 phytochemicals, including amino acids and short peptides, are annotated. The natural processing of coffee beans has been shown to yield a slightly higher content of chlorogenic acid (CGA) compared to the washed processing method. Our findings highlight the distinct bioactivities and phytochemical compositions of GI coffee beans processed using different techniques. This information can guide consumers in choosing coffee processing methods that offer potential benefits in terms of alternative treatment for diabetes.

19.
PeerJ ; 11: e16143, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37810790

RESUMEN

Background: Methicillin-resistant Staphylococcus aureus (MRSA) is listed as a highly prioritized pathogen by the World Health Organization (WHO) to search for effective antimicrobial agents. Previously, we isolated a soil Brevibacillus sp. strain SPR19 from a botanical garden, which showed anti-MRSA activity. However, the active substances were still unknown. Methods: The cell-free supernatant of this bacterium was subjected to salt precipitation, cation exchange, and reversed-phase chromatography. The antimicrobial activity of pure substances was determined by broth microdilution assay. The peptide sequences and secondary structures were characterized by tandem mass spectroscopy and circular dichroism (CD), respectively. The most active anti-MRSA peptide underwent a stability study, and its mechanism was determined through scanning electron microscopy, cell permeability assay, time-killing kinetics, and biofilm inhibition and eradication. Hemolysis was used to evaluate the peptide toxicity. Results: The pure substances (BrSPR19-P1 to BrSPR19-P5) were identified as new peptides. Their minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC) against S. aureus and MRSA isolates ranged from 2.00 to 32.00 and 2.00 to 64.00 µg/mL, respectively. The sequence analysis of anti-MRSA peptides revealed a length ranging from 12 to 16 residues accompanied by an amphipathic structure. The physicochemical properties of peptides were predicted such as pI (4.25 to 10.18), net charge at pH 7.4 (-3 to +4), and hydrophobicity (0.12 to 0.96). The CD spectra revealed that all peptides in the water mainly contained random coil structures. The increased proportion of α-helix structure was observed in P2-P5 when incubated with SDS. P2 (NH2-MFLVVKVLKYVV-COOH) showed the highest antimicrobial activity and high stability under stressed conditions such as temperatures up to 100 °C, solution of pH 3 to 10, and proteolytic enzymes. P2 disrupted the cell membrane and caused bacteriolysis, in which its action was dependent on the incubation time and peptide concentration. Antibiofilm activity of P2 was determined by which the half-maximal inhibition of biofilm formation was observed at 2.92 and 4.84 µg/mL for S. aureus TISTR 517 and MRSA isolate 2468, respectively. Biofilm eradication of tested pathogens was found at the P2 concentration of 128 µg/mL. Furthermore, P2 hemolytic activity was less than 10% at concentrations up to 64 µg/mL, which reflected the hemolysis index thresholds of 32. Conclusion: Five novel anti-MRSA peptides were identified from SPR19. P2 was the most active peptide and was demonstrated to cause membrane disruption and cell lysis. The P2 activity was dependent on the peptide concentration and exposure time. This peptide had antibiofilm activity against tested pathogens and was compatible with human erythrocytes, supporting its potential use as an anti-MRSA agent in this post-antibiotic era.


Asunto(s)
Antiinfecciosos , Brevibacillus , Staphylococcus aureus Resistente a Meticilina , Humanos , Staphylococcus aureus , Hemólisis , Péptidos/química , Antiinfecciosos/farmacología , Biopelículas
20.
Foods ; 12(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36832854

RESUMEN

Obesity is a global health concern. Physical activities and eating nutrient-rich functional foods can prevent obesity. In this study, nano-liposomal encapsulated bioactive peptides (BPs) were developed to reduce cellular lipids. The peptide sequence NH2-PCGVPMLTVAEQAQ-CO2H was chemically synthesized. The limited membrane permeability of the BPs was improved by encapsulating the BPs with a nano-liposomal carrier, which was produced by thin-layer formation. The nano-liposomal BPs had a diameter of ~157 nm and were monodispersed in solution. The encapsulation capacity was 61.2 ± 3.2%. The nano-liposomal BPs had no significant cytotoxicity on the tested cells, keratinocytes, fibroblasts, and adipocytes. The in vitro hypolipidemic activity significantly promoted the breakdown of triglycerides (TGs). Lipid droplet staining was correlated with TG content. Proteomics analysis identified 2418 differentially expressed proteins. The nano-liposomal BPs affected various biochemical pathways beyond lipolysis. The nano-liposomal BP treatment decreased the fatty acid synthase expression by 17.41 ± 1.17%. HDOCK revealed that the BPs inhibited fatty acid synthase (FAS) at the thioesterase domain. The HDOCK score of the BPs was lower than that of orlistat, a known obesity drug, indicating stronger binding. Proteomics and molecular docking analyses confirmed that the nano-liposomal BPs were suitable for use in functional foods to prevent obesity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA