Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
PLoS Pathog ; 14(4): e1006994, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29634758

RESUMEN

Zika virus (ZIKV) infection during human pregnancy may cause diverse and serious congenital defects in the developing fetus. Previous efforts to generate animal models of human ZIKV infection and clinical symptoms often involved manipulating mice to impair their Type I interferon (IFN) signaling, thereby allowing enhanced infection and vertical transmission of virus to the embryo. Here, we show that even pregnant mice competent to generate Type I IFN responses that can limit ZIKV infection nonetheless develop profound placental pathology and high frequency of fetal demise. We consistently found that maternal ZIKV exposure led to placental pathology and that ZIKV RNA levels measured in maternal, placental or embryonic tissues were not predictive of the pathological effects seen in the embryos. Placental pathology included trophoblast hyperplasia in the labyrinth, trophoblast giant cell necrosis in the junctional zone, and loss of embryonic vessels. Our findings suggest that, in this context of limited infection, placental pathology rather than embryonic/fetal viral infection may be a stronger contributor to adverse pregnancy outcomes in mice. Our finding demonstrates that in immunocompetent mice, direct viral infection of the embryo is not essential for fetal demise. Our immunologically unmanipulated pregnancy mouse model provides a consistent and easily measurable congenital abnormality readout to assess fetal outcome, and may serve as an additional model to test prophylactic and therapeutic interventions to protect the fetus during pregnancy, and for studying the mechanisms of ZIKV congenital immunopathogenesis.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedades Fetales/patología , Enfermedades Placentarias/patología , Complicaciones Infecciosas del Embarazo/patología , Infección por el Virus Zika/patología , Virus Zika/fisiología , Animales , Femenino , Enfermedades Fetales/virología , Transmisión Vertical de Enfermedad Infecciosa , Ratones , Ratones Endogámicos C57BL , Enfermedades Placentarias/virología , Embarazo , Complicaciones Infecciosas del Embarazo/virología , Resultado del Embarazo , ARN Viral , Infección por el Virus Zika/virología
2.
Bioorg Med Chem Lett ; 20(24): 7429-34, 2010 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-21036042

RESUMEN

HIV-1 integrase is one of three enzymes encoded by the HIV genome and is essential for viral replication, and HIV-1 IN inhibitors have emerged as a new promising class of therapeutics. Recently, we reported the discovery of azaindole hydroxamic acids that were potent inhibitors of the HIV-1 IN enzyme. N-Methyl hydroxamic acids were stable against oxidative metabolism, however were cleared rapidly through phase 2 glucuronidation pathways. We were able to introduce polar groups at the ß-position of the azaindole core thereby altering physical properties by lowering calculated log D values (c Log D) which resulted in attenuated clearance rates in human hepatocytes. Pharmacokinetic data in dog for representative compounds demonstrated moderate oral bioavailability and reasonable half-lives. These ends were accomplished without a large negative impact on enzymatic and antiviral activity, thus suggesting opportunities to alter clearance parameters in future series.


Asunto(s)
Inhibidores de Integrasa VIH/química , Integrasa de VIH/química , VIH-1/enzimología , Ácidos Hidroxámicos/química , Indoles/química , Administración Oral , Animales , Perros , Integrasa de VIH/metabolismo , Inhibidores de Integrasa VIH/farmacocinética , Inhibidores de Integrasa VIH/toxicidad , Semivida , Hepatocitos/efectos de los fármacos , Humanos , Ácidos Hidroxámicos/farmacocinética , Ácidos Hidroxámicos/toxicidad , Relación Estructura-Actividad
3.
J Med Chem ; 45(26): 5755-75, 2002 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-12477359

RESUMEN

Highly potent human glucagon receptor (hGluR) antagonists have been prepared employing both medicinal chemistry and targeted libraries based on modification of the core (proximal) dimethoxyphenyl group, the benzyl ether linkage, as well as the (distal) benzylic aryl group of the lead 2, 3-cyano-4-hydroxybenzoic acid (3,5-dimethoxy-4-isopropylbenzyloxybenzylidene)hydrazide. Electron-rich proximal aryl moieties such as mono- and dimethoxy benzenes, naphthalenes, and indoles were found to be active. The SAR was found to be quite insensitive regarding the linkage to the distal aryl group, since long and short as well as polar and apolar linkers gave highly potent compounds. The presence of a distal aryl group was not crucial for obtaining high binding affinity to the hGluR. In many cases, however, the affinity could be further optimized with substituted distal aryl groups. Representative compounds have been tested for in vitro metabolism, and structure-metabolism relationships are described. These efforts lead to the discovery of 74, NNC 25-2504, 3-cyano-4-hydroxybenzoic acid [1-(2,3,5,6-tetramethylbenzyl)-1H-indol-4-ylmethylene]hydrazide, with low in vitro metabolic turnover. 74 was a highly potent noncompetitive antagonist of the human glucagon receptor (IC(50) = 2.3 nM, K(B) = 760 pM) and of the isolated rat receptor (IC(50) = 430 pM, K(B) = 380 pM). Glucagon-stimulated glucose production from isolated primary rat hepatocytes was inhibited competitively by 74 (K(i) = 14 nM). This compound was orally available in dogs (F(po) = 15%) and was active in a glucagon-challenged rat model of hyperglucagonemia and hyperglycemia.


Asunto(s)
Hidrazinas/síntesis química , Indoles/síntesis química , Receptores de Glucagón/antagonistas & inhibidores , Administración Oral , Animales , Disponibilidad Biológica , Células Cultivadas , Perros , Glucagón/sangre , Glucosa/biosíntesis , Hepatocitos/metabolismo , Humanos , Hidrazinas/farmacocinética , Hidrazinas/farmacología , Hiperglucemia/metabolismo , Indoles/farmacocinética , Indoles/farmacología , Masculino , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad
4.
ACS Comb Sci ; 14(11): 579-89, 2012 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-23020747

RESUMEN

An unprecedented amount of parallel synthesis information was accumulated within Pfizer over the past 12 years. This information was captured by an informatics tool known as PGVL (Pfizer Global Virtual Library). PGVL was used for many aspects of drug discovery including automated reactant mining and reaction product formation to build a synthetically feasible virtual compound collection. In this report, PGVL is discussed in detail. The chemistry information within PGVL has been used to extract synthesis and design information using an intuitive desktop Graphic User Interface, PGVL Hub. Several real-case examples of PGVL are also presented.


Asunto(s)
Diseño de Fármacos
5.
Methods Mol Biol ; 685: 253-76, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-20981528

RESUMEN

Pfizer Global Virtual Library (PGVL) of 10(13) readily synthesizable molecules offers a tremendous opportunity for lead optimization and scaffold hopping in drug discovery projects. However, mining into a chemical space of this size presents a challenge for the concomitant design informatics due to the fact that standard molecular similarity searches against a collection of explicit molecules cannot be utilized, since no chemical information system could create and manage more than 10(8) explicit molecules. Nevertheless, by accepting a tolerable level of false negatives in search results, we were able to bypass the need for full 10(13) enumeration and enabled the efficient similarity search and retrieval into this huge chemical space for practical usage by medicinal chemists. In this report, two search methods (LEAP1 and LEAP2) are presented. The first method uses PGVL reaction knowledge to disassemble the incoming search query molecule into a set of reactants and then uses reactant-level similarities into actual available starting materials to focus on a much smaller sub-region of the full virtual library compound space. This sub-region is then explicitly enumerated and searched via a standard similarity method using the original query molecule. The second method uses a fuzzy mapping onto candidate reactions and does not require exact disassembly of the incoming query molecule. Instead Basis Products (or capped reactants) are mapped into the query molecule and the resultant asymmetric similarity scores are used to prioritize the corresponding reactions and reactant sets. All sets of Basis Products are inherently indexed to specific reactions and specific starting materials. This again allows focusing on a much smaller sub-region for explicit enumeration and subsequent standard product-level similarity search. A set of validation studies were conducted. The results have shown that the level of false negatives for the disassembly-based method is acceptable when the query molecule can be recognized for exact disassembly, and the fuzzy reaction mapping method based on Basis Products has an even better performance in terms of lower false-negative rate because it is not limited by the requirement that the query molecule needs to be recognized by any disassembly algorithm. Both search methods have been implemented and accessed through a powerful desktop molecular design tool (see ref. (33) for details). The chapter will end with a comparison of published search methods against large virtual chemical space.


Asunto(s)
Descubrimiento de Drogas/métodos , Industria Farmacéutica , Bibliotecas de Moléculas Pequeñas/síntesis química , Interfaz Usuario-Computador , Algoritmos , Automatización , Minería de Datos , Reacciones Falso Negativas , Modelos Moleculares , Conformación Molecular , Reproducibilidad de los Resultados , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Factores de Tiempo
6.
Methods Mol Biol ; 685: 295-320, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-20981530

RESUMEN

PGVL Hub is an integrated molecular design desktop tool that has been developed and globally deployed throughout Pfizer discovery research units to streamline the design and synthesis of combinatorial libraries and singleton compounds. This tool supports various workflows for design of singletons, combinatorial libraries, and Markush exemplification. It also leverages the proprietary PGVL virtual space (which contains 10(14) molecules spanned by experimentally derived synthesis protocols and suitable reactants) for lead idea generation, lead hopping, and library design. There had been an intense focus on ease of use, good performance and robustness, and synergy with existing desktop tools such as ISIS/Draw and SpotFire. In this chapter we describe the three-tier enterprise software architecture, key data structures that enable a wide variety of design scenarios and workflows, major technical challenges encountered and solved, and lessons learned during its development and deployment throughout its production cycles. In addition, PGVL Hub represents an extendable and enabling platform to support future innovations in library and singleton compound design while being a proven channel to deliver those innovations to medicinal chemists on a global scale.


Asunto(s)
Química Farmacéutica/métodos , Descubrimiento de Drogas/métodos , Industria Farmacéutica , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/síntesis química , Interfaz Usuario-Computador , Minería de Datos , Programas Informáticos
7.
J Med Chem ; 54(9): 3393-417, 2011 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-21446745

RESUMEN

HIV-1 integrase (IN) is one of three enzymes encoded by the HIV genome and is essential for viral replication, and HIV-1 IN inhibitors have emerged as a new promising class of therapeutics. Recently, we reported the synthesis of orally bioavailable azaindole hydroxamic acids that were potent inhibitors of the HIV-1 IN enzyme. Here we disclose the design and synthesis of novel tricyclic N-hydroxy-dihydronaphthyridinones as potent, orally bioavailable HIV-1 integrase inhibitors displaying excellent ligand and lipophilic efficiencies.


Asunto(s)
Inhibidores de Integrasa VIH/síntesis química , VIH-1/efectos de los fármacos , Compuestos Heterocíclicos con 3 Anillos/síntesis química , Naftiridinas/síntesis química , Administración Oral , Animales , Disponibilidad Biológica , Permeabilidad de la Membrana Celular , Células Cultivadas , Perros , Diseño de Fármacos , Inhibidores de Integrasa VIH/farmacocinética , Inhibidores de Integrasa VIH/farmacología , VIH-1/enzimología , Hepatocitos/metabolismo , Compuestos Heterocíclicos con 3 Anillos/farmacocinética , Compuestos Heterocíclicos con 3 Anillos/farmacología , Humanos , Hígado/metabolismo , Conformación Molecular , Naftiridinas/farmacocinética , Naftiridinas/farmacología , Relación Estructura-Actividad
8.
J Med Chem ; 52(22): 7211-9, 2009 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-19873974

RESUMEN

HIV-1 integrase (IN) is one of three enzymes encoded by the HIV genome and is essential for viral replication. Recently, HIV-1 IN inhibitors have emerged as a new promising class of therapeutics. Herein, we report the discovery of azaindole carboxylic acids and azaindole hydroxamic acids as potent inhibitors of the HIV-1 IN enzyme and their structure-activity relationships. Several 4-fluorobenzyl substituted azaindole hydroxamic acids showed potent antiviral activities in cell-based assays and offered a structurally simple scaffold for the development of novel HIV-1 IN inhibitors.


Asunto(s)
Inhibidores de Integrasa VIH/química , Inhibidores de Integrasa VIH/farmacología , Integrasa de VIH/metabolismo , VIH-1/enzimología , Ácidos Hidroxámicos/química , Ácidos Hidroxámicos/farmacología , Evaluación Preclínica de Medicamentos , Inhibidores de Integrasa VIH/síntesis química , VIH-1/efectos de los fármacos , Ácidos Hidroxámicos/síntesis química , Concentración 50 Inhibidora , Ligandos , Magnesio/metabolismo , Picolinas/química
9.
Bioorg Med Chem Lett ; 12(4): 663-6, 2002 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-11844695

RESUMEN

A series of alkylidene hydrazide derivatives containing an alkoxyaryl moiety was optimized. The resulting hydrazide-ethers were competitive antagonists at the human glucagon receptor. Pharmacokinetic experiments showed fast clearance of most of the compounds tested. A representative compound [4-hydroxy-3-cyanobenzoic acid (4-isopropylbenzyloxy-3,5-dimethoxymethylene)hydrazide] with an IC50 value of 20 nM was shown to reduce blood glucose levels in fasted rats.


Asunto(s)
Hidrazinas/síntesis química , Hidrazinas/farmacocinética , Hipoglucemiantes/síntesis química , Receptores de Glucagón/antagonistas & inhibidores , Animales , Unión Competitiva , Glucemia/efectos de los fármacos , Humanos , Hidrazinas/administración & dosificación , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/farmacocinética , Concentración 50 Inhibidora , Inyecciones , Tasa de Depuración Metabólica , Microsomas Hepáticos/metabolismo , Ratas , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA