Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Environ Sci Technol ; 56(15): 10732-10742, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35816335

RESUMEN

Adverse effects of microplastics on soil abiotic properties have been attributed to changes in the soil structure. Notably, however, the effects on the supramolecular structure of soil organic matter (SOM) have been overlooked, despite their key role in most soil properties. This work accordingly investigated the influence of plastic residues at various concentrations on the SOM supramolecular structure and soil water properties. To model plastic residues of micro-bioplastics, spherical or spherical-like poly-3-hydroxybutyrate (PHB) was used, while polyethylene terephthalate (PET) was used as a model of conventional microplastics. The results suggest that both types of plastic residues affect SOM properties, including physical stability (represented by water molecule bridges), water binding (represented by decreased desorption enthalpy or faster desorption), and the stability of SOM aliphatic crystallites. The results further showed that the polyester-based microplastics and micro-bioplastics affected the SOM abiotic characteristics and that therefore the observed effects cannot be attributed solely to changes in the whole soil structure. Notably, similar adverse effects on SOM were observed for both tested plastic residues, although the effect of PHB was less pronounced compared to that of PET.


Asunto(s)
Microplásticos , Suelo , Hidroxibutiratos , Plásticos , Poliésteres , Tereftalatos Polietilenos , Suelo/química , Agua
2.
Molecules ; 27(6)2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35335267

RESUMEN

Conventional plastics are being slowly replaced by biodegradable ones to prevent plastic pollution. However, in the natural environment, the biodegradation of plastics is usually slow or incomplete due to unfavorable conditions and leads to faster micro-bioplastic formation. Many analytical methods were developed to determine microplastics, but micro-bioplastics are still overlooked. This work presents a simple method for determining poly-3-hydroxybutyrate and polylactic acid micro-bioplastics in soil based on the thermogravimetry-mass spectrometry analysis of low molecular gases evolved during pyrolysis. For the method development, model soils containing different soil organic carbon contents were spiked with micro-bioplastics. Specific gaseous pyrolysis products of the analytes were identified, while the ratio of their amounts appeared to be constant above the level of detection of the suggested method. The constant ratio was explained as a lower soil influence on the evolution of the gaseous product, and it was suggested as an additional identification parameter. The advantages of the presented method are no sample pretreatment, presumably no need for an internal standard, low temperature needed for the transfer of gaseous products and the possibility of using its principles with other, cheaper detectors. The method can find application in the verification of biodegradation tests and in the monitoring of soils after the application of biodegradable products.


Asunto(s)
Plásticos , Suelo , Biodegradación Ambiental , Carbono , Gases , Plásticos/química , Poliésteres , Suelo/química
3.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34638870

RESUMEN

Agriculture in the 21st century is facing multiple challenges, such as those related to soil fertility, climatic fluctuations, environmental degradation, urbanization, and the increase in food demand for the increasing world population. In the meanwhile, the scientific community is facing key challenges in increasing crop production from the existing land base. In this regard, traditional farming has witnessed enhanced per acre crop yields due to irregular and injudicious use of agrochemicals, including pesticides and synthetic fertilizers, but at a substantial environmental cost. Another major concern in modern agriculture is that crop pests are developing pesticide resistance. Therefore, the future of sustainable crop production requires the use of alternative strategies that can enhance crop yields in an environmentally sound manner. The application of rhizobacteria, specifically, plant growth-promoting rhizobacteria (PGPR), as an alternative to chemical pesticides has gained much attention from the scientific community. These rhizobacteria harbor a number of mechanisms through which they promote plant growth, control plant pests, and induce resistance to various abiotic stresses. This review presents a comprehensive overview of the mechanisms of rhizobacteria involved in plant growth promotion, biocontrol of pests, and bioremediation of contaminated soils. It also focuses on the effects of PGPR inoculation on plant growth survival under environmental stress. Furthermore, the pros and cons of rhizobacterial application along with future directions for the sustainable use of rhizobacteria in agriculture are discussed in depth.


Asunto(s)
Bacterias/crecimiento & desarrollo , Productos Agrícolas , Desarrollo de la Planta , Raíces de Plantas , Rizosfera , Microbiología del Suelo , Biodegradación Ambiental , Producción de Cultivos , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/microbiología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Estrés Fisiológico
4.
Ecotoxicol Environ Saf ; 167: 422-428, 2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-30368135

RESUMEN

Physical and chemical structure affect properties of dissolved organic matter (DOM). Recent observations revealed that heating and cooling cycles at higher temperature amplitude lead to a change in DOM physical conformation assumingly followed by a slow structural relaxation. In this study, changes at lower temperature amplitudes and their relation to DOM composition were investigated using simultaneous measurements of density and ultrasonic velocity in order to evaluate the adiabatic compressibility, which is sensitive indicator of DOM structural microelasticity. Six fulvic acids (FAs) having various origins were analyzed at concentrations of 0.12, 0.6 and 1.2 g L-1 and at different temperature amplitudes. First, we validated that the used technique is sensitive to distinguish conclusively the structural changes upon heating and cooling of DOM with heating/cooling amplitude of ±â€¯3 °C and higher. This amplitude was then applied to observe the relationship between change in adiabatic compressibility and chemical composition of FA. No correlation was observed with elemental composition and aromatic structures. Positive correlations were observed with content of alkyl moieties, carboxylic and carbonyl carbons and biological activity. Based on literature data, it was concluded that alkyl moieties undergo (re)crystalization during thermal fluctuation and their structural relaxation back is very slow (if occurs). The polar moieties form a flexible hydrogel responding to thermal fluctuation by moderate dissolution and re-aggregation. Negative correlation was observed in relation to the amount of peptide and O-alkyl systems, which can be attributed to very fast structural relaxation of proteinaceous materials, i.e. their larger content leads to lower difference between original and heat-induced compressibility. Last, the increase of the heating/cooling amplitude from ±â€¯3 to ±â€¯15 °C resulted in an increase of the change of the adiabatic compressibility and in the extension of the relaxation time needed for DOM structure to return to the equilibrium. We conclude that this increase is caused by the increase in inner energy, and DOM conformation can reach a cascade of energy minima, which may influence DOM reactivity and biodegradability.


Asunto(s)
Benzopiranos/química , Conformación Molecular , Compuestos Orgánicos/química , Temperatura , Benzopiranos/análisis , Biodegradación Ambiental , Carbono , Cristalización
5.
Anal Chem ; 90(15): 8793-8799, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-29932666

RESUMEN

The use of plastic materials in daily life, industry, and agriculture can cause soil pollution with plastic fragments down to the micrometer scale, i.e., microplastics. Quantitative assessment of microplastics in soil has been limited so far. Until now, microplastic analyses in soil require laborious sample cleanup and are mostly restricted to qualitative assessments. In this study, we applied thermogravimetry-mass spectrometry (TGA-MS) to develop a method for the direct quantitative analysis of poly(ethylene terephthalate) (PET) without further sample pretreatment. For this, soil samples containing 1.61 ± 0.15 wt % organic matter were spiked with 0.23-4.59 wt % PET bottle recyclate microplastics. dl-Cysteine was used as the internal standard (IS). Sample mixtures were pyrolyzed with a 5 K min-1 ramp (40-1000 °C), while sample mass loss and MS signal intensity of typical PET pyrolysis products were recorded. We found MS signal intensities linearly responding to microplastic concentrations. The most-promising results were obtained with the IS-corrected PET pyrolysis product vinylbenzene/benzoic acid ( m/ z = 105, adj. R2 = 0.987). The limits of detection and quantification were 0.07 and 1.72 wt % PET, respectively. Our results suggest that TGA-MS can be an easy and viable complement to existing methods such as pyrolysis or thermogravimetry-thermal desorption assays followed by gas chromatography/mass spectrometry detection or to spectral microscopy techniques.

6.
Langmuir ; 34(40): 12174-12182, 2018 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-30207471

RESUMEN

Adsorption is the main mechanism of capturing water in soil organic matter (SOM) under arid conditions. This process is governed by hydrophilic sites, which are gradually bridged via water molecule bridges (WaMB). Until now, the link between WaMB and other types of water molecules occurring in SOM during sorption has not been systematically investigated. In this work, we compared the formation and stability of WaMB simultaneously with the total water content, strength of water binding, and kinetics of water sorption in a vacuum-dried model SOM (sapric histosol) exposed to different relative water pressures. The same parameters were then determined in SOM exposed to reduced relative pressures. The adsorption resulted in an adsorption isotherm with a Langmuir-like part below a relative pressure of 0.5 and a Brunauer-Emmett-Teller-like isotherm at higher relative pressures. The WaMB formation was observed at a relative pressure of 0.32, which represented the pressure at which Langmuir-like part reached a plateau. The binding energy showed a linear decrease with an increasing pressure; the slope increased at a relative pressure of 0.46. Reduction of relative pressures above 0.46 showed that the water content remained constant, but the binding energy was lowered. In contrast, below a relative pressure of 0.46, the water content decreased, but the binding energy was not changed. The results indicate that in SOM exposed to different relative pressures, water exists in three types: first, it is strongly bound to primary sorption sites (Langmuir-like), second, it occurs in the form of WaMB water, which bridges functional groups and where predominates water-water interactions, and third, it occurs in the form of phase water, which is located in larger pores similar to the pure water phase. The latter either surrounds the WaMB and destabilizes it or, for higher water content, links individual WaMB and successively reduces their stabilizing effect. Formation of phase water leads to swelling processes including plasticizing effects and potential volume changes of SOM. Accordingly, the results suggest that at lower water relative pressures WaMB stabilizes the SOM structure, whereas at higher water relative pressures, it influences the formation of phase water and thereby the total water content in SOM.

8.
J Phys Chem A ; 121(12): 2367-2376, 2017 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-28252302

RESUMEN

Water molecules in soil organic matter (SOM) can form clusters bridging neighboring molecular segments (water molecule bridges, WaMBs). WaMBs are hypothesized to enhance the physical entrapment of organic chemicals and to control the rigidity of the SOM supramolecular structure. However, the understanding of WaMBs dynamics in SOM is still limited. We investigated the relation between WaMBs stability and the physicochemical properties of their environment by treating a sapric histosol with various solvents and organic chemicals. On the basis of predictions from molecular modeling, we hypothesized that the stability of WaMBs, measured by differential scanning calorimetry, increases with the decreasing ability of a chemical to interact with water molecules of the WaMBs. The interaction ability between WaMBs and the chemicals was characterized by linear solvation energy relationships. The WaMBs stability in solvent-treated samples was found to decrease with increasing ability of a solvent to undergo H-donor/acceptor interactions. Spiking with an organic chemical stabilized (naphthalene) or destabilized (phenol) the WaMBs. The WaMBs stability and matrix rigidity were generally reduced strongly and quickly when hydrophilic chemicals entered the soil. The physicochemical aging following this destabilization is slow but leads to successive WaMBs stabilization and matrix stiffening.

9.
Environ Sci Technol ; 50(5): 2210-6, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26815011

RESUMEN

Knowledge of structural dynamics of dissolved organic matter (DOM) is of paramount importance for understanding DOM stability and role in the fate of solubilized organic and inorganic compounds (e.g., nutrients and pollutants), either in soils or aquatic systems. In this study, fast field cycling (FFC) (1)H NMR relaxometry was applied to elucidate structural dynamics of terrestrial DOM, represented by two structurally contrasting DOM models such as Suwanee River (SRFA) and Pahokee peat (PPFA) fulvic acids purchased by the International Humic Substance Society. Measurement of NMR relaxation rate of water protons in heating-cooling cycles revealed structural hysteresis in both fulvic acids. In particular, structural hysteresis was related to the delay in re-establishing water network around fulvic molecules as a result of temperature fluctuations. The experiments revealed that the structural temperature dependency and hysteresis were more pronounced in SRFA than in PPFA. This was attributed to the larger content of hydrogel-like structure in SRFA stabilized, at a larger extent, by H-bonds between carboxylic and phenolic groups. Moreover, results supported the view that terrestrial DOM consist of a hydrophobic rigid core surrounded by progressively assembling amphiphilic and polar molecules, which form an elastic structure that can mediate reactivity of the whole DOM.


Asunto(s)
Benzopiranos/química , Suelo/química , Agua/química , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Espectroscopía de Resonancia Magnética/métodos , Ríos/química , Temperatura
10.
Environ Sci Technol ; 50(8): 4278-88, 2016 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-27007480

RESUMEN

Concentrations of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), and polybrominated diphenyl ethers (PBDEs) in air and soil, their fugacities, and the experimental soil-air partitioning coefficient (KSA) were determined at two background sites in the Gt. Hungarian Plain in August 2013. The concentrations of the semivolatile organic compounds (SOCs) in the soil were not correlated with the organic carbon content but with two indirect parameters of mineralization and aromaticity, suggesting that soil organic matter quality is an important parameter affecting the sorption of SOCs onto soils. Predictions based on the assumption that absorption is the dominant process were in good agreement with the measurements for PAHs, OCPs, and the low chlorinated PCBs. In general, soils were found to be a source of PAHs, high chlorinated PCBs, the majority of OCPs and PBDEs, and a sink for the low chlorinated PCBs and γ-hexachlorocyclohexane. Diurnal variations in the direction of the soil-air exchange were found for two compounds (i.e., pentachlorobenzene and p,p'-dichlorodiphenyldichloroethane), with volatilization during the day and deposition in the night. The concentrations of most SOCs in the near-ground atmosphere were dominated by revolatilization from the soil.


Asunto(s)
Contaminantes Atmosféricos/análisis , Plaguicidas/análisis , Bifenilos Policlorados/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Compuestos Orgánicos Volátiles/análisis , Atmósfera , Clorobencenos/análisis , Monitoreo del Ambiente , Hexaclorociclohexano/análisis , Hungría , Hidrocarburos Clorados/análisis , Suelo/química , Contaminantes del Suelo/análisis
11.
Magn Reson Chem ; 54(5): 365-70, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27062147

RESUMEN

Many soil functions depend on the interaction of water with soil. The affinity of water for soils can be altered by applying soil amendments like stone meal, manure, or biochar (a carbonaceous material obtained by pyrolysis of biomasses). In fact, the addition of hydrophobic biochar to soil may increase soil repellency, reduce water-adsorbing capacity, inhibit microbial activity, alter soil filter, buffer, storage, and transformation functions. For this reason, it is of paramount importance to monitor water affinity for biochar surface (also referred to as 'wettability') in order to better address its applications in soil systems. In this study, we propose the use of fast field cycling NMR relaxometry technique with the application of a new mathematical model for data interpretation, as a valid alternative to the traditional contact angle (CA) measurements for biochar wettability evaluation. Either NMR or CA results revealed the same wettability trend for the biochars studied here. The advantage of NMR relaxometry over CA measurements lies in the possibility to obtain at the microscopic level a variety of different information in only one shot. In fact, while CA provides only wettability evaluation, NMR relaxometry also allows achievement of the mechanisms for water molecular dynamics on biochar surface, thereby leading to the possibility to understand better, in future research, the role of biochar in increasing soil quality and plant nutrition.


Asunto(s)
Carbón Orgánico/química , Agua/química , Espectroscopía de Protones por Resonancia Magnética , Propiedades de Superficie , Humectabilidad
12.
Chemosphere ; 352: 141300, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38286312

RESUMEN

The search for eco-friendly substitutes for traditional plastics has led to the production of biodegradable bioplastics. However, concerns have been raised about the impact of bioplastic biodegradation on soil health. Despite these concerns, the potential negative consequences of bioplastics during various stages of biodegradation remain underexplored. Therefore, this study aims to investigate the impact of micro-bioplastics made of poly-3-hydroxybutyrate (P3HB) on the properties of three different soils. In our ten-month experiment, we investigated the impact of poly-3-hydroxybutyrate (P3HB) on Chernozem, Cambisol, and Phaeozem soils. Our study focused on changes in soil organic matter (SOM), microbial activity, and the level of soil carbon and nitrogen. The observed changes indicated an excessive level of biodegradation of SOM after the soils were enriched with micro-particles of P3HB, with concentrations ranging from 0.1% to 3%. The thermogravimetric analysis confirmed the presence of residual P3HB (particularly in the 3% treatment) and underscored the heightened biodegradation of SOM, especially in the more stable SOM fractions. This was notably evident in Phaeozem soils, where even the stable SOM pool was affected. Elemental analysis revealed changes in soil organic carbon content following P3HB degradation, although nitrogen levels remained constant. Enzymatic activity was found to vary with soil type and responded differently across P3HB concentration levels. Our findings confirmed that P3HB acts as a bioavailable carbon source. Its biodegradation stimulates the production of enzymes, which in turn affects various soil elements, indicating complex interactions within the soil ecosystem.


Asunto(s)
Ecosistema , Polihidroxibutiratos , Suelo , Carbono/análisis , Poliésteres , Hidroxibutiratos , Biopolímeros , Nitrógeno/análisis
13.
Sci Total Environ ; 946: 174328, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38945229

RESUMEN

Biodegradable plastics play a vital role in addressing global plastics disposal challenges. Poly-3-hydroxybutyrate (P3HB) is a biodegradable bacterial intracellular storage polymer with substantial usage potential in agriculture. Poly-3-hydroxybutyrate and its degradation products are non-toxic; however, previous studies suggest that P3HB biodegradation negatively affects plant growth because the microorganisms compete with plants for nutrients. One possible solution to this issue could be inoculating soil with a consortium of plant growth-promoting and N-fixing microorganisms. To test this hypothesis, we conducted a pot experiment using lettuce (Lactuca sativa L. var. capitata L.) grown in soil amended with two doses (1 % and 5 % w/w) of P3HB and microbial inoculant (MI). We tested five experimental variations: P3HB 1 %, P3HB 1 % + MI, P3HB 5 %, P3HB 5 % + MI, and MI, to assess the impact of added microorganisms on plant growth and P3HB biodegradation. The efficient P3HB degradation, which was directly dependent on the amount of bioplastics added, was coupled with the preferential utilization of P3HB as a carbon (C) source. Due to the increased demand for nutrients in P3HB-amended soil by microbial degraders, respiration and enzyme activities were enhanced. This indicated an increased mineralisation of C as well as nitrogen (N), sulphur (S), and phosphorus (P). Microbial inoculation introduced specific bacterial taxa that further improved degradation efficiency and nutrient turnover (N, S, and P) in P3HB-amended soil. Notably, soil acidification related to P3HB was not the primary factor affecting plant growth inhibition. However, despite plant growth-promoting rhizobacteria and N2-fixing microorganisms originating from MI, plant biomass yield remained limited, suggesting that these microorganisms were not entirely successful in mitigating the growth inhibition caused by P3HB.

14.
Heliyon ; 9(12): e23128, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38076089

RESUMEN

The extensive production and use of plastics have led to widespread pollution of the environment. As a result, biodegradable polymers (BDPs) are receiving a great deal of attention because they are expected to degrade entirely in the environment. Therefore, in this work, we tested the effect of two fractions (particles <63 µm and particles from 63 to 125 µm) of biodegradable poly-3-hydroxybutyrate (P3HB) at different concentrations on the specific growth rate, root length, and photosynthetic pigment content of the freshwater plant Lemna minor. Microparticles with similar properties made of polyethylene terephthalate (PET) were also tested for comparison. No adverse effects on the studied parameters were observed for either size fraction; the only effect was the root elongation with increasing P3HB concentration. PET caused statistically significant root elongation only in the highest concentration, but the effect was not as extensive as for P3HB. The development of a biofilm on P3HB particles was observed during the experiment, and the nutrient sorption experiment showed that the sorption capacity of P3HB was greater than PET's. Therefore, depleting the nutrients from the solution could force the plant to increase the root surface area by their elongation. The results suggest that biodegradable microplastics may cause secondary nutrient problems in the aquatic environment due to their biodegradability.

15.
Chemosphere ; 328: 138574, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37019403

RESUMEN

Scientists studying the environment, physiology, and biology have been particularly interested in nickel (Ni) because of its dual effects (essentiality and toxicity) on terrestrial biota. It has been reported in some studies that without an adequate supply of Ni, plants are unable to finish their life cycle. The safest Ni limit for plants is 1.5 µg g-1, while the limit for soil is between 75 and 150 µg g-1. Ni at lethal levels harms plants by interfering with a variety of physiological functions, including enzyme activity, root development, photosynthesis, and mineral uptake. This review focuses on the occurrence and phytotoxicity of Ni with respect to growth, physiological and biochemical aspects. It also delves into advanced Ni detoxification mechanisms such as cellular modifications, organic acids, and chelation of Ni by plant roots, and emphasizes the role of genes involved in Ni detoxification. The discussion has been carried out on the current state of using soil amendments and plant-microbe interactions to successfully remediate Ni from contaminated sites. This review has identified potential drawbacks and difficulties of various strategies for Ni remediation, discussed the importance of these findings for environmental authorities and decision-makers, and concluded by noting the sustainability concerns and future research needs regarding Ni remediation.


Asunto(s)
Níquel , Contaminantes del Suelo , Níquel/análisis , Suelo , Plantas , Fotosíntesis , Raíces de Plantas/química , Contaminantes del Suelo/análisis , Biodegradación Ambiental
16.
Front Plant Sci ; 13: 1028101, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36275592

RESUMEN

The ever-increasing human population associated with high rate of waste generation may pose serious threats to soil ecosystem. Nevertheless, conversion of agricultural and food wastes to biochar has been shown as a beneficial approach in sustainable soil management. However, our understanding on how integration of biochar obtained from different wastes and mineral fertilizers impact soil microbiological indicators is limited. Therefore, in the present study the effects of agricultural (AB) and food waste derived (FWB) biochars with and without mineral fertilizer (MF) on crop growth and soil health indicators were compared in a pot experiment. In particular, the impacts of applied amendments on soil microbiological health indicators those related to microbial extracellular (C, N and P acquiring) enzymes, soil basal as well as different substrate induced respirations along with crop's agronomic performance were explored. The results showed that compared to the control, the amendment with AB combined with MF enhanced the crop growth as revealed by higher above and below ground biomass accumulation. Moreover, both the biochars (FWB and AB) modified soil chemical properties (pH and electric conductivity) in the presence or absence of MF as compared to control. However, with the sole application of MF was most influential strategy to improve soil basal and arginin-induced respiration as well as most of the soil extracellular enzymes, those related to C, N and P cycling. Use of FWB resulted in enhanced urease activity. This suggested the role of MF and FWB in nutrient cycling and plant nutrition. Thus, integration of biochar and mineral fertilizers is recommended as an efficient and climate smart package for sustainable soil management and crop production.

17.
Materials (Basel) ; 15(24)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36556809

RESUMEN

Conversion of poultry litter into fertilizer presents an environmentally friendly way for its disposal. The amendment of stabilizing sorption materials (e.g., biochar) to broiler chicken rearing seems promising, as it protects produced litter from nutrient losses and improves fertilizing efficacy. Thus, a pot experiment was carried out with maize and organic fertilizers produced from biochar-amended chicken bedding. The properties of three types of poultry-matured litter, amended with biochar at 0%, 10% and 20% dose, were analyzed. These matured litters were added to soil and physicochemical, biological properties and dry aboveground crop biomass yield were determined. Both biochar doses improved matured litter dry matter (+29%, +68% compared to unamended litter) and organic carbon (+5%, +9%). All three fertilizers significantly increased dry plant aboveground biomass yield (+3% and +42% compared to control litter-treated variant) and N-acetyl-ß-D-glucosaminidase activity (+51%, +57%) compared to unamended control soil. The 20% biochar poultry-matured litter derived the highest dry plant aboveground biomass, highest respiration induced by D-glucose (+53%) and D-mannose (+35%, compared to control litter-treated variant), and decreased pH (-6% compared to unamended control). Biochar-derived modification of poultry litter maturation process led to organic fertilizer which enhanced degradation of soil organic matter in the subsequently amended soil. Furthermore, this type of fertilizer, compared to conventional unamended litter-based type, increased microbial activity, nutrient availability, and biomass yield of maize in selected biochar doses, even under conditions of significant soil acidification.

18.
Front Plant Sci ; 13: 852851, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35646024

RESUMEN

The unprecedented rise in the human population has increased pressure on agriculture production. To enhance the production of crops, farmers mainly rely on the use of chemical fertilizers and pesticides, which have, undoubtedly, increased the production rate but at the cost of losing sustainability of the environment in the form of genetic erosion of indigenous varieties of crops and loss of fertile land. Therefore, farming practices need to upgrade toward the use of biological agents to maintain the sustainability of agriculture and the environment. In this context, using microbial inoculants and amino acids may present a more effective, safer, economical, and sustainable alternative means of realizing higher productivity of crops. Therefore, field experiments were performed on chickpea for two succeeding years using Rhizobium and L-methionine (at three levels, i.e., 5, 10, and 15 mg L-1) separately and in combinations. The results show that the application of Rhizobium and all the three levels of L-methionine increased the growth and yield of chickpea. There was a higher response to a lower dose of L-methionine, i.e., 5 mg L-1. It has been found that maximum grain yield (39.96 and 34.5% in the first and second years, respectively) of chickpea was obtained with the combined use of Rhizobium and L-methionine (5 mg L-1). This treatment was also the most effective in enhancing nodule number (91.6 and 58.19%), leghemoglobin (161.1 and 131.3%), and protein content (45.2 and 45%) of plants in both years. Likewise, photosynthetic pigments and seed chemical composition were significantly improved by Rhizobium inoculation. However, these effects were prominent when Rhizobium inoculation was accompanied by L-methionine. In conclusion, utilizing the potential of combined use of L-methionine and microbial inoculant could be a better approach for developing sustainable agriculture production.

19.
Front Plant Sci ; 13: 773815, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35371142

RESUMEN

Cadmium (Cd) is a major environmental contaminant due to its widespread industrial use. Cd contamination of soil and water is rather classical but has emerged as a recent problem. Cd toxicity causes a range of damages to plants ranging from germination to yield suppression. Plant physiological functions, i.e., water interactions, essential mineral uptake, and photosynthesis, are also harmed by Cd. Plants have also shown metabolic changes because of Cd exposure either as direct impact on enzymes or other metabolites, or because of its propensity to produce reactive oxygen species, which can induce oxidative stress. In recent years, there has been increased interest in the potential of plants with ability to accumulate or stabilize Cd compounds for bioremediation of Cd pollution. Here, we critically review the chemistry of Cd and its dynamics in soil and the rhizosphere, toxic effects on plant growth, and yield formation. To conserve the environment and resources, chemical/biological remediation processes for Cd and their efficacy have been summarized in this review. Modulation of plant growth regulators such as cytokinins, ethylene, gibberellins, auxins, abscisic acid, polyamines, jasmonic acid, brassinosteroids, and nitric oxide has been highlighted. Development of plant genotypes with restricted Cd uptake and reduced accumulation in edible portions by conventional and marker-assisted breeding are also presented. In this regard, use of molecular techniques including identification of QTLs, CRISPR/Cas9, and functional genomics to enhance the adverse impacts of Cd in plants may be quite helpful. The review's results should aid in the development of novel and suitable solutions for limiting Cd bioavailability and toxicity, as well as the long-term management of Cd-polluted soils, therefore reducing environmental and human health hazards.

20.
Front Plant Sci ; 12: 775785, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34868175

RESUMEN

Among heavy metals, chromium (Cr) contamination is increasing gradually due to the use of untreated industrial effluents for irrigation purposes, thereby posing a severe threat to crop production. This study aimed to evaluate the potential of compost, biochar (BC), and co-composted BC on the growth, physiological, biochemical attributes, and health risks associated with the consumption of Brassica grown on Cr-contaminated soil. Results revealed that Cr stress (Cr-25) significantly reduced the growth and physiological attributes and increased antioxidant enzyme activities in Brassica, but the applied amendments considerably retrieved the negative effects of Cr toxicity through improving the growth and physiology of plants. The maximum increase in plant height (75.3%), root length (151.0%), shoot dry weight (139.4%), root dry weight (158.5%), and photosynthetic rate (151.0%) was noted with the application of co-composted BC under Cr stress (Cr-25) in comparison to the control. The application of co-composted BC significantly reduced antioxidant enzyme activities, such as APX (42.5%), GP (45.1%), CAT (45.4%), GST (47.8%), GR (47.1%), and RG (48.2%), as compared to the control under Cr stress. The same treatment reduced the accumulation of Cr in grain, shoot, and roots of Brassica by 4.12, 2.27, and 2.17 times and enhanced the accumulation in soil by 1.52 times as compared to the control. Moreover, the application of co-composted BC significantly enhanced phytostabilization efficiency and reduced associated health risks with the consumption of Brassica. It is concluded that the application of co-composted BC in Cr-contaminated soil can significantly enhance the growth, physiological, and biochemical attributes of Brassica by reducing its uptake in plants and enhanced phytostabilization efficiency. The tested product may also help in restoring the soils contaminated with Cr.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA