Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Cell ; 145(1): 117-32, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21458671

RESUMEN

Exchange of proteins at sorting endosomes is not only critical to numerous signaling pathways but also to receptor-mediated signaling and to pathogen entry into cells; however, how this process is regulated in synaptic vesicle cycling remains unexplored. In this work, we present evidence that loss of function of a single neuronally expressed GTPase activating protein (GAP), Skywalker (Sky) facilitates endosomal trafficking of synaptic vesicles at Drosophila neuromuscular junction boutons, chiefly by controlling Rab35 GTPase activity. Analyses of genetic interactions with the ESCRT machinery as well as chimeric ubiquitinated synaptic vesicle proteins indicate that endosomal trafficking facilitates the replacement of dysfunctional synaptic vesicle components. Consequently, sky mutants harbor a larger readily releasable pool of synaptic vesicles and show a dramatic increase in basal neurotransmitter release. Thus, the trafficking of vesicles via endosomes uncovered using sky mutants provides an elegant mechanism by which neurons may regulate synaptic vesicle rejuvenation and neurotransmitter release.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Vesículas Sinápticas/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/citología , Endosomas/metabolismo , Membranas Intracelulares/metabolismo , Mutación , Sistema Nervioso/metabolismo , Unión Neuromuscular/metabolismo , Neuronas/citología , Neuronas/metabolismo , Neurotransmisores/metabolismo , Proteínas de Unión al GTP rab/genética
2.
Neurobiol Dis ; 163: 105595, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34933093

RESUMEN

Synapses are critical for neuronal communication and brain function. To maintain neuronal homeostasis, synapses rely on autophagy. Autophagic alterations cause neurodegeneration and synaptic dysfunction is a feature in neurodegenerative diseases. In Parkinson's disease (PD), where the loss of synapses precedes dopaminergic neuron loss, various PD-causative proteins are involved in the regulation of autophagy. So far only a few factors regulating autophagy at the synapse have been identified and the molecular mechanisms underlying autophagy at the synapse is only partially understood. Here, we describe Endophilin-B (EndoB) as a novel player in the regulation of synaptic autophagy in health and disease. We demonstrate that EndoB is required for autophagosome biogenesis at the synapse, whereas the loss of EndoB blocks the autophagy induction promoted by the PD mutation LRRK2G2019S. We show that EndoB is required to prevent neuronal loss. Moreover, loss of EndoB in the Drosophila visual system leads to an increase in synaptic contacts between photoreceptor terminals and their post-synaptic synapses. These data confirm the role of autophagy in synaptic contact formation and neuronal survival.


Asunto(s)
Aciltransferasas/metabolismo , Autofagia/genética , Neuronas Dopaminérgicas/metabolismo , Proteínas de Drosophila/metabolismo , Degeneración Nerviosa/metabolismo , Sinapsis/metabolismo , Aciltransferasas/genética , Animales , Animales Modificados Genéticamente , Neuronas Dopaminérgicas/patología , Drosophila , Proteínas de Drosophila/genética , Degeneración Nerviosa/genética , Degeneración Nerviosa/patología , Sinapsis/genética
3.
EMBO J ; 36(10): 1392-1411, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28331029

RESUMEN

Presynaptic terminals are metabolically active and accrue damage through continuous vesicle cycling. How synapses locally regulate protein homeostasis is poorly understood. We show that the presynaptic lipid phosphatase synaptojanin is required for macroautophagy, and this role is inhibited by the Parkinson's disease mutation R258Q. Synaptojanin drives synaptic endocytosis by dephosphorylating PI(4,5)P2, but this function appears normal in SynaptojaninRQ knock-in flies. Instead, R258Q affects the synaptojanin SAC1 domain that dephosphorylates PI(3)P and PI(3,5)P2, two lipids found in autophagosomal membranes. Using advanced imaging, we show that SynaptojaninRQ mutants accumulate the PI(3)P/PI(3,5)P2-binding protein Atg18a on nascent synaptic autophagosomes, blocking autophagosome maturation at fly synapses and in neurites of human patient induced pluripotent stem cell-derived neurons. Additionally, we observe neurodegeneration, including dopaminergic neuron loss, in SynaptojaninRQ flies. Thus, synaptojanin is essential for macroautophagy within presynaptic terminals, coupling protein turnover with synaptic vesicle cycling and linking presynaptic-specific autophagy defects to Parkinson's disease.


Asunto(s)
Autofagosomas/metabolismo , Autofagia , Proteínas del Tejido Nervioso/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Terminales Presinápticos/enzimología , Terminales Presinápticos/metabolismo , Sustitución de Aminoácidos , Animales , Proteínas Relacionadas con la Autofagia/análisis , Células Cultivadas , Drosophila , Humanos , Proteínas de la Membrana/análisis , Mutación Missense , Proteínas del Tejido Nervioso/genética , Enfermedad de Parkinson/patología , Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico Hidrolasas/genética
4.
J Neurosci ; 36(6): 1914-29, 2016 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-26865615

RESUMEN

Mitochondria play an important role in the regulation of neurotransmission, and mitochondrial impairment is a key event in neurodegeneration. Cells rely on mitochondrial carrier proteins of the SLC25 family to shuttle ions, cofactors, and metabolites necessary for enzymatic reactions. Mutations in these carriers often result in rare but severe pathologies in the brain, and some of the genes, including SLC25A39 and SLC25A40, reside in susceptibility loci of severe forms of epilepsy. However, the role of most of these carriers has not been investigated in neurons in vivo. We identified shawn, the Drosophila homolog of SLC25A39 and SLC25A40, in a genetic screen to identify genes involved in neuronal function. Shawn localizes to mitochondria, and missense mutations result in an accumulation of reactive oxygen species, mitochondrial dysfunction, and neurodegeneration. Shawn regulates metal homeostasis, and we found in shawn mutants increased levels of manganese, calcium, and mitochondrial free iron. Mitochondrial mutants often cannot maintain synaptic transmission under demanding conditions, but shawn mutants do, and they also do not display endocytic defects. In contrast, shawn mutants harbor a significant increase in neurotransmitter release. Our work provides the first functional annotation of these essential mitochondrial carriers in the nervous system, and the results suggest that metal imbalances and mitochondrial dysfunction may contribute to defects in synaptic transmission and neuronal survival. SIGNIFICANCE STATEMENT: We describe for the first time the role of the mitochondrial carrier Shawn/SLC25A39/SLC25A40 in the nervous system. In humans, these genes reside in susceptibility loci for epilepsy, and, in flies, we observe neuronal defects related to mitochondrial dysfunction and metal homeostasis defects. Interestingly, shawn mutants also harbor increased neurotransmitter release and neurodegeneration. Our data suggest a connection between maintaining a correct metal balance and mitochondrial function to regulate neuronal survival and neurotransmitter release.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/fisiología , Animales , Animales Modificados Genéticamente , Supervivencia Celular/genética , Humanos , Larva/metabolismo , Potencial de la Membrana Mitocondrial/genética , Potencial de la Membrana Mitocondrial/fisiología , Metales/metabolismo , Mitocondrias/metabolismo , Mutación Missense/genética , Neuronas/fisiología , Neurotransmisores/metabolismo , Técnicas de Placa-Clamp , Sinapsis/fisiología , Transmisión Sináptica/genética
5.
Metab Eng ; 43(Pt B): 187-197, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-27847310

RESUMEN

Mutations in succinate dehydrogenase (SDH) are associated with tumor development and neurodegenerative diseases. Only in tumors, loss of SDH activity is accompanied with the loss of complex I activity. Yet, it remains unknown whether the metabolic phenotype of SDH mutant tumors is driven by loss of complex I function, and whether this contributes to the peculiarity of tumor development versus neurodegeneration. We addressed this question by decoupling loss of SDH and complex I activity in cancer cells and neurons. We found that sole loss of SDH activity was not sufficient to recapitulate the metabolic phenotype of SDH mutant tumors, because it failed to decrease mitochondrial respiration and to activate reductive glutamine metabolism. These metabolic phenotypes were only induced upon the additional loss of complex I activity. Thus, we show that complex I function defines the metabolic differences between SDH mutation associated tumors and neurodegenerative diseases, which could open novel therapeutic options against both diseases.


Asunto(s)
Complejo I de Transporte de Electrón , Mutación , Proteínas de Neoplasias , Neoplasias , Succinato Deshidrogenasa , Línea Celular Tumoral , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/enzimología , Neoplasias/genética , Neoplasias/patología , Neuronas/enzimología , Neuronas/patología , Succinato Deshidrogenasa/genética , Succinato Deshidrogenasa/metabolismo
6.
NPJ Parkinsons Dis ; 9(1): 19, 2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36739293

RESUMEN

Recent evidence links dysfunctional lipid metabolism to the pathogenesis of Parkinson's disease, but the mechanisms are not resolved. Here, we generated a new Drosophila knock-in model of DNAJC6/Auxilin and find that the pathogenic mutation causes synaptic dysfunction, neurological defects and neurodegeneration, as well as specific lipid metabolism alterations. In these mutants, membrane lipids containing long-chain polyunsaturated fatty acids, including phosphatidylinositol lipid species that are key for synaptic vesicle recycling and organelle function, are reduced. Overexpression of another protein mutated in Parkinson's disease, Synaptojanin-1, known to bind and metabolize specific phosphoinositides, rescues the DNAJC6/Auxilin lipid alterations, the neuronal function defects and neurodegeneration. Our work reveals a functional relation between two proteins mutated in Parkinsonism and implicates deregulated phosphoinositide metabolism in the maintenance of neuronal integrity and neuronal survival.

7.
Neuron ; 111(10): 1577-1590.e11, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-36948206

RESUMEN

Pathogenic α-synuclein and tau are critical drivers of neurodegeneration, and their mutations cause neuronal loss in patients. Whether the underlying preferential neuronal vulnerability is a cell-type-intrinsic property or a consequence of increased expression levels remains elusive. Here, we explore cell-type-specific α-synuclein and tau expression in human brain datasets and use deep phenotyping as well as brain-wide single-cell RNA sequencing of >200 live neuron types in fruit flies to determine which cellular environments react most to α-synuclein or tau toxicity. We detect phenotypic and transcriptomic evidence of differential neuronal vulnerability independent of α-synuclein or tau expression levels. Comparing vulnerable with resilient neurons in Drosophila enabled us to predict numerous human neuron subtypes with increased intrinsic susceptibility to pathogenic α-synuclein or tau. By uncovering synapse- and Ca2+ homeostasis-related genes as tau toxicity modifiers, our work paves the way to leverage neuronal identity to uncover modifiers of neurodegeneration-associated toxic proteins.


Asunto(s)
alfa-Sinucleína , Proteínas tau , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/toxicidad , alfa-Sinucleína/metabolismo , Proteínas tau/genética , Proteínas tau/toxicidad , Proteínas tau/metabolismo , Encéfalo/metabolismo , Neuronas/metabolismo , Cabeza
8.
Neuron ; 111(9): 1402-1422.e13, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-36827984

RESUMEN

Neuronal activity causes use-dependent decline in protein function. However, it is unclear how this is coupled to local quality control mechanisms. We show in Drosophila that the endocytic protein Endophilin-A (EndoA) connects activity-induced calcium influx to synaptic autophagy and neuronal survival in a Parkinson disease-relevant fashion. Mutations in the disordered loop, including a Parkinson disease-risk mutation, render EndoA insensitive to neuronal stimulation and affect protein dynamics: when EndoA is more flexible, its mobility in membrane nanodomains increases, making it available for autophagosome formation. Conversely, when EndoA is more rigid, its mobility reduces, blocking stimulation-induced autophagy. Balanced stimulation-induced autophagy is required for dopagminergic neuron survival, and a variant in the human ENDOA1 disordered loop conferring risk to Parkinson disease also blocks nanodomain protein mobility and autophagy both in vivo and in human-induced dopaminergic neurons. Thus, we reveal a mechanism that neurons use to connect neuronal activity to local autophagy and that is critical for neuronal survival.


Asunto(s)
Enfermedad de Parkinson , Animales , Humanos , Autofagia/genética , Calcio/metabolismo , Neuronas Dopaminérgicas/metabolismo , Drosophila/metabolismo , Mutación/genética , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo
9.
Nucleic Acids Res ; 36(18): e114, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18676454

RESUMEN

Studying gene function in the post-genome era requires methods to localize and inactivate proteins in a standardized fashion in model organisms. While genome-wide gene disruption and over-expression efforts are well on their way to vastly expand the repertoire of Drosophila tools, a complementary method to efficiently and quickly tag proteins expressed under endogenous control does not exist for fruit flies. Here, we describe the development of an efficient procedure to generate protein fusions at either terminus in an endogenous genomic context using recombineering. We demonstrate that the fluorescent protein tagged constructs, expressed under the proper control of regulatory elements, can rescue the respective mutations and enable the detection of proteins in vivo. Furthermore, we also adapted our method for use of the tetracysteine tag that tightly binds the fluorescent membrane-permeable FlAsH ligand. This technology allows us to acutely inactivate any tagged protein expressed under native control using fluorescein-assisted light inactivation and we provide proof of concept by demonstrating that acute loss of clathrin heavy chain function in the fly eye leads to synaptic transmission defects in photoreceptors. Our tagging technology is efficient and versatile, adaptable to any tag desired and paves the way to genome-wide gene tagging in Drosophila.


Asunto(s)
Drosophila melanogaster/genética , Ingeniería de Proteínas/métodos , Proteínas Recombinantes de Fusión/análisis , Animales , Cadenas Pesadas de Clatrina/genética , Drosophila melanogaster/fisiología , Fluoresceínas/química , Colorantes Fluorescentes/química , Vectores Genéticos , Genoma de los Insectos , Genómica/métodos , Compuestos Organometálicos/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Recombinación Genética , Transmisión Sináptica
10.
Nat Struct Mol Biol ; 23(11): 965-973, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27669036

RESUMEN

Mutations in TBC1D24 cause severe epilepsy and DOORS syndrome, but the molecular mechanisms underlying these pathologies are unresolved. We solved the crystal structure of the TBC domain of the Drosophila ortholog Skywalker, revealing an unanticipated cationic pocket conserved among TBC1D24 homologs. Cocrystallization and biochemistry showed that this pocket binds phosphoinositides phosphorylated at the 4 and 5 positions. The most prevalent patient mutations affect the phosphoinositide-binding pocket and inhibit lipid binding. Using in vivo photobleaching of Skywalker-GFP mutants, including pathogenic mutants, we showed that membrane binding via this pocket restricts Skywalker diffusion in presynaptic terminals. Additionally, the pathogenic mutations cause severe neurological defects in flies, including impaired synaptic-vesicle trafficking and seizures, and these defects are reversed by genetically increasing synaptic PI(4,5)P2 concentrations through synaptojanin mutations. Hence, we discovered that a TBC domain affected by clinical mutations directly binds phosphoinositides through a cationic pocket and that phosphoinositide binding is critical for presynaptic function.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Fosfatidilinositoles/metabolismo , Vesículas Sinápticas/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Animales , Sitios de Unión , Proteínas Portadoras/análisis , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Anomalías Craneofaciales/genética , Anomalías Craneofaciales/metabolismo , Cristalografía por Rayos X , Difusión , Proteínas de Drosophila/análisis , Proteínas de Drosophila/genética , Drosophila melanogaster/química , Drosophila melanogaster/genética , Epilepsia/genética , Epilepsia/metabolismo , Proteínas Activadoras de GTPasa , Deformidades Congénitas de la Mano/genética , Deformidades Congénitas de la Mano/metabolismo , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva Sensorineural/metabolismo , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Proteínas de la Membrana , Modelos Moleculares , Mutación , Uñas Malformadas/genética , Uñas Malformadas/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Conformación Proteica , Dominios Proteicos , Vesículas Sinápticas/química , Vesículas Sinápticas/genética , Vesículas Sinápticas/ultraestructura , Proteínas de Unión al GTP rab/análisis , Proteínas de Unión al GTP rab/genética
11.
Neuron ; 92(4): 829-844, 2016 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-27720484

RESUMEN

Synapses are often far from the soma and independently cope with proteopathic stress induced by intense neuronal activity. However, how presynaptic compartments turn over proteins is poorly understood. We show that the synapse-enriched protein EndophilinA, thus far studied for its role in endocytosis, induces macroautophagy at presynaptic terminals. We find that EndophilinA executes this unexpected function at least partly independent of its role in synaptic vesicle endocytosis. EndophilinA-induced macroautophagy is activated when the kinase LRRK2 phosphorylates the EndophilinA-BAR domain and is blocked in animals where EndophilinA cannot be phosphorylated. EndophilinA-phosphorylation promotes the formation of highly curved membranes, and reconstitution experiments show these curved membranes serve as docking stations for autophagic factors, including Atg3. Functionally, deregulation of the EndophilinA phosphorylation state accelerates activity-induced neurodegeneration. Given that EndophilinA is connected to at least three Parkinson's disease genes (LRRK2, Parkin and Synaptojanin), dysfunction of EndophilinA-dependent synaptic macroautophagy may be common in this disorder.


Asunto(s)
Aciltransferasas/metabolismo , Autofagosomas/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia/genética , Neuronas Dopaminérgicas/metabolismo , Proteínas de Drosophila/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Terminales Presinápticos/metabolismo , Animales , Drosophila , Proteínas de Drosophila/metabolismo , Endocitosis , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Enfermedades Neurodegenerativas , Fosforilación/genética , Vesículas Sinápticas/metabolismo
12.
Nat Commun ; 7: 11710, 2016 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-27271794

RESUMEN

ATP production requires the establishment of an electrochemical proton gradient across the inner mitochondrial membrane. Mitochondrial uncouplers dissipate this proton gradient and disrupt numerous cellular processes, including vesicular trafficking, mainly through energy depletion. Here we show that Endosidin9 (ES9), a novel mitochondrial uncoupler, is a potent inhibitor of clathrin-mediated endocytosis (CME) in different systems and that ES9 induces inhibition of CME not because of its effect on cellular ATP, but rather due to its protonophore activity that leads to cytoplasm acidification. We show that the known tyrosine kinase inhibitor tyrphostinA23, which is routinely used to block CME, displays similar properties, thus questioning its use as a specific inhibitor of cargo recognition by the AP-2 adaptor complex via tyrosine motif-based endocytosis signals. Furthermore, we show that cytoplasm acidification dramatically affects the dynamics and recruitment of clathrin and associated adaptors, and leads to reduction of phosphatidylinositol 4,5-biphosphate from the plasma membrane.


Asunto(s)
Ácidos/metabolismo , Clatrina/metabolismo , Endocitosis/efectos de los fármacos , Mitocondrias/metabolismo , Desacopladores/farmacología , Adenosina Trifosfato/deficiencia , Adenosina Trifosfato/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Metabolismo Energético/efectos de los fármacos , Células HeLa , Humanos , Mitocondrias/efectos de los fármacos , Orgánulos/efectos de los fármacos , Orgánulos/metabolismo , Transporte de Proteínas/efectos de los fármacos , Quinolonas/química , Quinolonas/farmacología
13.
Eur J Hum Genet ; 24(8): 1145-53, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26757981

RESUMEN

Recently WAC was reported as a candidate gene for intellectual disability (ID) based on the identification of a de novo mutation in an individual with severe ID. WAC regulates transcription-coupled histone H2B ubiquitination and has previously been implicated in the 10p12p11 contiguous gene deletion syndrome. In this study, we report on 10 individuals with de novo WAC mutations which we identified through routine (diagnostic) exome sequencing and targeted resequencing of WAC in 2326 individuals with unexplained ID. All but one mutation was expected to lead to a loss-of-function of WAC. Clinical evaluation of all individuals revealed phenotypic overlap for mild ID, hypotonia, behavioral problems and distinctive facial dysmorphisms, including a square-shaped face, deep set eyes, long palpebral fissures, and a broad mouth and chin. These clinical features were also previously reported in individuals with 10p12p11 microdeletion syndrome. To investigate the role of WAC in ID, we studied the importance of the Drosophila WAC orthologue (CG8949) in habituation, a non-associative learning paradigm. Neuronal knockdown of Drosophila CG8949 resulted in impaired learning, suggesting that WAC is required in neurons for normal cognitive performance. In conclusion, we defined a clinically recognizable ID syndrome, caused by de novo loss-of-function mutations in WAC. Independent functional evidence in Drosophila further supported the role of WAC in ID. On the basis of our data WAC can be added to the list of ID genes with a role in transcription regulation through histone modification.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Portadoras/genética , Anomalías Craneofaciales/genética , Proteínas de Drosophila/genética , Discapacidad Intelectual/genética , Discapacidades para el Aprendizaje/genética , Mutación , Adolescente , Animales , Proteínas Portadoras/metabolismo , Niño , Preescolar , Anomalías Craneofaciales/diagnóstico , Drosophila/genética , Drosophila/fisiología , Proteínas de Drosophila/metabolismo , Femenino , Habituación Psicofisiológica , Humanos , Discapacidad Intelectual/diagnóstico , Aprendizaje , Discapacidades para el Aprendizaje/diagnóstico , Masculino , Fenotipo , Síndrome , Adulto Joven
14.
Neuron ; 88(4): 735-48, 2015 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-26590345

RESUMEN

Synapses are often far from their cell bodies and must largely independently cope with dysfunctional proteins resulting from synaptic activity and stress. To identify membrane-associated machines that can engulf synaptic targets destined for degradation, we performed a large-scale in vitro liposome-based screen followed by functional studies. We identified a presynaptically enriched chaperone Hsc70-4 that bends membranes based on its ability to oligomerize. This activity promotes endosomal microautophagy and the turnover of specific synaptic proteins. Loss of microautophagy slows down neurotransmission while gain of microautophagy increases neurotransmission. Interestingly, Sgt, a cochaperone of Hsc70-4, is able to switch the activity of Hsc70-4 from synaptic endosomal microautophagy toward chaperone activity. Hence, Hsc70-4 controls rejuvenation of the synaptic protein pool in a dual way: either by refolding proteins together with Sgt, or by targeting them for degradation by facilitating endosomal microautophagy based on its membrane deforming activity.


Asunto(s)
Autofagia/genética , Proteínas del Choque Térmico HSC70/genética , Membranas Sinápticas/metabolismo , Vesículas Sinápticas/metabolismo , Animales , Drosophila , Proteínas de Drosophila/genética , Tomografía con Microscopio Electrónico , Endosomas/metabolismo , Endosomas/ultraestructura , Escherichia coli , Proteínas de Escherichia coli , Microscopía Fluorescente , Chaperonas Moleculares , Polimerizacion , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Sinapsis/metabolismo , Sinapsis/ultraestructura , Membranas Sinápticas/ultraestructura , Transmisión Sináptica , Vesículas Sinápticas/ultraestructura
15.
J Cell Biol ; 204(7): 1141-56, 2014 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-24662566

RESUMEN

Dynamin is a well-known regulator of synaptic endocytosis. Temperature-sensitive dynamin (shi(ts1)) mutations in Drosophila melanogaster or deletion of some of the mammalian Dynamins causes the accumulation of invaginated endocytic pits at synapses, sometimes also on bulk endosomes, indicating impaired membrane scission. However, complete loss of dynamin function has not been studied in neurons in vivo, and whether Dynamin acts in different aspects of synaptic vesicle formation remains enigmatic. We used acute photoinactivation and found that loss of Dynamin function blocked membrane recycling and caused the buildup of huge membrane-connected cisternae, in contrast to the invaginated pits that accumulate in shi(ts1) mutants. Moreover, photoinactivation of Dynamin in shi(ts1) animals converted these pits into bulk cisternae. Bulk membrane retrieval has also been seen upon Clathrin photoinactivation, and superresolution imaging indicated that acute Dynamin photoinactivation blocked Clathrin and α-adaptin relocalization to synaptic membranes upon nerve stimulation. Hence, our data indicate that Dynamin is critically involved in the stabilization of Clathrin- and AP2-dependent endocytic pits.


Asunto(s)
Subunidades alfa de Complejo de Proteína Adaptadora/metabolismo , Membrana Celular/metabolismo , Clatrina/metabolismo , Proteínas de Drosophila/fisiología , Drosophila melanogaster/citología , Dinaminas/fisiología , Complejo 2 de Proteína Adaptadora/metabolismo , Animales , Membrana Celular/ultraestructura , Células Cultivadas , Endocitosis , Fluoresceína/química , Larva/citología , Neuronas/fisiología , Neuronas/ultraestructura , Procesos Fotoquímicos , Transporte de Proteínas , Vesículas Sinápticas/metabolismo
16.
J Cell Biol ; 207(4): 453-62, 2014 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-25422373

RESUMEN

Synaptic demise and accumulation of dysfunctional proteins are thought of as common features in neurodegeneration. However, the mechanisms by which synaptic proteins turn over remain elusive. In this paper, we study Drosophila melanogaster lacking active TBC1D24/Skywalker (Sky), a protein that in humans causes severe neurodegeneration, epilepsy, and DOOR (deafness, onychdystrophy, osteodystrophy, and mental retardation) syndrome, and identify endosome-to-lysosome trafficking as a mechanism for degradation of synaptic vesicle-associated proteins. In fly sky mutants, synaptic vesicles traveled excessively to endosomes. Using chimeric fluorescent timers, we show that synaptic vesicle-associated proteins were younger on average, suggesting that older proteins are more efficiently degraded. Using a genetic screen, we find that reducing endosomal-to-lysosomal trafficking, controlled by the homotypic fusion and vacuole protein sorting (HOPS) complex, rescued the neurotransmission and neurodegeneration defects in sky mutants. Consistently, synaptic vesicle proteins were older in HOPS complex mutants, and these mutants also showed reduced neurotransmission. Our findings define a mechanism in which synaptic transmission is facilitated by efficient protein turnover at lysosomes and identify a potential strategy to suppress defects arising from TBC1D24 mutations in humans.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Transmisión Sináptica/fisiología , Proteínas de Unión al GTP rab/metabolismo , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Anomalías Craneofaciales/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/biosíntesis , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Endosomas/metabolismo , Proteínas Activadoras de GTPasa , Deformidades Congénitas de la Mano/genética , Pérdida Auditiva Sensorineural/genética , Humanos , Discapacidad Intelectual/genética , Lisosomas/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana , Mutación , Uñas Malformadas/genética , Proteínas del Tejido Nervioso , Enfermedades Neurodegenerativas/genética , Unión Neuromuscular/metabolismo , Transporte de Proteínas , Proteolisis , Compuestos de Piridinio/farmacología , Compuestos de Amonio Cuaternario/farmacología , Proteínas R-SNARE/biosíntesis , Proteínas R-SNARE/genética , Vesículas Sinápticas/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab5/biosíntesis
17.
Neuron ; 77(6): 1097-108, 2013 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-23522045

RESUMEN

PI(3,4,5)P3 is a low-abundance lipid thought to play a role in the regulation of synaptic activity; however, the mechanism remains obscure. We have constructed novel split Venus-based probes and used superresolution imaging to localize PI(3,4,5)P3 at Drosophila larval neuromuscular synapses. We find the lipid in membrane domains at neurotransmitter release sites, where it concentrates with Syntaxin1A, a protein essential for vesicle fusion. Reducing PI(3,4,5)P3 availability disperses Syntaxin1A clusters and increasing PI(3,4,5)P3 levels rescues this defect. In artificial giant unilamellar vesicles, PI(3,4,5)P3 also induces Syntaxin1A domain formation and this clustering, in vitro and in vivo, is dependent on positively charged residues in the Syntaxin1A-juxtamembrane domain. Functionally, reduced PI(3,4,5)P3 causes temperature-sensitive paralysis and reduced neurotransmitter release, a phenotype also seen in animals expressing a Syntaxin1A with a mutated juxtamembrane domain. Thus, our data indicate that PI(3,4,5)P3, based on electrostatic interactions, clusters Syntaxin1A at release sites to regulate neurotransmitter release.


Asunto(s)
Fosfatidilinositoles/metabolismo , Sinapsis/metabolismo , Sintaxina 1/metabolismo , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Análisis por Conglomerados , Drosophila , Datos de Secuencia Molecular , Neurotransmisores/genética , Neurotransmisores/metabolismo , Células PC12 , Fosfatidilinositoles/genética , Ratas , Sinapsis/ultraestructura , Sintaxina 1/genética
18.
Mol Cell Endocrinol ; 314(1): 90-100, 2010 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-19698761

RESUMEN

Tamoxifen and 17beta-estradiol are capable of up-regulating the expression of some genes and down-regulate the expression of others simultaneously in the same cell. In addition, tamoxifen shows distinct transcriptional activities in different target tissues. To elucidate whether these events are determined by differences in the recruitment of co-regulators by activated estrogen receptor-alpha (ER-alpha) at target promoters, we applied chromatin immunoprecipitation (ChIP) with promoter microarray hybridisation in breast cancer T47D cells and identified 904 ER-alpha targets genome-wide. On a selection of newly identified targets, we show that 17beta-estradiol and tamoxifen stimulated up- or down-regulation of transcription correlates with the selective recruitment of co-activators or co-repressors, respectively. This is shown for both breast (T47D) and endometrial carcinoma cells (ECC1). Moreover, differential co-regulator recruitment also explains that tamoxifen regulates a number of genes in opposite direction in breast and endometrial cancer cells. Over-expression of co-activator SRC-1 or co-repressor SMRT is sufficient to alter the transcriptional action of tamoxifen on a number of targets. Our findings support the notion that recruitment of co-regulator at target gene promoters and their expression levels determine the effect of ER-alpha on gene expression to a large extent.


Asunto(s)
Antineoplásicos Hormonales , Neoplasias de la Mama , Estradiol/farmacología , Receptor alfa de Estrógeno/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regiones Promotoras Genéticas , Tamoxifeno , Antineoplásicos Hormonales/farmacología , Antineoplásicos Hormonales/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Línea Celular Tumoral , Receptor alfa de Estrógeno/genética , Femenino , Humanos , Co-Represor 2 de Receptor Nuclear/genética , Co-Represor 2 de Receptor Nuclear/metabolismo , Tamoxifeno/farmacología , Tamoxifeno/uso terapéutico , Transcripción Genética
19.
J Cell Biol ; 182(5): 1007-16, 2008 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-18762582

RESUMEN

Synaptic vesicle reformation depends on clathrin, an abundant protein that polymerizes around newly forming vesicles. However, how clathrin is involved in synaptic recycling in vivo remains unresolved. We test clathrin function during synaptic endocytosis using clathrin heavy chain (chc) mutants combined with chc photoinactivation to circumvent early embryonic lethality associated with chc mutations in multicellular organisms. Acute inactivation of chc at stimulated synapses leads to substantial membrane internalization visualized by live dye uptake and electron microscopy. However, chc-inactivated membrane cannot recycle and participate in vesicle release, resulting in a dramatic defect in neurotransmission maintenance during intense synaptic activity. Furthermore, inactivation of chc in the context of other endocytic mutations results in membrane uptake. Our data not only indicate that chc is critical for synaptic vesicle recycling but they also show that in the absence of the protein, bulk retrieval mediates massive synaptic membrane internalization.


Asunto(s)
Cadenas Pesadas de Clatrina/fisiología , Proteínas de Drosophila/fisiología , Drosophila/metabolismo , Membranas Sinápticas/fisiología , Transmisión Sináptica/fisiología , Vesículas Sinápticas/metabolismo , Animales , Clorpromazina/farmacología , Cadenas Pesadas de Clatrina/genética , Drosophila/efectos de los fármacos , Drosophila/genética , Drosophila/ultraestructura , Proteínas de Drosophila/genética , Dinaminas/fisiología , Endocitosis/efectos de los fármacos , Endocitosis/genética , Endocitosis/fisiología , Cuerpos de Inclusión/metabolismo , Mutación , Membranas Sinápticas/metabolismo , Membranas Sinápticas/ultraestructura , Transmisión Sináptica/genética , Vesículas Sinápticas/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA