Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Neurosci ; 2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35641185

RESUMEN

The subthalamic nucleus (STN) has been implicated in motor and non-motor tasks, and is an effective target of deep brain stimulation (DBS) for the treatment of Parkinson's disease, likely in part due to the STN's projections outside of the basal ganglia to other brain regions. While there is some evidence of a disynaptic connection between the STN and the cerebellum via the pontine nuclei (PN), how the STN modulates the activity of the neurons in the PN remains unknown. Here we addressed this question using a combination of anatomical tracings, optogenetics, and in vivo electrophysiology in both wild-type and transgenic mice of both sexes. Approximately half of recorded neurons in the PN, which were located primarily in the medial area, responded with short latency to both single pulses and trains of optogenetic stimulation of channelrhodopsin (ChR2)-expressing STN axons in awake, head-restrained mice. Furthermore, the increase in the activity of PN neurons correlated with the strength of activation of STN axons, suggesting that the STN projections to the PN could, in principle, encode information in a graded manner. In addition, transsynaptic retrograde tracing confirmed that the STN sends disynaptic projections to the cerebellar cortex. These results suggest that the STN sends robust functional projections to the PN, which then propagate to the cerebellum, and have important implications for understanding motor control of normal conditions, and Parkinsonian symptoms, where this pathway may have a role in the therapeutic efficacy of STN DBS.Significance StatementThe primary excitatory nucleus in the basal ganglia, the subthalamic nucleus, is known to play a role in pathways modulating movement. The pontine nuclei are the main precerebellar nuclei, which transmit signals through their axonal projections to the cerebellum as mossy fibers. The pathway we have functionally characterized in this paper represents an additional cortex-independent pathway capable of relaying information between the basal ganglia and cerebellum. The effectiveness of subthalamic nucleus deep brain stimulation (STN-DBS) in Parkinson's disease suggests that this pathway could be explored as an avenue of investigation for therapeutic purposes.

2.
Dev Biol ; 391(1): 81-8, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24709321

RESUMEN

MicroRNAs (miRNAs) belonging to the evolutionary conserved miR-302 family play important functions in Embryonic Stem Cells (ESCs). The expression of some members, such as the human miR-302 and mouse miR-290 clusters, is regulated by ESC core transcription factors. However, whether miRNAs act downstream of signaling pathways involved in human ESC pluripotency remains unknown. The maintenance of pluripotency in hESCs is under the control of the TGFß pathway. Here, we show that inhibition of the Activin/Nodal branch of this pathway affects the expression of a subset of miRNAs in hESCs. Among them, we found miR-373, a member of the miR-302 family. Proper levels of miR-373 are crucial for the maintenance of hESC pluripotency, since its overexpression leads to differentiation towards the mesendodermal lineage. Among miR-373 predicted targets, involved in TGFß signaling, we validated the Nodal inhibitor Lefty. Our work suggests a crucial role for the interplay between miRNAs and signaling pathways in ESCs.


Asunto(s)
Células Madre Embrionarias/citología , Endodermo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Mesodermo/metabolismo , MicroARNs/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Regiones no Traducidas 3' , Diferenciación Celular , Linaje de la Célula , Medios de Cultivo Condicionados/química , Células Madre Embrionarias/metabolismo , Células HeLa , Humanos , Factores de Determinación Derecha-Izquierda/metabolismo , MicroARNs/genética , Transducción de Señal , Transgenes
3.
Stem Cells ; 31(1): 35-47, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23034881

RESUMEN

Human embryonic stem cells (hESCs) provide a valuable window into the dissection of the molecular circuitry underlying the early formation of the human forebrain. However, dissection of signaling events in forebrain development using current protocols is complicated by non-neural contamination and fluctuation of extrinsic influences. Here, we show that SMAD7, a cell-intrinsic inhibitor of transforming growth factor-ß (TGFß) signaling, is sufficient to directly convert pluripotent hESCs to an anterior neural fate. Time course gene expression revealed downregulation of MAPK components, and combining MEK1/2 inhibition with SMAD7-mediated TGFß inhibition promoted telencephalic conversion. Fibroblast growth factor-MEK and TGFß-SMAD signaling maintain hESCs by promoting pluripotency genes and repressing neural genes. Our findings suggest that in the absence of these cues, pluripotent cells simply revert to a program of neural conversion. Hence, the "primed" state of hESCs requires inhibition of the "default" state of neural fate acquisition. This has parallels in amphibians, suggesting an evolutionarily conserved mechanism.


Asunto(s)
Células Madre Embrionarias/fisiología , Proteína smad7/metabolismo , Telencéfalo/citología , Telencéfalo/embriología , Encéfalo/embriología , Encéfalo/metabolismo , Línea Celular , Células Madre Embrionarias/citología , Factores de Crecimiento de Fibroblastos/metabolismo , Humanos , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Neurogénesis , Células Madre Pluripotentes/metabolismo , Telencéfalo/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
4.
Netw Neurosci ; 8(1): 260-274, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38562296

RESUMEN

The zona incerta (ZI) is a subthalamic structure that has been implicated in locomotion, fear, and anxiety. Recently interest has grown in its therapeutic efficacy in deep brain stimulation in movement disorders. This efficacy might be due to the ZI's functional projections to the other brain regions. Notwithstanding some evidence of anatomical connections between the ZI and the inferior olive (IO) and the pontine nuclei (PN), how the ZI modulates the neuronal activity in these regions remains to be determined. We first tested this by monitoring responses of single neurons in the PN and IO to optogenetic activation of channelrhodopsin-expressing ZI axons in wild-type mice, using an in vivo awake preparation. Stimulation of short, single pulses and trains of stimuli at 20 Hz elicited rapid responses in the majority of recorded cells in the PN and IO. Furthermore, the excitatory response of PN neurons scaled with the strength of ZI activation. Next, we used in vitro electrophysiology to study synaptic transmission at ZI-IO synapses. Optogenetic activation of ZI axons evoked a strong excitatory postsynaptic response in IO neurons, which remained robust with repeated stimulation at 20 Hz. Overall, our results demonstrate a functional connection within ZI-PN and ZI-IO pathways.

5.
Cells ; 11(10)2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35626693

RESUMEN

Interest is growing in using cell replacements to repair the damage caused by an ischemic stroke. Yet, the usefulness of cell transplants can be limited by the variability observed in their successful engraftment. For example, we recently showed that, although the inclusion of donor-derived vascular cells was necessary for the formation of large grafts (up to 15 mm3) at stroke sites in mice, the size of the grafts overall remained highly variable. Such variability can be due to differences in the cells used for transplantation or the host environment. Here, as possible factors affecting engraftment, we test host sex, host age, the extent of ischemic damage, time of transplant after ischemia, minor differences in donor cell maturity, and cell viability at the time of transplantation. We find that graft size at stroke sites correlates with the size of ischemic damage, host sex (females having graft sizes that correlate with damage), donor cell maturity, and host age, but not with the time of transplant after stroke. A general linear model revealed that graft size is best predicted by stroke severity combined with donor cell maturity. These findings can serve as a guide to improving the reproducibility of cell-based repair therapies.


Asunto(s)
Accidente Cerebrovascular , Animales , Femenino , Humanos , Isquemia , Ratones , Neuronas , Reproducibilidad de los Resultados , Donantes de Tejidos
6.
Stem Cell Res ; 59: 102642, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34971934

RESUMEN

Neural precursor cells (NPCs) transplanted into the adult neocortex generate neurons that synaptically integrate with host neurons, supporting the possibility of achieving functional tissue repair. However, poor survival and functional neuronal recovery of transplanted NPCs greatly limits engraftment. Here, we test the hypothesis that combining blood vessel-forming vascular cells with neuronal precursors improves engraftment. By transplanting mixed embryonic neocortical cells into adult mice with neocortical strokes, we show that transplant-derived neurons synapse with appropriate targets while donor vascular cells form vessels that fuse with the host vasculature to perfuse blood within the graft. Although all grafts became vascularized, larger grafts had greater contributions of donor-derived vessels that increased as a function of their distance from the host-graft border. Moreover, excluding vascular cells from the donor cell population strictly limited graft size. Thus, inclusion of vessel-forming vascular cells with NPCs is required for more efficient engraftment and ultimately for tissue repair.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA