Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Rofo ; 2024 Apr 22.
Artículo en Inglés, Alemán | MEDLINE | ID: mdl-38648790

RESUMEN

The mutated enzyme isocitrate dehydrogenase (IDH) 1 and 2 has been detected in various tumor entities such as gliomas and can convert α-ketoglutarate into the oncometabolite 2-hydroxyglutarate (2-HG). This neuro-oncologically significant metabolic product can be detected by MR spectroscopy and is therefore suitable for noninvasive glioma classification and therapy monitoring.This paper provides an up-to-date overview of the methodology and relevance of 1H-MR spectroscopy (MRS) in the oncological primary and follow-up diagnosis of gliomas. The possibilities and limitations of this MR spectroscopic examination are evaluated on the basis of the available literature.By detecting 2-HG, MRS can in principle offer a noninvasive alternative to immunohistological analysis thus avoiding surgical intervention in some cases. However, in addition to an adapted and optimized examination protocol, the individual measurement conditions in the examination region are of decisive importance. Due to the inherently small signal of 2-HG, unfavorable measurement conditions can influence the reliability of detection. · MR spectroscopy enables the non-invasive detection of 2-hydroxyglutarate.. · The measurement of this metabolite allows the detection of an IDH mutation in gliomas.. · The choice of MR examination method is particularly important.. · Detection reliability is influenced by glioma size, necrotic tissue and the existing measurement conditions.. · Bauer J, Raum HN, Kugel H et al. 2-Hydroxyglutarate as an MR spectroscopic predictor of an IDH mutation in gliomas. Fortschr Röntgenstr 2024; DOI 10.1055/a-2285-4923.

2.
Sci Rep ; 14(1): 12325, 2024 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811621

RESUMEN

Knowledge of thrombus behavior and visualization on MRI in acute ischemic stroke is less than optimal. However, MRI sequences could be enhanced based on the typical T1 and T2 relaxation times of the target tissues, which mainly determine their signal intensities on imaging. We studied the relaxation times of a broad spectrum of clot analogs along with their image characteristics of three sequences analyzed: a T1-weighted turbo inversion-recovery sequence (T1w Turbo IR), a T1-weighted turbo spin echo with fat suppression (T1w TSE SPIR), and a T2-weighted 3D TSE with magnetization refocusing to remove T1 dependence (T2w TSE DRIVE). We compared their imaging behavior with the intensity values of normal brain tissue using the same imaging protocols as for clots. Each histological and biochemical clot component contributed to each of the relaxation times. Overall, histological composition correlated strongly with T1 times, and iron content, specifically, with T2 relaxation time. Using decision trees, fibrin content was selected as the primary biomarker for T1 relaxation times, inducing an increase. Up to four clot subgroups could be defined based on its distinctive T1 relaxation time. Clot signal intensity in the T1 and T2-weighted images varied significantly according to T1 and T2 relaxation times. Moreover, in comparison with normal brain tissue intensity values, T2w DRIVE images depict thrombi according to the principle of the more fibrin, the higher the intensity, and in T1w TSE, the more erythrocytes, the higher the intensity. These findings could facilitate improvements in MRI sequences for clot visualization and indicate that T2w DRIVE and T1w TSE sequences should depict the vast majority of acute ischemic stroke thrombi as more hyperintense than surrounding tissues.


Asunto(s)
Accidente Cerebrovascular Isquémico , Imagen por Resonancia Magnética , Trombosis , Imagen por Resonancia Magnética/métodos , Humanos , Accidente Cerebrovascular Isquémico/diagnóstico por imagen , Accidente Cerebrovascular Isquémico/patología , Trombosis/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Fibrina/metabolismo , Procesamiento de Imagen Asistido por Computador
3.
Eur Radiol Exp ; 8(1): 16, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38332362

RESUMEN

BACKGROUND: The use of cerebral magnetic resonance imaging (MRI) in observational studies has increased exponentially in recent years, making it critical to provide details about the study sample, image processing, and extracted imaging markers to validate and replicate study results. This article reviews the cerebral MRI dataset from the now-completed BiDirect cohort study, as an update and extension of the feasibility report published after the first two examination time points. METHODS: We report the sample and flow of participants spanning four study sessions and twelve years. In addition, we provide details on the acquisition protocol; the processing pipelines, including standardization and quality control methods; and the analytical tools used and markers available. RESULTS: All data were collected from 2010 to 2021 at a single site in Münster, Germany, starting with a population of 2,257 participants at baseline in 3 different cohorts: a population-based cohort (n = 911 at baseline, 672 with MRI data), patients diagnosed with depression (n = 999, 736 with MRI data), and patients with manifest cardiovascular disease (n = 347, 52 with MRI data). During the study period, a total of 4,315 MRI sessions were performed, and over 535 participants underwent MRI at all 4 time points. CONCLUSIONS: Images were converted to Brain Imaging Data Structure (a standard for organizing and describing neuroimaging data) and analyzed using common tools, such as CAT12, FSL, Freesurfer, and BIANCA to extract imaging biomarkers. The BiDirect study comprises a thoroughly phenotyped study population with structural and functional MRI data. RELEVANCE STATEMENT: The BiDirect Study includes a population-based sample and two patient-based samples whose MRI data can help answer numerous neuropsychiatric and cardiovascular research questions. KEY POINTS: • The BiDirect study included characterized patient- and population-based cohorts with MRI data. • Data were standardized to Brain Imaging Data Structure and processed with commonly available software. • MRI data and markers are available upon request.


Asunto(s)
Aterosclerosis , Depresión , Humanos , Estudios de Cohortes , Depresión/diagnóstico por imagen , Estudios Prospectivos , Imagen por Resonancia Magnética/métodos
4.
Am J Psychiatry ; 181(8): 728-740, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38859702

RESUMEN

OBJECTIVE: Specific phobia is a common anxiety disorder, but the literature on associated brain structure alterations exhibits substantial gaps. The ENIGMA Anxiety Working Group examined brain structure differences between individuals with specific phobias and healthy control subjects as well as between the animal and blood-injection-injury (BII) subtypes of specific phobia. Additionally, the authors investigated associations of brain structure with symptom severity and age (youths vs. adults). METHODS: Data sets from 31 original studies were combined to create a final sample with 1,452 participants with phobia and 2,991 healthy participants (62.7% female; ages 5-90). Imaging processing and quality control were performed using established ENIGMA protocols. Subcortical volumes as well as cortical surface area and thickness were examined in a preregistered analysis. RESULTS: Compared with the healthy control group, the phobia group showed mostly smaller subcortical volumes, mixed surface differences, and larger cortical thickness across a substantial number of regions. The phobia subgroups also showed differences, including, as hypothesized, larger medial orbitofrontal cortex thickness in BII phobia (N=182) compared with animal phobia (N=739). All findings were driven by adult participants; no significant results were observed in children and adolescents. CONCLUSIONS: Brain alterations associated with specific phobia exceeded those of other anxiety disorders in comparable analyses in extent and effect size and were not limited to reductions in brain structure. Moreover, phenomenological differences between phobia subgroups were reflected in diverging neural underpinnings, including brain areas related to fear processing and higher cognitive processes. The findings implicate brain structure alterations in specific phobia, although subcortical alterations in particular may also relate to broader internalizing psychopathology.


Asunto(s)
Imagen por Resonancia Magnética , Trastornos Fóbicos , Humanos , Trastornos Fóbicos/patología , Adulto , Femenino , Masculino , Niño , Adolescente , Adulto Joven , Persona de Mediana Edad , Encéfalo/patología , Encéfalo/diagnóstico por imagen , Anciano , Preescolar , Anciano de 80 o más Años , Corteza Cerebral/patología , Corteza Cerebral/diagnóstico por imagen , Animales , Estudios de Casos y Controles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA