Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 295
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 185(3): 493-512.e25, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35032429

RESUMEN

Severe COVID-19 is linked to both dysfunctional immune response and unrestrained immunopathology, and it remains unclear whether T cells contribute to disease pathology. Here, we combined single-cell transcriptomics and single-cell proteomics with mechanistic studies to assess pathogenic T cell functions and inducing signals. We identified highly activated CD16+ T cells with increased cytotoxic functions in severe COVID-19. CD16 expression enabled immune-complex-mediated, T cell receptor-independent degranulation and cytotoxicity not found in other diseases. CD16+ T cells from COVID-19 patients promoted microvascular endothelial cell injury and release of neutrophil and monocyte chemoattractants. CD16+ T cell clones persisted beyond acute disease maintaining their cytotoxic phenotype. Increased generation of C3a in severe COVID-19 induced activated CD16+ cytotoxic T cells. Proportions of activated CD16+ T cells and plasma levels of complement proteins upstream of C3a were associated with fatal outcome of COVID-19, supporting a pathological role of exacerbated cytotoxicity and complement activation in COVID-19.


Asunto(s)
COVID-19/inmunología , COVID-19/patología , Activación de Complemento , Proteoma , SARS-CoV-2/inmunología , Linfocitos T Citotóxicos/inmunología , Transcriptoma , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/virología , Factores Quimiotácticos/metabolismo , Citotoxicidad Inmunológica , Células Endoteliales/virología , Femenino , Humanos , Activación de Linfocitos , Masculino , Microvasos/virología , Persona de Mediana Edad , Monocitos/metabolismo , Neutrófilos/metabolismo , Receptores de IgG/metabolismo , Análisis de la Célula Individual , Adulto Joven
2.
Circulation ; 150(6): 466-487, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-38873770

RESUMEN

BACKGROUND: Endothelial cell (EC) apoptosis and proliferation of apoptosis-resistant cells is a hallmark of pulmonary hypertension (PH). Yet, why some ECs die and others proliferate and how this contributes to vascular remodeling is unclear. We hypothesized that this differential response may: (1) relate to different EC subsets, namely pulmonary artery (PAECs) versus microvascular ECs (MVECs); (2) be attributable to autophagic activation in both EC subtypes; and (3) cause replacement of MVECs by PAECs with subsequent distal vessel muscularization. METHODS: EC subset responses to chronic hypoxia were assessed by single-cell RNA sequencing of murine lungs. Proliferative versus apoptotic responses, activation, and role of autophagy were assessed in human and rat PAECs and MVECs, and in precision-cut lung slices of wild-type mice or mice with endothelial deficiency in the autophagy-related gene 7 (Atg7EN-KO). Abundance of PAECs versus MVECs in precapillary microvessels was assessed in lung tissue from patients with PH and animal models on the basis of structural or surface markers. RESULTS: In vitro and in vivo, PAECs proliferated in response to hypoxia, whereas MVECs underwent apoptosis. Single-cell RNA sequencing analyses support these findings in that hypoxia induced an antiapoptotic, proliferative phenotype in arterial ECs, whereas capillary ECs showed a propensity for cell death. These distinct responses were prevented in hypoxic Atg7EN-KO mice or after ATG7 silencing, yet replicated by autophagy stimulation. In lung tissue from mice, rats, or patients with PH, the abundance of PAECs in precapillary arterioles was increased, and that of MVECs reduced relative to controls, indicating replacement of microvascular by macrovascular ECs. EC replacement was prevented by genetic or pharmacological inhibition of autophagy in vivo. Conditioned medium from hypoxic PAECs yet not MVECs promoted pulmonary artery smooth muscle cell proliferation and migration in a platelet-derived growth factor-dependent manner. Autophagy inhibition attenuated PH development and distal vessel muscularization in preclinical models. CONCLUSIONS: Autophagic activation by hypoxia induces in parallel PAEC proliferation and MVEC apoptosis. These differential responses cause a progressive replacement of MVECs by PAECs in precapillary pulmonary arterioles, thus providing a macrovascular context that in turn promotes pulmonary artery smooth muscle cell proliferation and migration, ultimately driving distal vessel muscularization and the development of PH.


Asunto(s)
Apoptosis , Autofagia , Células Endoteliales , Hipertensión Pulmonar , Arteria Pulmonar , Animales , Humanos , Hipertensión Pulmonar/patología , Hipertensión Pulmonar/fisiopatología , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/genética , Células Endoteliales/metabolismo , Células Endoteliales/patología , Ratones , Arteria Pulmonar/patología , Arteria Pulmonar/metabolismo , Arteria Pulmonar/fisiopatología , Ratas , Proliferación Celular , Masculino , Remodelación Vascular , Ratones Noqueados , Proteína 7 Relacionada con la Autofagia/genética , Proteína 7 Relacionada con la Autofagia/metabolismo , Modelos Animales de Enfermedad , Hipoxia/metabolismo , Hipoxia/patología , Células Cultivadas , Ratones Endogámicos C57BL
3.
Am J Respir Cell Mol Biol ; 70(5): 339-350, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38207121

RESUMEN

In vitro lung research requires appropriate cell culture models that adequately mimic in vivo structure and function. Previously, researchers extensively used commercially available and easily expandable A549 and NCI-H441 cells, which replicate some but not all features of alveolar epithelial cells. Specifically, these cells are often restricted by terminally altered expression while lacking important alveolar epithelial characteristics. Of late, human primary alveolar epithelial cells (hPAEpCs) have become commercially available but are so far poorly specified. Here, we applied a comprehensive set of technologies to characterize their morphology, surface marker expression, transcriptomic profile, and functional properties. At optimized seeding numbers of 7,500 cells per square centimeter and growth at a gas-liquid interface, hPAEpCs formed regular monolayers with tight junctions and amiloride-sensitive transepithelial ion transport. Electron microscopy revealed lamellar body and microvilli formation characteristic for alveolar type II cells. Protein and single-cell transcriptomic analyses revealed expression of alveolar type I and type II cell markers; yet, transcriptomic data failed to detect NKX2-1, an important transcriptional regulator of alveolar cell differentiation. With increasing passage number, hPAEpCs transdifferentiated toward alveolar-basal intermediates characterized as SFTPC-, KRT8high, and KRT5- cells. In spite of marked changes in the transcriptome as a function of passaging, Uniform Manifold Approximation and Projection plots did not reveal major shifts in cell clusters, and epithelial permeability was unaffected. The present work delineates optimized culture conditions, cellular characteristics, and functional properties of commercially available hPAEpCs. hPAEpCs may provide a useful model system for studies on drug delivery, barrier function, and transepithelial ion transport in vitro.


Asunto(s)
Células Epiteliales Alveolares , Humanos , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/citología , Células Epiteliales Alveolares/ultraestructura , Diferenciación Celular , Transcriptoma , Células Cultivadas , Alveolos Pulmonares/metabolismo , Alveolos Pulmonares/citología , Uniones Estrechas/metabolismo
4.
Artículo en Inglés | MEDLINE | ID: mdl-39163574

RESUMEN

Right ventricular (RV) fibrosis is associated with RV dysfunction in a variety of RV pressure-loading conditions where RV mechanical stress is increased, but the underlying mechanisms driving RV fibrosis are incompletely understood. In pulmonary and cardiovascular diseases characterized by elevated mechanical stress and transforming growth factor - beta-1 (TGF-ß1) signaling, myocardin-related transcription factor A (MRTF-A) is a mechanosensitive protein critical to driving myofibroblast transition and fibrosis. Here we investigated whether MRTF-A inhibition improves RV pro-fibrotic remodeling and function in response to a pulmonary artery banding (PAB) model of RV pressure-loading. Rats were assigned into either 1) sham or 2) PAB groups. MRTF-A inhibitor CCG-1423 was administered daily at 0.75mg/kg in a subset of PAB animals. Echocardiography and pressure-volume hemodynamics were obtained at a terminal experiment 6-weeks later. RV myocardial samples were analyzed for fibrosis, cardiomyocyte hypertrophy, and pro-fibrotic signaling. MRTF-A inhibition slightly reduced systolic dysfunction in PAB rats reflected by increased lateral tricuspid annulus peak systolic velocity, while diastolic function parameters were not significantly improved. RV remodeling was attenuated in PAB rats with MRTF-A inhibition, displaying reduced fibrosis. This was accompanied with a reduction in PAB-induced upregulation of yes-associated protein (YAP) and its paralog transcriptional co-activator with PDZ-binding motif (TAZ). We also confirmed using a second-generation MRTF-A inhibitor CCG-203971 that MRTF-A is critical in driving RV fibroblast expression of TAZ and markers of myofibroblast transition in response to TGF-ß1 stress and RhoA activation. These studies identify RhoA, MRTF-A, and YAP/TAZ as interconnected regulators of pro-fibrotic signaling in RV pressure-loading, and as potential targets to improve RV pro-fibrotic remodeling.

5.
Am J Respir Cell Mol Biol ; 71(4): 388-406, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39189891

RESUMEN

Lung endothelium resides at the interface between the circulation and the underlying tissue, where it senses biochemical and mechanical properties of both the blood as it flows through the vascular circuit and the vessel wall. The endothelium performs the bidirectional signaling between the blood and tissue compartments that is necessary to maintain homeostasis while physically separating both, facilitating a tightly regulated exchange of water, solutes, cells, and signals. Disruption in endothelial function contributes to vascular disease, which can manifest in discrete vascular locations along the artery-to-capillary-to-vein axis. Although our understanding of mechanisms that contribute to endothelial cell injury and repair in acute and chronic vascular disease have advanced, pathophysiological mechanisms that underlie site-specific vascular disease remain incompletely understood. In an effort to improve the translatability of mechanistic studies of the endothelium, the American Thoracic Society convened a workshop to optimize rigor, reproducibility, and translation of discovery to advance our understanding of endothelial cell function in health and disease.


Asunto(s)
Endotelio Vascular , Pulmón , Humanos , Pulmón/patología , Pulmón/irrigación sanguínea , Pulmón/metabolismo , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Animales , Estados Unidos , Sociedades Médicas , Enfermedades Pulmonares/patología , Enfermedades Pulmonares/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/patología
7.
Pflugers Arch ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39256247

RESUMEN

It is often the case that serious, end-stage manifestations of disease result from secondary complications in organs distinct from the initial site of injury or infection. This is particularly true of diseases of the heart-lung axis, given the tight anatomical connections of the two organs within a common cavity in which they collectively orchestrate the two major, intertwined circulatory pathways. Immune cells and the soluble mediators they secrete serve as effective, and targetable, messengers of signals between different regions of the body but can also contribute to the spread of pathology. In this review, we discuss the immunological basis of interorgan communication between the heart and lung in various common diseases, and in the context of organ crosstalk more generally. Gaining a greater understanding of how the heart and lung communicate in health and disease, and viewing disease progression generally from a more holistic, whole-body viewpoint have the potential to inform new diagnostic approaches and strategies for better prevention and treatment of comorbidities.

8.
Artículo en Inglés | MEDLINE | ID: mdl-39320092

RESUMEN

The intricate lung structure is crucial for gas exchange within the alveolar region. Despite extensive research, questions remain about the connection between capillaries and the vascular tree. We propose a computational approach combining three-dimensional morphological modeling with computational fluid dynamics simulations to explore alveolar capillary network connectivity based on blood flow dynamics.We developed three-dimensional sheet-flow models to accurately represent alveolar capillary morphology and conducted simulations to predict flow velocities and pressure distributions. Our approach leverages functional features to identify plausible system architectures. Given capillary flow velocities and arteriole-to-venule pressure drops, we deduced arteriole connectivity details. Preliminary analyses for non-human species indicate a single alveolus connects to at least two 20 µm arterioles or one 30 µm arteriole. Hence, our approach narrows down potential connectivity scenarios, but a unique solution may not always be expected.Integrating our blood flow model results into our previously published gas exchange application, Alvin, we linked these scenarios to gas exchange efficiency. We found that increased blood flow velocity correlates with higher gas exchange efficiency.Our study provides insights into pulmonary microvasculature structure by evaluating blood flow dynamics, offering a new strategy to explore the morphology-physiology relationship that is applicable to other tissues and organs. Future availability of experimental data will be crucial in validating and refining our computational models and hypotheses.

9.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L524-L538, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38375572

RESUMEN

Lung surfactant collectins, surfactant protein A (SP-A) and D (SP-D), are oligomeric C-type lectins involved in lung immunity. Through their carbohydrate recognition domain, they recognize carbohydrates at pathogen surfaces and initiate lung innate immune response. Here, we propose that they may also be able to bind to other carbohydrates present in typical cell surfaces, such as the alveolar epithelial glycocalyx. To test this hypothesis, we analyzed and quantified the binding affinity of SP-A and SP-D to different sugars and glycosaminoglycans (GAGs) by microscale thermophoresis (MST). In addition, by changing the calcium concentration, we aimed to characterize any consequences on the binding behavior. Our results show that both oligomeric proteins bind with high affinity (in nanomolar range) to GAGs, such as hyaluronan (HA), heparan sulfate (HS) and chondroitin sulfate (CS). Binding to HS and CS was calcium-independent, as it was not affected by changing calcium concentration in the buffer. Quantification of GAGs in bronchoalveolar lavage (BAL) fluid from animals deficient in either SP-A or SP-D showed changes in GAG composition, and electron micrographs showed differences in alveolar glycocalyx ultrastructure in vivo. Taken together, SP-A and SP-D bind to model sulfated glycosaminoglycans of the alveolar epithelial glycocalyx in a multivalent and calcium-independent way. These findings provide a potential mechanism for SP-A and SP-D as an integral part of the alveolar epithelial glycocalyx binding and interconnecting free GAGs, proteoglycans, and other glycans in glycoproteins, which may influence glycocalyx composition and structure.NEW & NOTEWORTHY SP-A and SP-D function has been related to innate immunity of the lung based on their binding to sugar residues at pathogen surfaces. However, their function in the healthy alveolus was considered as limited to interaction with surfactant lipids. Here, we demonstrated that these proteins bind to glycosaminoglycans present at typical cell surfaces like the alveolar epithelial glycocalyx. We propose a model where these proteins play an important role in interconnecting alveolar epithelial glycocalyx components.


Asunto(s)
Calcio , Glicocálix , Glicosaminoglicanos , Alveolos Pulmonares , Proteína A Asociada a Surfactante Pulmonar , Proteína D Asociada a Surfactante Pulmonar , Animales , Humanos , Ratones , Células Epiteliales Alveolares/metabolismo , Líquido del Lavado Bronquioalveolar , Calcio/metabolismo , Glicocálix/metabolismo , Glicosaminoglicanos/metabolismo , Heparitina Sulfato/metabolismo , Ratones Endogámicos C57BL , Unión Proteica , Alveolos Pulmonares/metabolismo , Proteína A Asociada a Surfactante Pulmonar/metabolismo , Proteína D Asociada a Surfactante Pulmonar/metabolismo
10.
Am J Physiol Heart Circ Physiol ; 326(2): H433-H440, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38099848

RESUMEN

Pulmonary and systemic congestion as a consequence of heart failure are clinically recognized as alarm signals for clinical outcome and mortality. Although signs and symptoms of congestion are well detectable in patients, monitoring of congestion in small animals with heart failure lacks adequate noninvasive methodology yet. Here, we developed a novel ultrasonography-based scoring system to assess pulmonary and systemic congestion in experimental heart failure, by using lung ultrasound (LUS) and imaging of the inferior vena cava (Cava), termed CavaLUS. CavaLUS was established and tested in a rat model of supracoronary aortic banding and a mouse model of myocardial infarction, providing high sensitivity and specificity while correlating to numerous parameters of cardiac performance and disease severity. CavaLUS, therefore, provides a novel comprehensive tool for experimental heart failure in small animals to noninvasively assess congestion.NEW & NOTEWORTHY As thorough, noninvasive assessment of congestion is not available in small animals, we developed and validated an ultrasonography-based research tool to evaluate pulmonary and central venous congestion in experimental heart failure models.


Asunto(s)
Insuficiencia Cardíaca , Hiperemia , Humanos , Ratones , Animales , Ratas , Hiperemia/diagnóstico por imagen , Pulmón/diagnóstico por imagen , Ultrasonografía/métodos , Insuficiencia Cardíaca/diagnóstico por imagen , Insuficiencia Cardíaca/etiología , Vena Cava Inferior/diagnóstico por imagen
11.
Microcirculation ; 31(5): e12854, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38690631

RESUMEN

OBJECTIVE: Designing physiologically adequate microvascular trees is of crucial relevance for bioengineering functional tissues and organs. Yet, currently available methods are poorly suited to replicate the morphological and topological heterogeneity of real microvascular trees because the parameters used to control tree generation are too simplistic to mimic results of the complex angiogenetic and structural adaptation processes in vivo. METHODS: We propose a method to overcome this limitation by integrating a conditional deep convolutional generative adversarial network (cDCGAN) with a local fractal dimension-oriented constrained constructive optimization (LFDO-CCO) strategy. The cDCGAN learns the patterns of real microvascular bifurcations allowing for their artificial replication. The LFDO-CCO strategy connects the generated bifurcations hierarchically to form microvascular trees with a vessel density corresponding to that observed in healthy tissues. RESULTS: The generated artificial microvascular trees are consistent with real microvascular trees regarding characteristics such as fractal dimension, vascular density, and coefficient of variation of diameter, length, and tortuosity. CONCLUSIONS: These results support the adoption of the proposed strategy for the generation of artificial microvascular trees in tissue engineering as well as for computational modeling and simulations of microcirculatory physiology.


Asunto(s)
Simulación por Computador , Microcirculación , Microvasos , Microvasos/fisiología , Microvasos/anatomía & histología , Humanos , Microcirculación/fisiología , Modelos Cardiovasculares , Fractales
12.
J Neuroinflammation ; 21(1): 72, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38521959

RESUMEN

BACKGROUND: Blood-brain barrier (BBB) dysfunction and immune cell migration into the central nervous system (CNS) are pathogenic drivers of multiple sclerosis (MS). Ways to reinstate BBB function and subsequently limit neuroinflammation present promising strategies to restrict disease progression. However, to date, the molecular players directing BBB impairment in MS remain poorly understood. One suggested candidate to impact BBB function is the transient receptor potential vanilloid-type 4 ion channel (TRPV4), but its specific role in MS pathogenesis remains unclear. Here, we investigated the role of TRPV4 in BBB dysfunction in MS. MAIN TEXT: In human post-mortem MS brain tissue, we observed a region-specific increase in endothelial TRPV4 expression around mixed active/inactive lesions, which coincided with perivascular microglia enrichment in the same area. Using in vitro models, we identified that microglia-derived tumor necrosis factor-α (TNFα) induced brain endothelial TRPV4 expression. Also, we found that TRPV4 levels influenced brain endothelial barrier formation via expression of the brain endothelial tight junction molecule claudin-5. In contrast, during an inflammatory insult, TRPV4 promoted a pathological endothelial molecular signature, as evidenced by enhanced expression of inflammatory mediators and cell adhesion molecules. Moreover, TRPV4 activity mediated T cell extravasation across the brain endothelium. CONCLUSION: Collectively, our findings suggest a novel role for endothelial TRPV4 in MS, in which enhanced expression contributes to MS pathogenesis by driving BBB dysfunction and immune cell migration.


Asunto(s)
Barrera Hematoencefálica , Esclerosis Múltiple , Canales Catiónicos TRPV , Humanos , Barrera Hematoencefálica/metabolismo , Sistema Nervioso Central/metabolismo , Inflamación/metabolismo , Esclerosis Múltiple/patología , Canales Catiónicos TRPV/metabolismo
13.
J Anat ; 2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39245632

RESUMEN

The alveolar surface of the lung is lined by an epithelium consisting of type I (AECI) and type II alveolar epithelial cells (AECII). This epithelium is covered by a liquid alveolar lining layer (ALL). Besides intra-alveolar surfactant, ALL also contains the alveolar epithelial glycocalyx on the apical side of AECI and AECII. To better understand the alveolar epithelial glycocalyx, its ultrastructural visualization by transmission electron microscopy is required. The aim of this study was to systematically re-evaluate routine cytochemical methods for visualization of the alveolar epithelial glycocalyx and specifically its glycan components. For this purpose, we used chemical fixation by vascular perfusion with aldehydes as a common routine approach in mice. After fixation, staining is needed for glycocalyx visualization. Cytochemical staining agents such as alcian blue, ruthenium red, and lanthanum nitrate were compared. In addition, SNL (Sambucus nigra lectin) and UEA1 (Ulex europaeus agglutinin I) were used for sialic acid and fucose-specific labeling. Alcian blue showed the strongest staining, with cloud-like structures, whereas ruthenium red appeared as thread-like structures. On the other hand, lanthanum nitrate did not stain the alveolar epithelial glycocalyx. For specific sialic acid and fucose labeling, both lectins presented a specific signal. In conclusion, these methods can be used routinely for assessing ultrastructural changes of the alveolar epithelial glycocalyx in experimental in vivo models under different physiological and pathological conditions. In addition, cytochemical staining by tissue massage and post-embedding lectin labeling after vascular perfusion support 3R (reduction, refinement, replacement) principles of animal welfare.

14.
Anesthesiology ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39042042

RESUMEN

BACKGROUND: As a mechanosensitive cation channel and key regulator of vascular barrier function, endothelial transient receptor potential vanilloid-type 4 (TRPV4) contributes critically to ventilator-induced lung injury (VILI) and edema formation. Ca2+ influx via TRPV4 can activate Ca2+-activated K + (KCa) channels, categorized into small (SK1-3), intermediate (IK1), and big (BK) KCa, which may in turn amplify Ca2+ influx by increasing the electrochemical Ca2+ gradient and thus, promote lung injury. We therefore hypothesized that endothelial KCa channels may contribute to the progression of TRPV4-mediated VILI. METHODS: Male C57Bl/6J mice were ventilated for 2 h with low or high tidal volumes in the presence or absence of the non-selective KCa antagonists apamin, charybdotoxin, or the selective IK1 antagonist TRAM34. Lung injury was similarly assessed in overventilated, endothelial-specific TRPV4-deficient mice or TRAM34-treated C57Bl/6J mice challenged with intratracheal acid installation. Changes in endothelial Ca2+ concentration ([Ca2+]i) were monitored by real-time imaging in isolated-perfused lungs in response to airway pressure elevation or in human pulmonary microvascular endothelial cells (HPMECs) in response to TRPV4 activation with or without inhibition of KCa channels. Analogously, changes in intracellular potassium concentration ([K+]i) and membrane potential (Vm) were imaged in vitro. RESULTS: Endothelial TRPV4 deficiency or inhibition of KCa channels, and most prominently inhibition of IK1 by TRAM34 attenuated VILI as demonstrated by reduced lung edema, protein leak, and by quantitative lung histology. All KCa antagonists reduced the [Ca2+]i response to mechanical stimulation or direct TRPV4 activation in isolated lungs. TRAM34 and charybdotoxin, yet not apamin prevented TRPV4-induced K+ efflux and membrane hyperpolarization in HPMECs. TRAM34 also attenuated the TRPV4 agonist-induced Ca2+ influx in vitro and reduced acid-induced lung injury in vivo. CONCLUSIONS: KCa channels, specifically IK1, act as amplifiers of TRPV4-mediated Ca2+ influx and establish a detrimental feedback that promotes barrier failure and drives the progression of VILI.

15.
Am J Respir Crit Care Med ; 207(11): 1464-1474, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36480958

RESUMEN

Rationale: Mechanical ventilation (MV) is life-saving but may evoke ventilator-induced lung injury (VILI). Objectives: To explore how the circadian clock modulates severity of murine VILI via the core clock component BMAL1 (basic helix-loop-helix ARNT like 1) in myeloid cells. Methods: Myeloid cell BMAL1-deficient (LysM (lysozyme 2 promoter/enhancer driving cre recombinase expression)Bmal1-/-) or wild-type control (LysMBmal1+/+) mice were subjected to 4 hours MV (34 ml/kg body weight) to induce lung injury. Ventilation was initiated at dawn or dusk or in complete darkness (circadian time [CT] 0 or CT12) to determine diurnal and circadian effects. Lung injury was quantified by lung function, pulmonary permeability, blood gas analysis, neutrophil recruitment, inflammatory markers, and histology. Neutrophil activation and oxidative burst were analyzed ex vivo. Measurements and Main Results: In diurnal experiments, mice ventilated at dawn exhibited higher permeability and neutrophil recruitment compared with dusk. Experiments at CT showed deterioration of pulmonary function, worsening of oxygenation, and increased mortality at CT0 compared with CT12. Wild-type neutrophils isolated at dawn showed higher activation and reactive oxygen species production compared with dusk, whereas these day-night differences were dampened in LysMBmal1-/- neutrophils. In LysMBmal1-/- mice, circadian variations in VILI severity were dampened and VILI-induced mortality at CT0 was reduced compared with LysMBmal1+/+ mice. Conclusions: Inflammatory response and lung barrier dysfunction upon MV exhibit diurnal variations, regulated by the circadian clock. LysMBmal1-/- mice are less susceptible to ventilation-induced pathology and lack circadian variation of severity compared with LysMBmal1+/+ mice. Our data suggest that the internal clock in myeloid cells is an important modulator of VILI.


Asunto(s)
Relojes Circadianos , Lesión Pulmonar Inducida por Ventilación Mecánica , Ratones , Animales , Relojes Circadianos/genética , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Pulmón , Lesión Pulmonar Inducida por Ventilación Mecánica/genética , Lesión Pulmonar Inducida por Ventilación Mecánica/metabolismo , Ritmo Circadiano/genética , Ratones Endogámicos C57BL
16.
Physiol Genomics ; 55(12): 634-646, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37811720

RESUMEN

Congenital heart disease (CHD) is one of the most prevalent neonatal congenital anomalies. To catalog the putative candidate CHD risk genes, we collected 16,349 variants [single-nucleotide variants (SNVs) and Indels] impacting 8,308 genes in 3,166 CHD cases for a comprehensive meta-analysis. Using American College of Medical Genetics (ACMG) guidelines, we excluded the 0.1% of benign/likely benign variants and the resulting dataset consisted of 83% predicted loss of function variants and 17% missense variants. Seventeen percent were de novo variants. A stepwise analysis identified 90 variant-enriched CHD genes, of which six (GPATCH1, NYNRIN, TCLD2, CEP95, MAP3K19, and TTC36) were novel candidate CHD genes. Single-cell transcriptome cluster reconstruction analysis on six CHD tissues and four controls revealed upregulation of the top 10 frequently mutated genes primarily in cardiomyocytes. NOTCH1 (highest number of variants) and MYH6 (highest number of recurrent variants) expression was elevated in endocardial cells and cardiomyocytes, respectively, and 60% of these gene variants were associated with tetralogy of Fallot and coarctation of the aorta, respectively. Pseudobulk analysis using the single-cell transcriptome revealed significant (P < 0.05) upregulation of both NOTCH1 (endocardial cells) and MYH6 (cardiomyocytes) in the control heart data. We observed nine different subpopulations of CHD heart cardiomyocytes of which only four were observed in the control heart. This is the first comprehensive meta-analysis combining genomics and CHD single-cell transcriptomics, identifying the most frequently mutated CHD genes, and demonstrating CHD gene heterogeneity, suggesting that multiple genes contribute to the phenotypic heterogeneity of CHD. Cardiomyocytes and endocardial cells are identified as major CHD-related cell types.NEW & NOTEWORTHY Congential heart disease (CHD) is one of the most prevalent neonatal congenital anomalies. We present a comprehensive analysis combining genomics and CHD single-cell transcriptome. Our study identifies 90 potential candidate CHD risk genes of which 6 are novel. The risk genes have heterogenous expression suggestive of multiple genes contributing to the phenotypic heterogeneity of CHD. Cardiomyocytes and endocardial cells are identified as major CHD-related cell types.


Asunto(s)
Coartación Aórtica , Cardiopatías Congénitas , Recién Nacido , Humanos , Miocitos Cardíacos , Células Endoteliales , Cardiopatías Congénitas/genética , Mutación/genética , Quinasas Quinasa Quinasa PAM/genética
17.
Am J Physiol Lung Cell Mol Physiol ; 325(3): L327-L341, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37310760

RESUMEN

Respiratory transfusion reactions represent some of the most severe adverse reactions related to receiving blood products. Of those, transfusion-related acute lung injury (TRALI) is associated with elevated morbidity and mortality. TRALI is characterized by severe lung injury associated with inflammation, pulmonary neutrophil infiltration, lung barrier leak, and increased interstitial and airspace edema that cause respiratory failure. Presently, there are few means of detecting TRALI beyond clinical definitions based on physical examination and vital signs or preventing/treating TRALI beyond supportive care with oxygen and positive pressure ventilation. Mechanistically, TRALI is thought to be mediated by the culmination of two successive proinflammatory hits, which typically comprise a recipient factor (1st hit-e.g., systemic inflammatory conditions) and a donor factor (2nd hit-e.g., blood products containing pathogenic antibodies or bioactive lipids). An emerging concept in TRALI research is the contribution of extracellular vesicles (EVs) in mediating the first and/or second hit in TRALI. EVs are small, subcellular, membrane-bound vesicles that circulate in donor and recipient blood. Injurious EVs may be released by immune or vascular cells during inflammation, by infectious bacteria, or in blood products during storage, and can target the lung upon systemic dissemination. This review assesses emerging concepts such as how EVs: 1) mediate TRALI, 2) represent targets for therapeutic intervention to prevent or treat TRALI, and 3) serve as biochemical biomarkers facilitating TRALI diagnosis and detection in at-risk patients.


Asunto(s)
Lesión Pulmonar , Reacción a la Transfusión , Lesión Pulmonar Aguda Postransfusional , Humanos , Lesión Pulmonar Aguda Postransfusional/etiología , Pulmón , Anticuerpos , Inflamación
18.
Basic Res Cardiol ; 118(1): 19, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37193927

RESUMEN

Preclinical cardiovascular research relies heavily on non-invasive in-vivo echocardiography in mice and rats to assess cardiac function and morphology, since the complex interaction of heart, circulation, and peripheral organs are challenging to mimic ex-vivo. While n-numbers of annually used laboratory animals worldwide approach 200 million, increasing efforts are made by basic scientists aiming to reduce animal numbers in cardiovascular research according to the 3R's principle. The chicken egg is well-established as a physiological correlate and model for angiogenesis research but has barely been used to assess cardiac (patho-) physiology. Here, we tested whether the established in-ovo system of incubated chicken eggs interfaced with commercially available small animal echocardiography would be a suitable alternative test system in experimental cardiology. To this end, we defined a workflow to assess cardiac function in 8-13-day-old chicken embryos using a commercially available high resolution ultrasound system for small animals (Vevo 3100, Fujifilm Visualsonics Inc.) equipped with a high frequency probe (MX700; centre transmit: 50 MHz). We provide detailed standard operating procedures for sample preparation, image acquisition, data analysis, reference values for left and right ventricular function and dimensions, and inter-observer variabilities. Finally, we challenged incubated chicken eggs with two interventions well-known to affect cardiac physiology-metoprolol treatment and hypoxic exposure-to demonstrate the sensitivity of in-ovo echocardiography. In conclusion, in-ovo echocardiography is a feasible alternative tool for basic cardiovascular research, which can easily be implemented into the small animal research environment using existing infrastructure to replace mice and rat experiments, and thus, reduce use of laboratory animals according to the 3R principle.


Asunto(s)
Ecocardiografía , Corazón , Embrión de Pollo , Ratas , Ratones , Animales
19.
Histochem Cell Biol ; 160(2): 83-96, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37386200

RESUMEN

Recent investigations analyzed in depth the biochemical and biophysical properties of the endothelial glycocalyx. In comparison, this complex cell-covering structure is largely understudied in alveolar epithelial cells. To better characterize the alveolar glycocalyx ultrastructure, unaffected versus injured human lung tissue explants and mouse lungs were analyzed by transmission electron microscopy. Lung tissue was treated with either heparinase (HEP), known to shed glycocalyx components, or pneumolysin (PLY), the exotoxin of Streptococcus pneumoniae not investigated for structural glycocalyx effects so far. Cationic colloidal thorium dioxide (cThO2) particles were used for glycocalyx glycosaminoglycan visualization. The level of cThO2 particles orthogonal to apical cell membranes (≙ stained glycosaminoglycan height) of alveolar epithelial type I (AEI) and type II (AEII) cells was stereologically measured. In addition, cThO2 particle density was studied by dual-axis electron tomography (≙ stained glycosaminoglycan density in three dimensions). For untreated samples, the average cThO2 particle level was ≈ 18 nm for human AEI, ≈ 17 nm for mouse AEI, ≈ 44 nm for human AEII and ≈ 35 nm for mouse AEII. Both treatments, HEP and PLY, resulted in a significant reduction of cThO2 particle levels on human and mouse AEI and AEII. Moreover, a HEP- and PLY-associated reduction in cThO2 particle density was observed. The present study provides quantitative data on the differential glycocalyx distribution on AEI and AEII based on cThO2 and demonstrates alveolar glycocalyx shedding in response to HEP or PLY resulting in a structural reduction in both glycosaminoglycan height and density. Future studies should elucidate the underlying alveolar epithelial cell type-specific distribution of glycocalyx subcomponents for better functional understanding.


Asunto(s)
Glicocálix , Dióxido de Torio , Ratones , Humanos , Animales , Liasa de Heparina , Electrones , Glicosaminoglicanos
20.
Blood ; 137(5): 690-701, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33232973

RESUMEN

Transfusion-related acute lung injury (TRALI) is a hazardous transfusion complication with an associated mortality of 5% to 15%. We previously showed that stored (5 days) but not fresh platelets (1 day) cause TRALI via ceramide-mediated endothelial barrier dysfunction. As biological ceramides are hydrophobic, extracellular vesicles (EVs) may be required to shuttle these sphingolipids from platelets to endothelial cells. Adding to complexity, EV formation in turn requires ceramide. We hypothesized that ceramide-dependent EV formation from stored platelets and EV-dependent sphingolipid shuttling induces TRALI. EVs formed during storage of murine platelets were enumerated, characterized for sphingolipids, and applied in a murine TRALI model in vivo and for endothelial barrier assessment in vitro. Five-day EVs were more abundant, had higher long-chain ceramide (C16:0, C18:0, C20:0), and lower sphingosine-1-phosphate (S1P) content than 1-day EVs. Transfusion of 5-day, but not 1-day, EVs induced characteristic signs of lung injury in vivo and endothelial barrier disruption in vitro. Inhibition or supplementation of ceramide-forming sphingomyelinase reduced or enhanced the formation of EVs, respectively, but did not alter the injuriousness per individual EV. Barrier failure was attenuated when EVs were abundant in or supplemented with S1P. Stored human platelet 4-day EVs were more numerous compared with 2-day EVs, contained more long-chain ceramide and less S1P, and caused more endothelial cell barrier leak. Hence, platelet-derived EVs become more numerous and more injurious (more long-chain ceramide, less S1P) during storage. Blockade of sphingomyelinase, EV elimination, or supplementation of S1P during platelet storage may present promising strategies for TRALI prevention.


Asunto(s)
Vesículas Extracelulares/fisiología , Transfusión de Plaquetas/efectos adversos , Esfingolípidos/metabolismo , Lesión Pulmonar Aguda Postransfusional/etiología , Animales , Plaquetas/ultraestructura , Conservación de la Sangre , Ceramidas/metabolismo , Células Endoteliales/fisiología , Endotoxinas/toxicidad , Humanos , Lisofosfolípidos/fisiología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Modelos Biológicos , Esfingomielina Fosfodiesterasa/antagonistas & inhibidores , Esfingomielina Fosfodiesterasa/deficiencia , Esfingomielina Fosfodiesterasa/fisiología , Esfingosina/análogos & derivados , Esfingosina/fisiología , Lesión Pulmonar Aguda Postransfusional/metabolismo , Lesión Pulmonar Aguda Postransfusional/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA