Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Cell ; 154(4): 859-74, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23953116

RESUMEN

Mammalian target of rapamycin complex 1 (mTORC1) controls growth and survival in response to metabolic cues. Oxidative stress affects mTORC1 via inhibitory and stimulatory inputs. Whereas downregulation of TSC1-TSC2 activates mTORC1 upon oxidative stress, the molecular mechanism of mTORC1 inhibition remains unknown. Here, we identify astrin as an essential negative mTORC1 regulator in the cellular stress response. Upon stress, astrin inhibits mTORC1 association and recruits the mTORC1 component raptor to stress granules (SGs), thereby preventing mTORC1-hyperactivation-induced apoptosis. In turn, balanced mTORC1 activity enables expression of stress factors. By identifying astrin as a direct molecular link between mTORC1, SG assembly, and the stress response, we establish a unifying model of mTORC1 inhibition and activation upon stress. Importantly, we show that in cancer cells, apoptosis suppression during stress depends on astrin. Being frequently upregulated in tumors, astrin is a potential clinically relevant target to sensitize tumors to apoptosis.


Asunto(s)
Apoptosis , Neoplasias de la Mama/metabolismo , Proteínas de Ciclo Celular/metabolismo , Complejos Multiproteicos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Gránulos Citoplasmáticos/metabolismo , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Estrés Oxidativo , Proteína Reguladora Asociada a mTOR
2.
Hum Mol Genet ; 31(13): 2121-2136, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35043953

RESUMEN

Renal ciliopathies are the leading cause of inherited kidney failure. In autosomal dominant polycystic kidney disease (ADPKD), mutations in the ciliary gene PKD1 lead to the induction of CCL2, which promotes macrophage infiltration in the kidney. Whether or not mutations in genes involved in other renal ciliopathies also lead to immune cells recruitment is controversial. Through the parallel analysis of patients' derived material and murine models, we investigated the inflammatory components of nephronophthisis (NPH), a rare renal ciliopathy affecting children and adults. Our results show that NPH mutations lead to kidney infiltration by neutrophils, macrophages and T cells. Contrary to ADPKD, this immune cell recruitment does not rely on the induction of CCL2 in mutated cells, which is dispensable for disease progression. Through an unbiased approach, we identified a set of inflammatory cytokines that are upregulated precociously and independently of CCL2 in murine models of NPH. The majority of these transcripts is also upregulated in NPH patient renal cells at a level exceeding those found in common non-immune chronic kidney diseases. This study reveals that inflammation is a central aspect in NPH and delineates a specific set of inflammatory mediators that likely regulates immune cell recruitment in response to NPH genes mutations.


Asunto(s)
Ciliopatías , Enfermedades Renales Poliquísticas , Riñón Poliquístico Autosómico Dominante , Adulto , Animales , Niño , Ciliopatías/genética , Fibrosis , Humanos , Riñón , Ratones , Riñón Poliquístico Autosómico Dominante/genética , Canales Catiónicos TRPP/genética
3.
EMBO J ; 37(15)2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29925518

RESUMEN

Polycystic kidney disease (PKD) and other renal ciliopathies are characterized by cysts, inflammation, and fibrosis. Cilia function as signaling centers, but a molecular link to inflammation in the kidney has not been established. Here, we show that cilia in renal epithelia activate chemokine signaling to recruit inflammatory cells. We identify a complex of the ciliary kinase LKB1 and several ciliopathy-related proteins including NPHP1 and PKD1. At homeostasis, this ciliary module suppresses expression of the chemokine CCL2 in tubular epithelial cells. Deletion of LKB1 or PKD1 in mouse renal tubules elevates CCL2 expression in a cell-autonomous manner and results in peritubular accumulation of CCR2+ mononuclear phagocytes, promoting a ciliopathy phenotype. Our findings establish an epithelial organelle, the cilium, as a gatekeeper of tissue immune cell numbers. This represents an unexpected disease mechanism for renal ciliopathies and establishes a new model for how epithelial cells regulate immune cells to affect tissue homeostasis.


Asunto(s)
Quimiocina CCL2/metabolismo , Cilios/patología , Enfermedades Renales Quísticas/congénito , Riñón Poliquístico Autosómico Dominante/patología , Proteína Quinasa C/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Quinasas Activadas por AMP , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas Portadoras/metabolismo , Línea Celular , Proteínas del Citoesqueleto , Perros , Células Epiteliales/metabolismo , Femenino , Células HEK293 , Humanos , Enfermedades Renales Quísticas/patología , Túbulos Renales/citología , Túbulos Renales/patología , Macrófagos/metabolismo , Células de Riñón Canino Madin Darby , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fagocitosis/fisiología , Riñón Poliquístico Autosómico Dominante/genética , Proteína Quinasa C/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Pez Cebra
4.
Biochem Biophys Res Commun ; 584: 19-25, 2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34753064

RESUMEN

The primary cilium is a sensory organelle at the cell surface with integral functions in cell signaling. It contains a microtubular axoneme that is rooted in the basal body (BB) and serves as a scaffold for the movement of intraflagellar transport (IFT) particles by Kinesin-2 along the cilium. Ift88, a member of the anterograde moving IFT-B1 complex, as well as the Kinesin-2 subunit Kif3a are required for cilia formation. To facilitate signaling, the cilium restricts the access of molecules to its membrane ("ciliary gate"). This is thought to be mediated by cytoskeletal barriers ("subciliary domains") originating from the BB subdistal/distal appendages, the periciliary membrane compartment (PCMC) as well as the transition fibers and zone (TF/TZ). The PCMC is a poorly characterized membrane domain surrounding the ciliary base with exclusion of certain apical membrane proteins. Here we describe that Ift88, but not Kinesin-2, is required for the establishment of the PCMC in MDCK cells. Likewise, in C. elegans mutants of the Ift88 ortholog osm-5 fail to establish the PCMC, while Kinesin-2 deficient osm-3 mutants form PCMCs normally. Furthermore, disruption of IFT-B1 into two subcomplexes, while disrupting ciliogenesis, does not interfere with PCMC formation. Our findings suggest that cilia are not a prerequisite for the formation of the PCMC, and that separate machineries with partially overlapping functions are required for the establishment of each.


Asunto(s)
Membrana Celular/metabolismo , Cilios/metabolismo , Células Epiteliales/metabolismo , Cinesinas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Animales , Cuerpos Basales/metabolismo , Caenorhabditis elegans/citología , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Citoesqueleto/metabolismo , Perros , Células de Riñón Canino Madin Darby , Microscopía Fluorescente , Proteínas del Tejido Nervioso/metabolismo , Transducción de Señal
5.
J Am Soc Nephrol ; 31(5): 1035-1049, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32238474

RESUMEN

BACKGROUND: The inactivation of the ciliary proteins polycystin 1 or polycystin 2 leads to autosomal dominant polycystic kidney disease (ADPKD). Although signaling by primary cilia and interstitial inflammation both play a critical role in the disease, the reciprocal interactions between immune and tubular cells are not well characterized. The transcription factor STAT3, a component of the cilia proteome that is involved in crosstalk between immune and nonimmune cells in various tissues, has been suggested as a factor fueling ADPKD progression. METHOD: To explore how STAT3 intersects with cilia signaling, renal inflammation, and cyst growth, we used conditional murine models involving postdevelopmental ablation of Pkd1, Stat3, and cilia, as well as cultures of cilia-deficient or STAT3-deficient tubular cell lines. RESULTS: Our findings indicate that, although primary cilia directly modulate STAT3 activation in vitro, the bulk of STAT3 activation in polycystic kidneys occurs through an indirect mechanism in which primary cilia trigger macrophage recruitment to the kidney, which in turn promotes Stat3 activation. Surprisingly, although inactivating Stat3 in Pkd1-deficient tubules slightly reduced cyst burden, it resulted in a massive infiltration of the cystic kidneys by macrophages and T cells, precluding any improvement of kidney function. We also found that Stat3 inactivation led to increased expression of the inflammatory chemokines CCL5 and CXCL10 in polycystic kidneys and cultured tubular cells. CONCLUSIONS: STAT3 appears to repress the expression of proinflammatory cytokines and restrict immune cell infiltration in ADPKD. Our findings suggest that STAT3 is not a critical driver of cyst growth in ADPKD but rather plays a major role in the crosstalk between immune and tubular cells that shapes disease expression.


Asunto(s)
Túbulos Renales/metabolismo , Riñón Poliquístico Autosómico Dominante/patología , Factor de Transcripción STAT3/fisiología , Anciano de 80 o más Años , Animales , Células Cultivadas , Quimiocina CCL5/metabolismo , Quimiocina CXCL10/metabolismo , Cilios/metabolismo , Perros , Humanos , Inflamación , Túbulos Renales/patología , Macrófagos/fisiología , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos C57BL , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/inmunología , Riñón Poliquístico Autosómico Dominante/metabolismo , Organismos Libres de Patógenos Específicos , Linfocitos T/fisiología , Canales Catiónicos TRPP/deficiencia , Canales Catiónicos TRPP/metabolismo
6.
Biochem Biophys Res Commun ; 521(2): 290-295, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31668373

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in PKD1 or PKD2, the genes encoding polycystin 1 (PC1) and polycystin 2 (PC2), respectively. PC1 and PC2 localize to the primary cilium and form a protein complex, which is thought to regulate signaling events. PKD1 mutations are associated with a stronger phenotype than PKD2, suggesting the existence of PC1 specific functions in renal tubular cells. However, the evidence for diverging molecular functions is scant. The bending of cilia by fluid flow induces a reduction in cell size through a mechanism that involves the kinase LKB1 but not PC2. Here, using different in vitro approaches, we show that contrary to PC2, PC1 regulates cell size under flow and thus phenocopies the loss of cilia. PC1 is required to couple mechanical deflection of cilia to mTOR in tubular cells. This study pinpoints divergent functions of the polycystins in renal tubular cells that may be relevant to disease severity in ADPKD.


Asunto(s)
Tamaño de la Célula/efectos de los fármacos , Riñón Poliquístico Autosómico Dominante/patología , Canales Catiónicos TRPP/fisiología , Animales , Fenómenos Biomecánicos , Células Cultivadas , Cilios/metabolismo , Humanos , Túbulos Renales/citología , Mutación , Serina-Treonina Quinasas TOR , Canales Catiónicos TRPP/genética
7.
Development ; 142(1): 174-84, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25516973

RESUMEN

Cilia are microtubule-based organelles that are present on most cells and are required for normal tissue development and function. Defective cilia cause complex syndromes with multiple organ manifestations termed ciliopathies. A crucial step during ciliogenesis in multiciliated cells (MCCs) is the association of future basal bodies with the apical plasma membrane, followed by their correct spacing and planar orientation. Here, we report a novel role for ELMO-DOCK1, which is a bipartite guanine nucleotide exchange factor complex for the small GTPase Rac1, and for the membrane-cytoskeletal linker Ezrin, in regulating centriole/basal body migration, docking and spacing. Downregulation of each component results in ciliopathy-related phenotypes in zebrafish and disrupted ciliogenesis in Xenopus epidermal MCCs. Subcellular analysis revealed a striking impairment of basal body docking and spacing, which is likely to account for the observed phenotypes. These results are substantiated by showing a genetic interaction between elmo1 and ezrin b. Finally, we provide biochemical evidence that the ELMO-DOCK1-Rac1 complex influences Ezrin phosphorylation and thereby probably serves as an important molecular switch. Collectively, we demonstrate that the ELMO-Ezrin complex orchestrates ciliary basal body migration, docking and positioning in vivo.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Cuerpos Basales/metabolismo , Cilios/metabolismo , Proteínas del Citoesqueleto/metabolismo , Proteínas de Xenopus/metabolismo , Proteínas de Pez Cebra/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Animales , Axonema/metabolismo , Axonema/ultraestructura , Membrana Celular/metabolismo , Cilios/ultraestructura , Embrión no Mamífero/metabolismo , Embrión no Mamífero/ultraestructura , Proteínas de la Membrana/metabolismo , Proteínas de Microfilamentos/metabolismo , Modelos Biológicos , Fosforilación , Unión Proteica , Xenopus laevis , Pez Cebra/embriología , Proteínas de Unión al GTP rac
8.
Pflugers Arch ; 469(2): 303-311, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27987038

RESUMEN

Recent advances in genome editing technologies have enabled the rapid and precise manipulation of genomes, including the targeted introduction, alteration, and removal of genomic sequences. However, respective methods have been described mainly in non-differentiated or haploid cell types. Genome editing of well-differentiated renal epithelial cells has been hampered by a range of technological issues, including optimal design, efficient expression of multiple genome editing constructs, attainable mutation rates, and best screening strategies. Here, we present an easily implementable workflow for the rapid generation of targeted heterozygous and homozygous genomic sequence alterations in renal cells using transcription activator-like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeat (CRISPR) system. We demonstrate the versatility of established protocols by generating novel cellular models for studying autosomal dominant polycystic kidney disease (ADPKD). Furthermore, we show that cell culture-validated genetic modifications can be readily applied to mouse embryonic stem cells (mESCs) for the generation of corresponding mouse models. The described procedure for efficient genome editing can be applied to any cell type to study physiological and pathophysiological functions in the context of precisely engineered genotypes.


Asunto(s)
Diferenciación Celular/genética , Células Epiteliales/metabolismo , Genoma/genética , Riñón/metabolismo , Animales , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , ADN Complementario/genética , Células Madre Embrionarias/metabolismo , Edición Génica/métodos , Genotipo , Humanos , Ratones , Enfermedades Renales Poliquísticas/genética , Nucleasas de los Efectores Tipo Activadores de la Transcripción/genética
9.
EMBO J ; 28(5): 490-9, 2009 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-19153608

RESUMEN

Ca(2+) is an important signalling molecule that regulates multiple cellular processes, including apoptosis. Although Ca(2+) influx through transient receptor potential (TRP) channels in the plasma membrane is known to trigger cell death, the function of intracellular TRP proteins in the regulation of Ca(2+)-dependent signalling pathways and apoptosis has remained elusive. Here, we show that TRPP2, the ion channel mutated in autosomal dominant polycystic kidney disease (ADPKD), protects cells from apoptosis by lowering the Ca(2+) concentration in the endoplasmic reticulum (ER). ER-resident TRPP2 counteracts the activity of the sarcoendoplasmic Ca(2+) ATPase by increasing the ER Ca(2+) permeability. This results in diminished cytosolic and mitochondrial Ca(2+) signals upon stimulation of inositol 1,4,5-trisphosphate receptors and reduces Ca(2+) release from the ER in response to apoptotic stimuli. Conversely, knockdown of TRPP2 in renal epithelial cells increases ER Ca(2+) release and augments sensitivity to apoptosis. Our findings indicate an important function of ER-resident TRPP2 in the modulation of intracellular Ca(2+) signalling, and provide a molecular mechanism for the increased apoptosis rates in ADPKD upon loss of TRPP2 channel function.


Asunto(s)
Apoptosis/fisiología , Calcio/fisiología , Retículo Endoplásmico/metabolismo , Activación del Canal Iónico/fisiología , Canales Catiónicos TRPP/fisiología , Animales , Señalización del Calcio/fisiología , Línea Celular , Citosol/fisiología , Perros , Femenino , Humanos , Receptores de Inositol 1,4,5-Trifosfato/fisiología , Mitocondrias/fisiología , Oocitos/fisiología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/fisiología , Xenopus
11.
Nephrol Dial Transplant ; 28(3): 518-26, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23314319

RESUMEN

Since the discovery that proteins mutated in different forms of polycystic kidney disease (PKD) are tightly associated with primary cilia, strong efforts have been made to define the role of this organelle in the pathogenesis of cyst formation. Cilia are filiform microtubular structures, anchored in the basal body and extending from the apical membrane into the tubular lumen. Early work established that cilia act as flow sensors, eliciting calcium transients in response to bending, which involve the two proteins mutated in autosomal dominant PKD (ADPKD), polycystin-1 and -2. Loss of cilia alone is insufficient to cause cyst formation. Nevertheless, a large body of evidence links flow sensing by cilia to aspects relevant for cyst formation such as cell polarity, Stat6- and mammalian target of rapamycin signalling. This review summarizes the current literature on cilia and flow sensing with respect to PKD and discusses how these findings intercalate with different aspects of cyst formation.


Asunto(s)
Cilios/patología , Mecanotransducción Celular/fisiología , Enfermedades Renales Poliquísticas/patología , Animales , Humanos
12.
Proc Natl Acad Sci U S A ; 107(47): 20388-93, 2010 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-21059920

RESUMEN

Mutations of inversin cause type II nephronophthisis, an infantile autosomal recessive disease characterized by cystic kidney disease and developmental defects. Inversin regulates Wnt signaling and is required for convergent extension movements during early embryogenesis. We now show that Inversin is essential for Xenopus pronephros formation, involving two distinct and opposing forms of cell movements. Knockdown of Inversin abrogated both proximal pronephros extension and distal tubule differentiation, phenotypes similar to that of Xenopus deficient in Frizzled-8. Exogenous Inversin rescued the pronephric defects caused by lack of Frizzled-8, indicating that Inversin acts downstream of Frizzled-8 in pronephros morphogenesis. Depletion of Inversin prevents the recruitment of Dishevelled in response to Frizzled-8 and impeded the accumulation of Dishevelled at the apical membrane of tubular epithelial cells in vivo. Thus, defective tubule morphogenesis seems to contribute to the renal pathology observed in patients with nephronophthisis type II.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Riñón/embriología , Receptores de Superficie Celular/metabolismo , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo , Proteínas de Xenopus/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas Dishevelled , Fluorescencia , Hibridación in Situ , Riñón/metabolismo , Ratones , Microscopía Confocal , Oligonucleótidos/genética , Fosfoproteínas/metabolismo , Proteínas Wnt/metabolismo , Xenopus
13.
Hum Mol Genet ; 19(1): 16-24, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19801576

RESUMEN

Autosomal dominant polycystic liver disease (PCLD) is caused by mutations of either PRKCSH or Sec63, two proteins associated with the endoplasmic reticulum (ER). Both proteins are involved in carbohydrate processing, folding and translocation of newly synthesized glycoproteins. It is postulated that defective quality control of proteins initiates endoplasmic reticulum-associated degradation (ERAD), which disrupts hepatic homeostasis in patients with PRKCSH or Sec63 mutations. However, the precise molecular mechanisms are not known. Here, we show that over-expression or depletion of PRKCSH in zebrafish embryos leads to pronephric cysts, abnormal body curvature and situs inversus. Identical phenotypic changes are induced by depletion or over-expression of TRPP2. Increased PRKCSH levels ameliorate developmental abnormalities caused by over-expressed TRPP2, whereas excess TRPP2 can compensate the loss PRKCSH, indicating that the proteins share a common signaling pathway. PRKCSH binds the C-terminal domain of TRPP2, and both proteins co-localize within the ER. Furthermore, PRKCSH interacts with Herp, and inhibits Herp-mediated ubiquitination of TRPP2. Our findings suggest that PRKCSH functions as a chaperone-like molecule, which prevents ERAD of TRPP2. Dysequilibrium between TRPP2 and PRKCSH may lead to cyst formation in PCLD patients with PRKCSH mutations, and thereby account for the overlapping manifestations observed in PCLD and autosomal dominant polycystic kidney disease.


Asunto(s)
Proteínas Portadoras/metabolismo , Chaperonas Moleculares/metabolismo , Mutación/genética , Riñón Poliquístico Autosómico Dominante/metabolismo , Procesamiento Proteico-Postraduccional , Canales Catiónicos TRPP/metabolismo , Ubiquitinas/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Proteínas Portadoras/genética , Perros , Embrión no Mamífero/anomalías , Embrión no Mamífero/efectos de los fármacos , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Chaperonas Moleculares/genética , Nefronas/efectos de los fármacos , Nefronas/metabolismo , Nefronas/patología , Oligonucleótidos Antisentido/farmacología , Unión Proteica/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Canales Catiónicos TRPP/genética , Ubiquitinación/efectos de los fármacos , Ubiquitinas/genética , Pez Cebra/embriología , Proteínas de Pez Cebra/genética
14.
J Cell Sci ; 123(Pt 9): 1460-7, 2010 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-20375059

RESUMEN

The structure and function of the primary cilium as a sensory organelle depends on a motor-protein-powered intraflagellar transport system (IFT); defective IFT results in retinal degeneration and pleiotropic disorders such as the Bardet Biedl syndrome (BBS) and defective hedgehog (HH) signaling. Protein transport to the cilium involves Rab GTPases. Rab8, together with a multi protein complex of BBS proteins, recruits cargo to the basal body for transport to the cilium. Loss of Rab23 in mice recapitulates the HH phenotype but its function in HH signaling is unknown. Here we established a novel protocol, based on fluorescence recovery after photo-bleaching (FRAP), allowing the quantitative analysis of protein transport into the cilium of MDCK cells. We compared the effect of Rab8, Rab5 and Rab23 on the ciliary transport of the HH-associated transmembrane receptor Smoothened, the microtubular tip protein EB1, and the receptor protein Kim1. Ciliary FRAP confirmed the role of Rab8 in protein entry to the cilium. Dominant negative Rab5 had no impact on the ciliary transport of Smoothened or EB1, but slowed the recovery of the apical protein Kim1 in the cilium. Depletion of Rab23 or expression of dominant-negative Rab23 decreased the ciliary steady state specifically of Smoothened but not EB1 or Kim1, suggesting a role of Rab23 in protein turnover in the cilium.


Asunto(s)
Cilios/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Animales , Línea Celular , Perros , Recuperación de Fluorescencia tras Fotoblanqueo , Genes Dominantes , Humanos , Cinética , Proteínas Luminiscentes/metabolismo , Ratones , Modelos Biológicos , Transporte de Proteínas , Proteínas Recombinantes de Fusión/metabolismo , Receptor Smoothened
15.
Proc Natl Acad Sci U S A ; 106(21): 8579-84, 2009 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-19439659

RESUMEN

Spatial organization of cells and their appendages is controlled by the planar cell polarity pathway, a signaling cascade initiated by the protocadherin Fat in Drosophila. Vertebrates express 4 Fat molecules, Fat1-4. We found that depletion of Fat1 caused cyst formation in the zebrafish pronephros. Knockdown of the PDZ domain containing the adaptor protein Scribble intensified the cyst-promoting phenotype of Fat1 depletion, suggesting that Fat1 and Scribble act in overlapping signaling cascades during zebrafish pronephros development. Supporting the genetic interaction with Fat1, Scribble recognized the PDZ-binding site of Fat1. Depletion of Yes-associated protein 1 (YAP1), a transcriptional co-activator inhibited by Hippo signaling, ameliorated the cyst formation in Fat1-deficient zebrafish, whereas Scribble inhibited the YAP1-induced cyst formation. Thus, reduced Hippo signaling and subsequent YAP1 disinhibition seem to play a role in the development of pronephric cysts after depletion of Fat1 or Scribble. We hypothesize that Hippo signaling is required for normal pronephros development in zebrafish and that Scribble is a candidate link between Fat and the Hippo signaling cascade in vertebrates.


Asunto(s)
Riñón/embriología , Riñón/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Cadherinas/genética , Cadherinas/metabolismo , Línea Celular , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Humanos , Proteínas de la Membrana/genética , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Regiones Promotoras Genéticas/genética , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Serina-Treonina Quinasa 3 , Pez Cebra/genética , Proteínas de Pez Cebra/genética
16.
mBio ; 13(3): e0081922, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35491830

RESUMEN

The opportunistic bacterium Pseudomonas aeruginosa can infect mucosal tissues of the human body. To persist at the mucosal barrier, this highly adaptable pathogen has evolved many strategies, including invasion of host cells. Here, we show that the P. aeruginosa lectin LecB binds and cross-links fucosylated receptors at the apical plasma membrane of epithelial cells. This triggers a signaling cascade via Src kinases and phosphoinositide 3-kinase (PI3K), leading to the formation of patches enriched with the basolateral marker phosphatidylinositol (3,4,5)-trisphosphate (PIP3) at the apical plasma membrane. This identifies LecB as a causative bacterial factor for activating this well-known host cell response that is elicited upon apical binding of P. aeruginosa. Downstream from PI3K, Rac1 is activated to cause actin rearrangement and the outgrowth of protrusions at the apical plasma membrane. LecB-triggered PI3K activation also results in aberrant recruitment of caveolin-1 to the apical domain. In addition, we reveal a positive feedback loop between PI3K activation and apical caveolin-1 recruitment, which provides a mechanistic explanation for the previously observed implication of caveolin-1 in P. aeruginosa host cell invasion. Interestingly, LecB treatment also reversibly removes primary cilia. To directly prove the role of LecB for bacterial uptake, we coated bacterium-sized beads with LecB, which drastically enhanced their endocytosis. Furthermore, LecB deletion and LecB inhibition with l-fucose diminished the invasion efficiency of P. aeruginosa bacteria. Taken together, the results of our study identify LecB as a missing link that can explain how PI3K signaling and caveolin-1 recruitment are triggered to facilitate invasion of epithelial cells from the apical side by P. aeruginosa. IMPORTANCE An intriguing feature of the bacterium P. aeruginosa is its ability to colonize highly diverse niches. P. aeruginosa can, besides forming biofilms, also enter and proliferate within epithelial host cells. Moreover, research during recent years has shown that P. aeruginosa possesses many different mechanisms to invade host cells. In this study, we identify LecB as a novel invasion factor. In particular, we show that LecB activates PI3K signaling, which is connected via a positive feedback loop to apical caveolin-1 recruitment and leads to actin rearrangement at the apical plasma membrane. This provides a unifying explanation for the previously reported implication of PI3K and caveolin-1 in host cell invasion by P. aeruginosa. In addition, our study adds a further function to the remarkable repertoire of the lectin LecB, which is all brought about by the capability of LecB to recognize fucosylated glycans on many different niche-specific host cell receptors.


Asunto(s)
Lectinas , Pseudomonas aeruginosa , Actinas/metabolismo , Caveolina 1/metabolismo , Membrana Celular/metabolismo , Humanos , Lectinas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Pseudomonas aeruginosa/metabolismo
17.
Biomaterials ; 291: 121910, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36403325

RESUMEN

Renal tubular cells frequently lose differentiation markers and physiological properties when propagated in conventional cell culture conditions. Embedding cells in 3D microenvironments or controlling their 3D assembly by bioprinting can enhance their physiological properties, which is beneficial for modeling diseases in vitro. A potential cellular source for modeling renal tubular physiology and kidney diseases in vitro are directly reprogrammed induced renal tubular epithelial cells (iRECs). iRECs were cultured in various biomaterials and as bioprinted tubular structures. They showed high compatibility with the embedding substrates and dispensing methods. The morphology of multicellular aggregates was substantially influenced by the 3D microenvironment. Transcriptomic analyses revealed signatures of differentially expressed genes specific to each of the selected biomaterials. Using a new cellular model for autosomal-dominant polycystic kidney disease, Pkd1-/- iRECs showed disrupted morphology in bioprinted tubules and a marked upregulation of the Aldehyde dehydrogenase 1a1 (Aldh1a1). In conclusion, 3D microenvironments strongly influence the morphology and expression profiles of iRECs, help to unmask disease phenotypes, and can be adapted to experimental demands. Combining a direct reprogramming approach with appropriate biomaterials will facilitate construction of biomimetic kidney tubules and disease models at the microscale.


Asunto(s)
Biomimética , Enfermedades Renales Poliquísticas , Humanos , Riñón , Células Epiteliales , Materiales Biocompatibles
18.
Kidney Int ; 79(5): 502-11, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21085109

RESUMEN

The immunosuppressive drug rapamycin has helped to identify a large signaling network around the target of rapamycin (TOR) protein that integrates information on nutrient availability and growth factors to control protein synthesis and cell size. Studies using rapamycin in animal models of kidney disease indicate that mTOR deregulation has a role in glomerular disease, polycystic kidney disease, and renal cancer. The role of mTOR activation in podocytes is context dependent, and indirect evidence suggests that mTOR may have a role in chronic podocyte loss. Several lines of evidence show that cyst formation in polycystic kidney disease (PKD) involves mTOR activation and its upstream regulator TSC. Polycystin 1 regulates mTOR activity through different pathways, and TSC intersects with the primary cilium, a crucial cell organelle in the pathogenesis of PKD. Data from hamartoma syndromes provide clear evidence that mutation of members of the mTOR network results in renal cancers. The detailed analysis of renal cell carcinomas has revealed a positive feedback loop involving VHL and mTOR. Rapamycin and its derivatives have been approved for the treatment of advanced renal cancer and are being investigated for the treatment of PKD. Discrepancies exist between the effects of rapamycin in animal models and the clinical experience with patients, precluding the widespread use of mTOR inhibitors in kidney disease. The details of mTOR signaling in the kidney need to be clarified to hopefully develop targeted treatments for renal disease in the future.


Asunto(s)
Inmunosupresores/uso terapéutico , Enfermedades Renales/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Sirolimus/uso terapéutico , Serina-Treonina Quinasas TOR/fisiología , Animales , Autofagia , Cilios/fisiología , Ensayos Clínicos como Asunto , Nefropatías Diabéticas/etiología , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Complejos Multiproteicos , Nefronas/patología , Podocitos/patología , Proteínas/fisiología , Canales Catiónicos TRPP/fisiología
19.
Autophagy ; 17(9): 2384-2400, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-32967521

RESUMEN

Mutations in the PKD1 gene result in autosomal dominant polycystic kidney disease (ADPKD), the most common monogenetic cause of end-stage renal disease (ESRD) in humans. Previous reports suggested that PKD1, together with PKD2/polycystin-2, may function as a receptor-cation channel complex at cilia and on intracellular membranes and participate in various signaling pathways to regulate cell survival, proliferation and macroautophagy/autophagy. However, the exact molecular function of PKD1 and PKD2 has remained enigmatic. Here we used Pkd1-deficient mouse inner medullary collecting duct cells (mIMCD3) genetically deleted for Pkd1, and tubular epithelial cells isolated from nephrons of doxycycline-inducible conditional pkd1fl/fl;Pax8rtTA;TetOCre+ knockout mice to show that the lack of Pkd1 caused diminished lysosomal acidification, LAMP degradation and reduced CTSB/cathepsin B processing and activity. This led to an impairment of autophagosomal-lysosomal fusion, a lower delivery of ubiquitinated cargo from multivesicular bodies (MVB)/exosomes to lysosomes and an enhanced secretion of unprocessed CTSB into the extracellular space. The TFEB-dependent lysosomal biogenesis pathway was however unaffected. Pkd1-deficient cells exhibited increased activity of the calcium-dependent CAPN (calpain) proteases, probably due to a higher calcium influx. Consistent with this notion CAPN inhibitors restored lysosomal function, CTSB processing/activity and autophagosomal-lysosomal fusion, and blocked CTSB secretion and LAMP degradation in pkd1 knockout cells. Our data reveal for the first time a lysosomal function of PKD1 which keeps CAPN activity in check and ensures lysosomal integrity and a correct autophagic flux.Abbreviations: acCal: acetyl-calpastatin peptide; ADPKD: autosomal dominant polycystic kidney disease; CI-1: calpain inhibitor-1; CQ: chloroquine; Dox: doxycycline; EV: extracellular vesicles; EXO: exosomes; LAMP1/2: lysosomal-associated membrane protein 1/2; LGALS1/GAL1/galectin-1: lectin, galactose binding, soluble 1; LMP: lysosomal membrane permeabilization; mIMCD3: mouse inner medullary collecting duct cells; MV: microvesicles; MVB: multivesicular bodies; PAX8: paired box 8; PKD1/polycystin-1: polycystin 1, transient receptor potential channel interacting; PKD2/polycystin-2: polycystin 2, transient receptor potential cation channel; Tet: tetracycline; TFEB: transcription factor EB; VFM: vesicle-free medium; WT: wild-type.


Asunto(s)
Calpaína , Canales Catiónicos TRPP , Animales , Autofagia , Calpaína/metabolismo , Lisosomas/metabolismo , Ratones , Canales Catiónicos TRPP/genética , Canales Catiónicos TRPP/metabolismo
20.
Sci Rep ; 11(1): 15139, 2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-34301992

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) affects more than 12 million people worldwide. Mutations in PKD1 and PKD2 cause cyst formation through unknown mechanisms. To unravel the pathogenic mechanisms in ADPKD, multiple studies have investigated transcriptional mis-regulation in cystic kidneys from patients and mouse models, and numerous dysregulated genes and pathways have been described. Yet, the concordance between studies has been rather limited. Furthermore, the cellular and genetic diversity in cystic kidneys has hampered the identification of mis-expressed genes in kidney epithelial cells with homozygous PKD mutations, which are critical to identify polycystin-dependent pathways. Here we performed transcriptomic analyses of Pkd1- and Pkd2-deficient mIMCD3 kidney epithelial cells followed by a meta-analysis to integrate all published ADPKD transcriptomic data sets. Based on the hypothesis that Pkd1 and Pkd2 operate in a common pathway, we first determined transcripts that are differentially regulated by both genes. RNA sequencing of genome-edited ADPKD kidney epithelial cells identified 178 genes that are concordantly regulated by Pkd1 and Pkd2. Subsequent integration of existing transcriptomic studies confirmed 31 previously described genes and identified 61 novel genes regulated by Pkd1 and Pkd2. Cluster analyses then linked Pkd1 and Pkd2 to mRNA splicing, specific factors of epithelial mesenchymal transition, post-translational protein modification and epithelial cell differentiation, including CD34, CDH2, CSF2RA, DLX5, HOXC9, PIK3R1, PLCB1 and TLR6. Taken together, this model-based integrative analysis of transcriptomic alterations in ADPKD annotated a conserved core transcriptomic profile and identified novel candidate genes for further experimental studies.


Asunto(s)
Células Epiteliales/patología , Epitelio/patología , Riñón Poliquístico Autosómico Dominante/genética , Transcripción Genética/genética , Animales , Células Cultivadas , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica/genética , Ratones , Ratones Endogámicos C57BL , Mutación/genética , Enfermedades Renales Poliquísticas/genética , Enfermedades Renales Poliquísticas/patología , Riñón Poliquístico Autosómico Dominante/patología , Transducción de Señal/genética , Canales Catiónicos TRPP/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA