Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 40(12): 5718-30, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22373915

RESUMEN

DNA mimic proteins occupy the DNA binding sites of DNA-binding proteins, and prevent these sites from being accessed by DNA. We show here that the Neisseria conserved hypothetical protein DMP19 acts as a DNA mimic. The crystal structure of DMP19 shows a dsDNA-like negative charge distribution on the surface, suggesting that this protein should be added to the short list of known DNA mimic proteins. The crystal structure of another related protein, NHTF (Neisseria hypothetical transcription factor), provides evidence that it is a member of the xenobiotic-response element (XRE) family of transcriptional factors. NHTF binds to a palindromic DNA sequence containing a 5'-TGTNAN(11)TNACA-3' recognition box that controls the expression of an NHTF-related operon in which the conserved nitrogen-response protein [i.e. (Protein-PII) uridylyltransferase] is encoded. The complementary surface charges between DMP19 and NHTF suggest specific charge-charge interaction. In a DNA-binding assay, we found that DMP19 can prevent NHTF from binding to its DNA-binding sites. Finally, we used an in situ gene regulation assay to provide evidence that NHTF is a repressor of its down-stream genes and that DMP19 can neutralize this effect. We therefore conclude that the interaction of DMP19 and NHTF provides a novel gene regulation mechanism in Neisseria spps.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Neisseria meningitidis/genética , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , ADN Bacteriano/metabolismo , Regulación Bacteriana de la Expresión Génica , Imitación Molecular , Datos de Secuencia Molecular , Neisseria meningitidis/metabolismo
2.
Infect Immun ; 77(9): 3522-32, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19528210

RESUMEN

Neisseria gonorrhoeae, the etiologic agent of gonorrhea, is frequently asymptomatic in women, often leading to chronic infections. One factor contributing to this may be biofilm formation. N. gonorrhoeae can form biofilms on glass and plastic surfaces. There is also evidence that biofilm formation may occur during natural cervical infection. To further study the mechanism of gonococcal biofilm formation, we compared transcriptional profiles of N. gonorrhoeae biofilms to planktonic profiles. Biofilm RNA was extracted from N. gonorrhoeae 1291 grown for 48 h in continuous-flow chambers over glass. Planktonic RNA was extracted from the biofilm runoff. In comparing biofilm with planktonic growth, 3.8% of the genome was differentially regulated. Genes that were highly upregulated in biofilms included aniA, norB, and ccp. These genes encode enzymes that are central to anaerobic respiratory metabolism and stress tolerance. Downregulated genes included members of the nuo gene cluster, which encodes the proton-translocating NADH dehydrogenase. Furthermore, it was observed that aniA, ccp, and norB insertional mutants were attenuated for biofilm formation on glass and transformed human cervical epithelial cells. These data suggest that biofilm formation by the gonococcus may represent a response that is linked to the control of nitric oxide steady-state levels during infection of cervical epithelial cells.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Perfilación de la Expresión Génica , Neisseria gonorrhoeae/fisiología , Anaerobiosis , Antígenos Bacterianos/genética , Proteínas de la Membrana Bacteriana Externa/genética , Células Cultivadas , Citocromo-c Peroxidasa/genética , Femenino , Humanos , Neisseria gonorrhoeae/genética , Óxido Nítrico/farmacología , Análisis de Secuencia por Matrices de Oligonucleótidos , Consumo de Oxígeno , Fenotipo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
3.
Protein Eng Des Sel ; 25(11): 741-9, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23112234

RESUMEN

D-Serine is a co-agonist of N-methyl D-aspartate, a glutamate receptor, which is a major excitatory neurotransmitter receptor in the brain. Human serine racemase (hSR) and serine dehydratase (hSDH) are two important pyridoxal-5'-phosphate-dependent enzymes that synthesize and degrade D-serine, respectively. hSR and hSDH have significant sequence homology (28% identity) and are similar in their structural folds (root-mean-square deviation, 1.12 Å). Sequence alignment and structural comparison between hSR and hSDH reveal that S84 in hSR and A65 in hSDH play important roles in their respective enzyme activities. We surmise that exchange of these two amino acids by introducing S84A hSR and A65S hSDH mutants may result in switching their protein functions. To understand the modulating mechanism of the key residues, mutants S84A in hSR and A65S in hSDH were constructed to monitor the change of activities. The structure of A65S hSDH mutant was determined at 1.3 Å resolution (PDB 4H27), elucidating the role of this critical amino acid. Our study demonstrated S84A hSR mutant behaved like hSDH, whereas A65S hSDH mutant acquired an additional function of using D-serine as a substrate.


Asunto(s)
Sustitución de Aminoácidos , L-Serina Deshidratasa/genética , L-Serina Deshidratasa/metabolismo , Racemasas y Epimerasas/genética , Racemasas y Epimerasas/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , Humanos , L-Serina Deshidratasa/química , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Ingeniería de Proteínas , Racemasas y Epimerasas/química , Alineación de Secuencia , Homología de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA