Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Clin Microbiol ; 61(3): e0147822, 2023 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-36757183

RESUMEN

While the goal of universal drug susceptibility testing has been a key component of the WHO End TB Strategy, in practice, this remains inaccessible to many. Rapid molecular tests for tuberculosis (TB) and antituberculosis drug resistance could significantly improve access to testing. In this study, we evaluated the accuracy of the Akonni Biosystems XDR-TB (extensively drug-resistant TB) TruArray and lateral-flow-cell (XDR-LFC) assay (Akonni Biosystems, Inc., Frederick, MD, USA), a novel assay that detects mutations in seven genes associated with resistance to antituberculosis drugs: katG, the inhA promoter, and the ahpC promoter for isoniazid; rpoB for rifampin; gyrA for fluoroquinolones; rrs and the eis promoter for kanamycin; and rrs for capreomycin and amikacin. We evaluated assay performance using direct sputum samples from 566 participants recruited in a prospective cohort in Moldova over 2 years. The sensitivity and specificity against the phenotypic reference were both 100% for isoniazid, 99.2% and 97.9% for rifampin, 84.8% and 99.1% for fluoroquinolones, 87.0% and 84.1% for kanamycin, 54.3% and 100% for capreomycin, and 79.2% and 100% for amikacin, respectively. Whole-genome sequencing data for a subsample of 272 isolates showed 95 to 99% concordance with the XDR-LFC-reported suspected mutations. The XDR-LFC assay demonstrated a high level of accuracy for multiple drugs and met the WHO's minimum target product profile criteria for isoniazid and rifampin, while the sensitivity for fluoroquinolones and amikacin fell below target thresholds, likely due to the absence of a gyrB target in the assay. With optimization, the XDR-LFC shows promise as a novel near-patient technology to rapidly diagnose drug-resistant tuberculosis.


Asunto(s)
Tuberculosis Extensivamente Resistente a Drogas , Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Humanos , Kanamicina , Isoniazida/farmacología , Capreomicina , Amicacina/farmacología , Rifampin/farmacología , Fluoroquinolonas/farmacología , Pruebas de Sensibilidad Microbiana , Estudios Prospectivos , Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana Múltiple/genética , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Tuberculosis Resistente a Múltiples Medicamentos/diagnóstico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Extensivamente Resistente a Drogas/diagnóstico , Tuberculosis Extensivamente Resistente a Drogas/tratamiento farmacológico
2.
Anal Chem ; 92(7): 5311-5318, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32142258

RESUMEN

Automated genotyping of drug-resistant Mycobacterium tuberculosis (MTB) directly from sputum is challenging for three primary reasons. First, the sample matrix, sputum, is highly viscous and heterogeneous, posing a challenge for sample processing. Second, acid-fast MTB bacilli are difficult to lyse. And third, there are hundreds of MTB mutations that confer drug resistance. An additional constraint is that MTB is most prevalent where test affordability is paramount. We address the challenge of sample homogenization and cell lysis using magnetic rotation of an external magnet, at high (5000) rpm, to induce the rotation of a disposable stir disc that causes chaotic mixing of glass beads ("MagVor"). Nucleic acid is purified using a pipet tip with an embedded matrix that isolates nucleic acid ("TruTip"). We address the challenge of cost and genotyping multiple mutations using 203 porous three-dimensional gel elements printed on a film substrate and enclosed in a microfluidic laminate assembly ("Lab-on-a-Film"). This Lab-on-a-Film assembly (LFA) serves as a platform for amplification, hybridization, washing, and fluorescent imaging, while maintaining a closed format to prevent amplicon contamination of the workspace. We integrated and automated MagVor homogenization, TruTip purification, and LFA amplification in a multisample, sputum-to-genotype system. Using this system, we report detection down to 43 cfu/mL of MTB bacilli from raw sputum.


Asunto(s)
Automatización , Dispositivos Laboratorio en un Chip , Mycobacterium tuberculosis/genética , Imagen Óptica , Esputo/microbiología , Tuberculosis Resistente a Múltiples Medicamentos/diagnóstico por imagen , Genotipo , Humanos , Imagen Óptica/instrumentación
3.
J Clin Microbiol ; 58(11)2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-32817085

RESUMEN

Despite the WHO's call for universal drug susceptibility testing for all patients being evaluated for tuberculosis (TB), a lack of rapid diagnostic tests which can fully describe TB resistance patterns is a major challenge in ensuring that all persons diagnosed with drug-resistant TB are started on an appropriate treatment regime. We evaluated the accuracy of the Akonni Biosystems XDR-TB TruArray and lateral-flow cell (XDR-LFC), a novel multiplex assay to simultaneously detect mutations across seven genes that confer resistance to both first- and second-line anti-TB drugs. The XDR-LFC includes 271 discrete three-dimensional gel elements with target-specific probes for identifying mutations in katG, inhA promoter, and ahpC promoter (isoniazid), rpoB (rifampin), gyrA (fluoroquinolones), rrs and eis promoter (kanamycin), and rrs (capreomycin and amikacin). We evaluated XDR-LFC performance with 87 phenotypically and genotypically characterized clinical Mycobacterium tuberculosis isolates. The overall assay levels of accuracy for mutation detection in specific genes were 98.6% for eis promoter and 100.0% for the genes katG, inhA promoter, ahpC promoter, rpoB, gyrA, and rrs The sensitivity and specificity against phenotypic reference were 100% and 100% for isoniazid, 98.4% and 50% for rifampin (specificity increased to 100% once the strains with documented low-level resistance mutations in rpoB were excluded), 96.2% and 100% for fluoroquinolones, 92.6% and 100% for kanamycin, 93.9% and 97.4% for capreomycin, and 80% and 100% for amikacin. The XDR-LFC solution appears to be a promising new tool for accurate detection of resistance to both first- and second-line anti-TB drugs.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana Múltiple , Humanos , Laboratorios , Pruebas de Sensibilidad Microbiana , Mutación , Mycobacterium tuberculosis/genética , Tuberculosis Resistente a Múltiples Medicamentos/diagnóstico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico
4.
J Clin Microbiol ; 56(3)2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29305543

RESUMEN

There is a growing awareness that molecular diagnostics for detect-to-treat applications will soon need a highly multiplexed mutation detection and identification capability. In this study, we converted an open-amplicon microarray hybridization test for multidrug-resistant (MDR) Mycobacterium tuberculosis into an entirely closed-amplicon consumable (an amplification microarray) and evaluated its performance with matched sputum and sediment extracts. Reproducible genotyping (the limit of detection) was achieved with ∼25 M. tuberculosis genomes (100 fg of M. tuberculosis DNA) per reaction; the estimated shelf life of the test was at least 18 months when it was stored at 4°C. The test detected M. tuberculosis in 99.1% of sputum extracts and 100% of sediment extracts and showed 100% concordance with the results of real-time PCR. The levels of concordance between M. tuberculosis and resistance-associated gene detection were 99.1% and 98.4% for sputum and sediment extracts, respectively. Genotyping results were 100% concordant between sputum and sediment extracts. Relative to the results of culture-based drug susceptibility testing, the test was 97.1% specific and 75.0% sensitive for the detection of rifampin resistance in both sputum and sediment extracts. The specificity for the detection of isoniazid (INH) resistance was 98.4% and 96.8% for sputum and sediment extracts, respectively, and the sensitivity for the detection of INH resistance was 63.6%. The amplification microarray reported the correct genotype for all discordant phenotype/genotype results. On the basis of these data, primary sputum may be considered a preferred specimen for the test. The amplification microarray design, shelf life, and analytical performance metrics are well aligned with consensus product profiles for next-generation drug-resistant M. tuberculosis diagnostics and represent a significant ease-of-use advantage over other hybridization-based tests for diagnosing MDR tuberculosis.


Asunto(s)
Técnicas de Genotipaje/métodos , Sedimentos Geológicos/microbiología , Mycobacterium tuberculosis/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Esputo/microbiología , Tuberculosis Resistente a Múltiples Medicamentos/diagnóstico , Antituberculosos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Genes MDR/genética , Genotipo , Humanos , Isoniazida/farmacología , Pruebas de Sensibilidad Microbiana , Técnicas Analíticas Microfluídicas , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/aislamiento & purificación , Rifampin/farmacología , Sensibilidad y Especificidad
5.
J Clin Microbiol ; 52(6): 2100-7, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24719444

RESUMEN

We developed a simplified microarray test for detecting and identifying mutations in rpoB, katG, inhA, embB, and rpsL and compared the analytical performance of the test to that of phenotypic drug susceptibility testing (DST). The analytical sensitivity was estimated to be at least 110 genome copies per amplification reaction. The microarray test correctly detected 95.2% of mutations for which there was a sequence-specific probe on the microarray and 100% of 96 wild-type sequences. In a blinded analysis of 153 clinical isolates, microarray sensitivity for first-line drugs relative to phenotypic DST (true resistance) was 100% for rifampin (RIF) (14/14), 90.0% for isoniazid (INH) (36/40), 70% for ethambutol (EMB) (7/10), and 89.1% (57/64) combined. Microarray specificity (true susceptibility) for first-line agents was 95.0% for RIF (132/139), 98.2% for INH (111/113), and 98.6% for EMB (141/143). Overall microarray specificity for RIF, INH, and EMB combined was 97.2% (384/395). The overall positive and negative predictive values for RIF, INH, and EMB combined were 84.9% and 98.3%, respectively. For the second-line drug streptomycin (STR), overall concordance between the agar proportion method and microarray analysis was 89.5% (137/153). Sensitivity was 34.8% (8/23) because of limited microarray coverage for STR-conferring mutations, and specificity was 99.2% (129/130). All false-susceptible discrepant results were a consequence of DNA mutations that are not represented by a specific microarray probe. There were zero invalid results from 220 total tests. The simplified microarray system is suitable for detecting resistance-conferring mutations in clinical M. tuberculosis isolates and can now be used for prospective trials or integrated into an all-in-one, closed-amplicon consumable.


Asunto(s)
Antituberculosos/farmacología , Farmacorresistencia Bacteriana , Técnicas de Genotipaje/métodos , Análisis por Micromatrices/métodos , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Tuberculosis Resistente a Múltiples Medicamentos/diagnóstico , Genes Bacterianos , Humanos , Pruebas de Sensibilidad Microbiana/métodos , Mutación , Sensibilidad y Especificidad
6.
Anal Biochem ; 421(2): 526-33, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22033291

RESUMEN

By modifying polymer compositions and cross-linking reagents, we have developed a simple yet effective manufacturing strategy for copolymerized three-dimensional gel element arrays. A new gel-forming monomer, 2-(hydroxyethyl) methacrylamide (HEMAA), was used. HEMAA possesses low volatility and improves the stability of copolymerized gel element arrays to on-chip thermal cycling procedures relative to previously used monomers. Probe immobilization efficiency within the new polymer was 55%, equivalent to that obtained with acrylamide (AA) and methacrylamide (MA) monomers. Nonspecific binding of single-stranded targets was equivalent for all monomers. Increasing cross-linker chain length improved hybridization kinetics and end-point signal intensities relative to N,N-methylenebisacrylamide (Bis). The new copolymer formulation was successfully applied to a model orthopox array. Because HEMAA greatly simplifies gel element array manufacture, we expect it (in combination with new cross-linkers described here) to find widespread application in microarray science.


Asunto(s)
Geles , Metacrilatos/química , Análisis de Secuencia por Matrices de Oligonucleótidos , Secuencia de Bases , Cinética , Sondas de Oligonucleótidos , Reacción en Cadena de la Polimerasa , Volatilización
7.
J Clin Tuberc Other Mycobact Dis ; 27: 100304, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35252594

RESUMEN

While there has been progress in detection of drug resistant tuberculosis globally, WHO estimates only about half of the patients with bacteriologically confirmed tuberculosis were tested for rifampicin resistance over the past two years. To close this drug resistance diagnostic gap, an expansion of testing for rifampicin and isoniazid resistance is critically needed. The Akonni Biosystem Integrated System combines DNA extraction and a Lab-on-a-Film assembly (LFA) to perform rapid probe and PCR-based detection of resistance associated mutations to first-line anti-tuberculosis drugs. Using raw sputum samples from 25 tuberculosis patients at risk for drug resistance, we conducted a proof-of-concept study of the Integrated System with an MDR-TB assay. Performance of the Integrated System was compared to liquid Mycobacteria Growth Indicator Tube (MGIT) culture reference phenotypes using 2012 WHO endorsed critical concentrations for rifampicin and isoniazid. The overall percent agreement for rifampicin and isoniazid was 91.7% and 100% respectively, with agreement for rifampicin increasing to 95.7% after low-level resistance mutations in rpoB were excluded. The Integrated System, combining DNA extraction and LFA amplification, is a promising new tool for detection of both rifampicin and isoniazid using liquefied raw sputum.

8.
Lab Chip ; 19(7): 1217-1225, 2019 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-30801596

RESUMEN

We describe a Lab-on-a-Film disposable that detects multidrug-resistant tuberculosis (MDR-TB) from sputum extracts. The Lab-on-a-Film disposable consists of 203 gel elements that include DNA sequences (probes) for 37 mutations, deletions, or insertion elements across 5 genes (including an internal control). These gel elements are printed on a flexible film, which costs approximately 500 times less than microarray glass. The film with printed gel elements is then laminated to additional rollable materials (films) to form a microfluidic flow cell. We combined multiplex amplification and hybridization steps in a single microfluidic chamber, without buffer exchanges or other manipulations up to and throughout hybridization. This flow cell also incorporates post hybridization wash steps while retaining an entirely closed-amplicon system, thus minimizing the potential for sample or amplicon cross-contamination. We report analytical sensitivity of 32 cfu mL-1 across all MDR-TB markers and detection of MDR-TB positive clinical specimens using an automated TruTip workstation for extraction and the Lab-on-a-Film disposable for amplification and detection of the extracts.


Asunto(s)
Equipos Desechables , Resistencia a Múltiples Medicamentos/genética , Técnicas de Genotipaje/instrumentación , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Esputo/microbiología , Humanos
9.
Chem Biol Interact ; 171(2): 212-35, 2008 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-17950718

RESUMEN

Analysis of 16S rRNA sequences is a commonly used method for the identification and discrimination of microorganisms. However, the high similarity of 16S and 23S rRNA sequences of Bacillus cereus group organisms (up to 99-100%) and repeatedly failed attempts to develop molecular typing systems that would use DNA sequences to discriminate between species within this group have resulted in several suggestions to consider B. cereus and B. thuringiensis, or these two species together with B. anthracis, as one species. Recently, we divided the B. cereus group into seven subgroups, Anthracis, Cereus A and B, Thuringiensis A and B, and Mycoides A and B, based on 16S rRNA, 23S rRNA and gyrB gene sequences and identified subgroup-specific makers in each of these three genes. Here we for the first time demonstrated discrimination of these seven subgroups, including subgroup Anthracis, with a 3D gel element microarray of oligonucleotide probes targeting 16S and 23S rRNA markers. This is the first microarray enabled identification of B. anthracis and discrimination of these seven subgroups in pure cell cultures and in environmental samples using rRNA sequences. The microarray bearing perfect match/mismatch (p/mm) probe pairs was specific enough to discriminate single nucleotide polymorphisms (SNPs) and was able to identify targeted organisms in 5min. We also demonstrated the ability of the microarray to determine subgroup affiliations for B. cereus group isolates without rRNA sequencing. Correlation of these seven subgroups with groupings based on multilocus sequence typing (MLST), fluorescent amplified fragment length polymorphism analysis (AFLP) and multilocus enzyme electrophoresis (MME) analysis of a wide spectrum of different genes, and the demonstration of subgroup-specific differences in toxin profiles, psychrotolerance, and the ability to harbor some plasmids, suggest that these seven subgroups are not based solely on neutral genomic polymorphisms, but instead reflect differences in both the genotypes and phenotypes of the B. cereus group organisms.


Asunto(s)
Bacillus anthracis/aislamiento & purificación , ARN Ribosómico 16S/análisis , ARN Ribosómico 23S/análisis , Bacillus anthracis/genética , Secuencia de Bases , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Polimorfismo de Nucleótido Simple , ARN Ribosómico 16S/genética , ARN Ribosómico 23S/genética , Homología de Secuencia de Ácido Nucleico , Especificidad de la Especie
10.
Biotechniques ; 39(1): 99-107, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16060374

RESUMEN

Protein profiling and characterization of protein interactions in biological samples ultimately require indicator-free methods of signal detection, which likewise offer an opportunity to distinguish specific interactions from nonspecific protein binding. Here we describe a new 3-dimensional protein microchip for detecting biomolecular interactions with matrix-assisted laser desorption-ionization mass spectrometry (MALDI-MS); the microchip comprises a high-density array of methacrylate polymer elements containing immobilized proteins as capture molecules and directly interfaces with a commercially available mass spectrometer. We demonstrated the performance of the chip in three types of experiments by detecting antibody-antigen interactions, enzymatic activity, and enzyme-inhibitor interactions. MALDI-MS biochip-based tumor necrosisfactor alpha (TNF-alpha) immunoassays demonstrated the feasibility of detecting antigens in complex biological samples by identifying molecular masses of bound proteins even at high nonspecific protein binding. By detecting model interactions of trypsin with trypsin inhibitors, we showed that the protein binding capacity of methacrylate polymer elements and the sensitivity of MALDI-MS detection of proteins bound to these elements surpassed that of other 2- and 3-dimensional substrates tested Immobilized trypsin retained functional (enzymatic) activity within the protein microchip and the specificity of macromolecular interactions even in complex biological samples. We believe that the underlying technology should therefore be extensible to whole-proteome protein expression profiling and interaction mapping.


Asunto(s)
Inmunoensayo/instrumentación , Análisis por Matrices de Proteínas/instrumentación , Mapeo de Interacción de Proteínas/instrumentación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Inmunoensayo/métodos , Análisis por Matrices de Proteínas/métodos , Mapeo de Interacción de Proteínas/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
11.
J Vis Exp ; (86)2014 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-24796567

RESUMEN

Simplifying microarray workflow is a necessary first step for creating MDR-TB microarray-based diagnostics that can be routinely used in lower-resource environments. An amplification microarray combines asymmetric PCR amplification, target size selection, target labeling, and microarray hybridization within a single solution and into a single microfluidic chamber. A batch processing method is demonstrated with a 9-plex asymmetric master mix and low-density gel element microarray for genotyping multi-drug resistant Mycobacterium tuberculosis (MDR-TB). The protocol described here can be completed in 6 hr and provide correct genotyping with at least 1,000 cell equivalents of genomic DNA. Incorporating on-chip wash steps is feasible, which will result in an entirely closed amplicon method and system. The extent of multiplexing with an amplification microarray is ultimately constrained by the number of primer pairs that can be combined into a single master mix and still achieve desired sensitivity and specificity performance metrics, rather than the number of probes that are immobilized on the array. Likewise, the total analysis time can be shortened or lengthened depending on the specific intended use, research question, and desired limits of detection. Nevertheless, the general approach significantly streamlines microarray workflow for the end user by reducing the number of manually intensive and time-consuming processing steps, and provides a simplified biochemical and microfluidic path for translating microarray-based diagnostics into routine clinical practice.


Asunto(s)
Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Reacción en Cadena de la Polimerasa/métodos , Farmacorresistencia Bacteriana Múltiple , Tuberculosis/microbiología
12.
Microarrays (Basel) ; 1(3): 107-24, 2012 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-27605339

RESUMEN

This overview describes microarray-based tests that combine solution-phase amplification chemistry and microarray hybridization within a single microfluidic chamber. The integrated biochemical approach improves microarray workflow for diagnostic applications by reducing the number of steps and minimizing the potential for sample or amplicon cross-contamination. Examples described herein illustrate a basic, integrated approach for DNA and RNA genomes, and a simple consumable architecture for incorporating wash steps while retaining an entirely closed system. It is anticipated that integrated microarray biochemistry will provide an opportunity to significantly reduce the complexity and cost of microarray consumables, equipment, and workflow, which in turn will enable a broader spectrum of users to exploit the intrinsic multiplexing power of microarrays for infectious disease diagnostics.

13.
Environ Sci Technol ; 44(14): 5516-22, 2010 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-20560650

RESUMEN

The objective of this study was to develop and validate a simple, field-portable, microarray system for monitoring microbial community structure and dynamics in groundwater and subsurface environments, using samples representing site status before acetate injection, during Fe-reduction, in the transition from Fe- to SO(4)(2-)-reduction, and into the SO(4)(2-)-reduction phase. Limits of detection for the array are approximately 10(2)-10(3) cell equivalents of DNA per reaction. Sample-to-answer results for the field deployment were obtained in 4 h. Retrospective analysis of 50 samples showed the expected progression of microbial signatures from Fe- to SO(4)(2-) -reducers with changes in acetate amendment and in situ field conditions. The microarray response for Geobacter was highly correlated with qPCR for the same target gene (R(2) = 0.84). Microarray results were in concordance with quantitative PCR data, aqueous chemistry, site lithology, and the expected microbial community response, indicating that the field-portable microarray is an accurate indicator of microbial presence and response to in situ remediation of a uranium-contaminated site.


Asunto(s)
Bacterias/metabolismo , Biodegradación Ambiental , Monitoreo del Ambiente/instrumentación , Análisis por Micromatrices/instrumentación , Uranio/metabolismo , Monitoreo del Ambiente/métodos , Contaminantes Ambientales , Suelo/análisis , Microbiología del Suelo , Uranio/química , Microbiología del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA