Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Angew Chem Int Ed Engl ; : e202409725, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953140

RESUMEN

Fluorescent molecular systems are important for various applications such as sensing of analytes, probes for biologically relevant processes and as optoelectronic materials. Achieving high fluorescence quantum yield across the spectrum of solvent polarity and in solid-state is challenging in molecular materials. Herein, we present a strategy to achieve strongly fluorescent molecular materials based on weak intramolecular charge-transfer (ICT) in a family of unsymmetrical donor-thiazolo[5,4-d]thiazoles-acceptor systems (both neutral and cationic). Detailed photophysical studies reveal that the delicate balance between the donor and acceptor result in high solution-state fluorescence quantum yield (> 80%) in both polar protic and apolar solvents. Quantum chemical computations uncover a hitherto unappreciated insight that the extent of ICT is aptly represented by the change in Mulliken charges between the ground and excited-state for different fragments rather than the classical approach of monitoring the change in dipole moment for the entire molecule. This insight rationalizes the observed photophysical properties and can have implications in the design of tuneable donor-π-acceptor systems.

2.
Chirality ; 35(3): 147-154, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36636906

RESUMEN

When irradiating a molecular material containing photo-isomerizable groups with pure circularly polarized light, a particular handedness may get imprinted into the material. To study the mechanism and kinetics of this process in situ and operando, we have developed a new chiroptical tool where the circular polarization of the incident circularly polarized light is monitored after transmission through the photoactive layer. Practical limits to the resolution and sensitivity of the measurements as well as its calibration are discussed. To aid interpretation of experimental results, we present kinetic Monte Carlo simulations on a model for the active material involving photo-induced reorientation of molecules in a cholesteric organization. The simulations support the interpretation of a transient minimum in the degree of circular polarization of the transmitted light in terms of a nematic transient state during photo-inversion of a cholesteric organization in the molecular material.

3.
Angew Chem Int Ed Engl ; 62(8): e202208681, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36469792

RESUMEN

Supramolecular systems chemistry has been an area of active research to develop nanomaterials with life-like functions. Progress in systems chemistry relies on our ability to probe the nanostructure formation in solution. Often visualizing the dynamics of nanostructures which transform over time is a formidable challenge. This necessitates a paradigm shift from dry sample imaging towards solution-based techniques. We review the application of state-of-the-art techniques for real-time, in situ visualization of dynamic self-assembly processes. We present how solution-based techniques namely optical super-resolution microscopy, solution-state atomic force microscopy, liquid-phase transmission electron microscopy, molecular dynamics simulations and other emerging techniques are revolutionizing our understanding of active and adaptive nanomaterials with life-like functions. This Review provides the visualization toolbox and futuristic vision to tap the potential of dynamic nanomaterials.

4.
J Am Chem Soc ; 143(23): 8772-8779, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-34085826

RESUMEN

It has long been surmised that the circular polarization of luminescence (CPL) emitted by a chiral molecule or a molecular assembly should vary with the direction in which the photon is emitted. Despite its potential utility, this anisotropic CPL has not yet been demonstrated at the level of single molecules or supramolecular assemblies. Here we show that conjugated polymers bearing chiral side chains self-assemble into solid microspheres with a twisted bipolar interior, which are formed via liquid-liquid phase separation and subsequent condensation into a cholesteric lyotropic liquid crystalline mesophase. The resultant microspheres, when dispersed in methanol, exhibit CPL with a glum value as high as 0.23. The microspheres are mechanically robust enough to be handled with a microneedle under ambient conditions, allowing comprehensive examination of the angular anisotropy of CPL. The single microsphere is found to exhibit distinct angularly anisotropic birefringence and CPL with glum up to ∼0.5 in the equatorial plane, which is 2.5-fold greater than that along the polar axis. Such optically anisotropic solid materials are important for the application to next-generation microlight-emitting and visualizing devices as well as for fundamental optics studies of chiral light-matter interaction.

5.
J Am Chem Soc ; 141(15): 6302-6309, 2019 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-30920829

RESUMEN

Chirality plays a central role in biomolecular recognition and pharmacological activity of drugs and can even lead to new functions such as spin filters. Although there have been significant advances in understanding and controlling the helical organization of enantiopure synthetic molecular systems, rationally dictating the assembly of mixtures of enantiomer (including racemates) is nontrivial. Here we demonstrate that a subtle change in molecular structure coupled with the understanding of assembly processes of enantiomers and racemates, in both dilute solution and concentrated gels, acts as a stepping stone to rationally control the organization in the solid-state. We have studied trans-1,2-disubstituted cyclohexanes as model systems with carboxamide, thioamide, and their combination as functional groups. On comparing the gelation propensity of individual enantiomers and racemates, we find that racemates of carboxamide, thioamide, and their combination adopt self-sorting, coassembly, and mixed organization, respectively. Remarkably, these modes of assembly of racemates were also retained in solid-state. These results point out that studying the solution-phase assembly is a key link for connecting molecular structure with the assembly in the solid-state, even for racemates.


Asunto(s)
Amidas/química , Ciclohexanos/química , Amidas/síntesis química , Estructura Molecular , Soluciones , Estereoisomerismo
6.
J Am Chem Soc ; 141(45): 18278-18285, 2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31638390

RESUMEN

In the field of supramolecular (co)polymerizations, the ability to predict and control the composition and length of the supramolecular (co)polymers is a topic of great interest. In this work, we elucidate the mechanism that controls the polymer length in a two-component cooperative supramolecular polymerization and unveil the role of the second component in the system. We focus on the supramolecular copolymerization between two derivatives of benzene-1,3,5-tricarboxamide (BTA) monomers: a-BTA and Nle-BTA. As a single component, a-BTA cooperatively polymerizes into long supramolecular polymers, whereas Nle-BTA only forms dimers. By mixing a-BTA and Nle-BTA in different ratios, two-component systems are obtained, which are analyzed in-depth by combining spectroscopy and light-scattering techniques with theoretical modeling. The results show that the length of the supramolecular polymers formed by a-BTA is controlled by competitive sequestration of a-BTA monomers by Nle-BTA, while the obvious alternative Nle-BTA acts as a chain-capper is not operative. This sequestration of a-BTA leads to short, stable species coexisting with long cooperative aggregates. The analysis of the experimental data by theoretical modeling elucidates the thermodynamic parameters of the copolymerization, the distributions of the various species, and the composition and length of the supramolecular polymers at various mixing ratios of a-BTA and Nle-BTA. Moreover, the model was used to generalize our results and to predict the impact of adding a chain-capper or a competitor on the length of the cooperative supramolecular polymers under thermodynamic control. Overall, this work unveils comprehensive guidelines to master the nature of supramolecular (co)polymers and brings the field one step closer to applications.

7.
Acc Chem Res ; 50(8): 1928-1936, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28692276

RESUMEN

The self-assembly of small and well-defined molecules using noncovalent interactions to generate various nano- and microarchitectures has been extensively studied. Among various architectures, one-dimensional (1-D) nano-objects have garnered significant attention. It has become increasingly evident that a cooperative or nucleation-elongation mechanism of polymerization leads to highly ordered 1-D supramolecular polymers, analogous to shape-persistent biopolymers such as actin. With this in mind, achieving cooperativity in self-assembled structures has been actively pursued with significant success. Only recently, researchers are focusing on the origin of the mechanism at the molecular level in different synthetic systems. Taking a step further, a thorough quantitative structure-mechanism correlation is crucial to control the size, shape, and functions of supramolecular polymers, and this is currently lacking in the literature. Among a plethora of molecules, benzene-1,3,5-tricarboxamides (BTAs) provide a unique combination of important noncovalent interactions such as hydrogen bonding, π-stacking, and hydrophobic interactions, for self-assembly and synthetic ease. Due to the latter, a diverse range of BTA derivatives with all possible structural mutations have been synthesized and studied during the past decade, mainly from our group. With such a large body of experimental results on BTA self-assembly, it is time to embark on a structure-mechanism correlation in this family of molecules, and a first step toward this will form the main focus of this Account. The origin of the cooperative mechanism of self-assembly in BTAs has been ascribed to 3-fold intermolecular hydrogen bonding (HB) between monomers based on density-functional theory (DFT) calculations. The intermolecular hydrogen-bonding interaction forms the central premise of this work, in which we evaluate the effect of different moieties such as alkyl chains, and amino acids, attached to the core amides on the strength of intermolecular HB, which consequently governs the extent of cooperativity (quantified by the cooperativity factor, σ). In addition to this, we evaluate the effect of amide connectivity (C- vs N-centered), the role of solvents, amides vs thioamides, and finally the influence of the benzene vs cyclohexane core on the σ. Remarkably, every subtle structural change in the BTA monomer seems to affect the cooperativity factor in a systematic and rationalizable way. The take home message will be that the cooperativity factor (σ) in the BTA family forms a continuous spectrum from 1 (isodesmic) to <10-6 (highly cooperative) and it can be tuned based on the appropriate modification of the BTA monomer. We anticipate that these correlations drawn from the BTA series will be applicable to other systems in which HB is the main driving force for cooperativity. Thus, the understanding gained from such correlations on a prototypical self-assembling motif such as BTA will aid in designing more complex systems with distinct functions.

8.
J Am Chem Soc ; 139(39): 13867-13875, 2017 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-28891291

RESUMEN

Control over the helical organization of synthetic supramolecular systems is intensively pursued to manifest chirality in a wide range of applications ranging from electron spin filters to artificial enzymes. Typically, switching the helicity of supramolecular assemblies involves external stimuli or kinetic traps. However, efforts to achieve helix reversal under thermodynamic control and to understand the phenomena at a molecular level are scarce. Here we present a unique example of helix reversal (stereomutation) under thermodynamic control in the self-assembly of a coronene bisimide that has a 3,5-dialkoxy substitution on the imide phenyl groups (CBI-35CH), leading to "molecular pockets" in the assembly. The stereomutation was observed only if the CBI monomer possesses molecular pockets. Detailed chiroptical studies performed in alkane solvents with different molecular structures reveal that solvent molecules intercalate or form clathrates within the molecular pockets of CBI-35CH at low temperature (263 K), thereby triggering the stereomutation. The interplay among the helical assembly, molecular pockets, and solvent molecules is further unraveled by explicit solvent molecular dynamics simulations. Our results demonstrate how the molecular design of self-assembling building blocks can orchestrate the organization of surrounding solvent molecules, which in turn dictates the helical organization of the resulting supramolecular assembly.

9.
J Am Chem Soc ; 137(11): 3924-32, 2015 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-25756951

RESUMEN

While the mechanism of self-assembly of π-conjugated molecules has been well studied to gain control over the structure and functionality of supramolecular polymers, the intermolecular interactions underpinning it are poorly understood. Here, we study the mechanism of self-assembly of perylene bisimide derivatives possessing dipolar carbonate groups as linkers. It was observed that the combination of carbonate linkers and cholesterol/dihydrocholesterol self-assembling moieties led to a cooperative mechanism of self-assembly. Atomistic molecular dynamics simulations of an assembly in explicit solvent strongly suggest that the dipole-dipole interaction between the carbonate groups imparts a macro-dipolar character to the assembly. This is confirmed experimentally through the observation of a significant polarization in the bulk phase for molecules following a cooperative mechanism. The cooperativity is attributed to the presence of dipole-dipole interaction in the assembly. Thus, anisotropic long-range intermolecular interactions such as dipole-dipole interaction can serve as a way to obtain cooperative self-assembly and aid in rationalizing and predicting the mechanisms in various synthetic supramolecular polymers.


Asunto(s)
Imidas/química , Perileno/análogos & derivados , Carbonatos , Simulación por Computador , Electroquímica , Estructura Molecular , Perileno/química , Polimerizacion
10.
Chemistry ; 20(16): 4537-41, 2014 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-24623682

RESUMEN

Self-assembly of carbonate linkage bearing naphthalene diimides (NDI) showed unusually red-shifted excimer emission at approximately 560 nm. On the other hand, the ether linkers showed usual excimers at around 520 nm, highlighting the role of the carbonate group in tuning the molecular organization and the resultant photophysical properties of NDI.

11.
Phys Chem Chem Phys ; 16(28): 14661-4, 2014 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-24931833

RESUMEN

Naphthalene diimides (NDIs) form emissive ground-state charge-transfer (CT) complexes with various electron rich aromatic solvents like benzene, o-xylene and mesitylene. TD-DFT calculation of the complexes suggests CT interaction and accounts for the observed ground-state changes.

12.
Chemistry ; 19(34): 11270-8, 2013 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-23813722

RESUMEN

The study of the organization of small π-conjugated molecules is imperative to understanding and controlling its properties for various applications. Coronene bisimides (CBIs) are potential candidates for novel liquid-crystalline materials and active n-type semiconductor molecules in organic electronics. To understand the self-assembly of this seldom-studied chromophore, we have designed two derivatives of CBIs bearing chiral and achiral 3,4,5-trialkoxyphenyl groups at the imide position, named as CBI-GCH and CBI-GACH, respectively. CBI-GCH self-assembles mainly through π-stacking and van der Waals interactions in nonpolar methylcyclohexane to result in long 1D fibrillar stacks. The mechanism of supramolecular polymerization was probed by using chiroptical studies, which showed an isodesmic pathway for CBI-GCH. The thermodynamic parameters that govern the self-assembly are detailed. CBI-GACH also shows similar self-assembly behavior as its chiral counterpart. X-ray diffraction studies of both molecules reveals a 2D hexagonal columnar arrangement. The coassembly of CBI-GCH and CBI-GACH shows chiral amplification (sergeant and soldiers experiment) with saturation at 30-50 % of the chiral derivative, which was further used to study the dynamics of the assembly. Thus, this study presents a rare report of chiral amplification in an isodesmic system.

13.
Chemphyschem ; 14(4): 661-73, 2013 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-23255313

RESUMEN

An understanding of the mechanisms of supramolecular polymerization from a molecular point of view is lacking. Several reports in the literature on the mechanism exhibited by different classes of molecules are examined in an attempt to correlate the molecular features to the aggregation pathway followed. It is proposed that long-range interactions between oligomers could lead to their cooperative growth. The lack thereof leads to isodesmicity.


Asunto(s)
Sustancias Macromoleculares/síntesis química , Sustancias Macromoleculares/química , Polimerizacion , Teoría Cuántica , Temperatura
14.
J Phys Chem A ; 116(6): 1638-47, 2012 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-22239118

RESUMEN

Gas phase quantum chemical calculations of linear, hydrogen bonded oligomers of carbonic acid have been carried out to examine the feasibility for such species to be the building blocks of crystalline carbonic acid. Infrared and Raman vibrational spectra have been calculated and are compared against experimentally known spectra for two polymorphs of carbonic acid. The calculated anharmonic frequencies of the linear oligomer agree well with the experimental data for the centrosymmetric ß-carbonic acid, rather than with that for the α polymorph. These calculations strongly suggest that ß-carbonic acid should consist of one-dimensional hydrogen bonded carbonic acid molecules in the anti-anti conformation.

15.
J Chem Phys ; 134(12): 124511, 2011 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-21456680

RESUMEN

Using multiple computational tools, we examine five candidate crystal structures for ß-carbonic acid, a molecular crystal of environmental and astrophysical significance. These crystals comprise of hydrogen bonded molecules in either sheetlike or chainlike topologies. Gas phase quantum calculations, empirical force field based crystal structure search, and periodic density functional theory based calculations and finite temperature simulations of these crystals have been carried out. The infrared spectrum calculated from density functional theory based molecular dynamics simulations compares well with experimental data. Results suggest crystals with one-dimensional hydrogen bonding topologies (chainlike) to be more stable than those with two-dimensional (sheetlike) hydrogen bonding networks. We predict that these structures can be distinguished on the basis of their far infrared spectra.

16.
Adv Mater ; 33(2): e2005720, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33270297

RESUMEN

Control over main-chain motion of chiral π-conjugated polymers can lead to unexpected new functionalities. Here, it is shown that by combining photoswitchable azobenzene units in conjugation with chiral fluorene comonomers and appropriate plasticizers, the polymer organization and chiroptical properties of these alternating copolymers steered by light and its state of polarization can be dynamically controlled. The configuration of the stereogenic centers in the side chains of the fluorene units determines the handedness of the cholesteric organization in thermally annealed films, indicating cooperative behavior. The polymer alignment and helicity of the supramolecular arrangement can be switched by irradiating with linearly and circularly polarized light, respectively. Intriguingly, when switching the handedness of thermally induced cholesteric organizations by illuminating with circularly polarized light that is opposite to the handedness of the cholesteric phases, a nematic-like intermediate state is observed during helix interconversion. By the sequence of irradiation with left and right circularly polarized light followed by thermal annealing, an asymmetric motion, reminiscent of that seen in molecular motors is observed. These findings suggest that functional conjugated polymers can exhibit emergent properties at mesoscopic scale.

17.
Adv Mater ; 32(7): e1904965, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31922628

RESUMEN

Organic semiconductors and organic-inorganic hybrids are promising materials for spintronic-based memory devices. Recently, an alternative route to organic spintronic based on chiral-induced spin selectivity (CISS) is suggested. In the CISS effect, the chirality of the molecular system itself acts as a spin filter, thus avoiding the use of magnets for spin injection. Here, spin filtering in excess of 85% in helical π-conjugated materials based on supramolecular nanofibers at room temperature is reported. The high spin-filtering efficiency can even be observed in nanofibers assembled from mixtures of chiral and achiral molecules through chiral amplification effect. Furthermore and most excitingly, it is shown that both "up" and "down" orientations of filtered spins can be obtained in a single enantiopure system via the temperature-dependent helicity (P and M) inversion of supramolecular nanofibers. The findings showcase that materials based on helical noncovalently assembled systems are modular platforms with an emerging structure-property relationship for spintronic applications.

18.
Macromolecules ; 52(19): 7430-7438, 2019 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-31607759

RESUMEN

Elucidating the microstructure of supramolecular copolymers remains challenging, despite the progress in the field of supramolecular polymers. In this work, we present a detailed approach to investigate supramolecular copolymerizations under thermodynamic control. Our approach provides insight into the interactions of different types of monomers and hereby allows elucidating the microstructure of copolymers. We select two monomers that undergo cooperative supramolecular polymerization by way of threefold intermolecular hydrogen bonding in a helical manner, namely, benzene-1,3,5-tricarboxamide (BTA) and benzene-1,3,5-tris(carbothioamide) (thioBTA). Two enantiomeric forms and an achiral analogue of BTA and thioBTA are synthesized and their homo- and copolymerizations are studied using light scattering techniques, infrared, ultraviolet, and circular dichroism spectroscopy. After quantifying the thermodynamic parameters describing the homopolymerizations, we outline a method to follow the self-assembly of thioBTA derivatives in the copolymerization with BTA, which involves monitoring a characteristic spectroscopic signature as a function of temperature and relative concentration. Using modified types of sergeants-and-soldiers and majority-rules experiments, we obtain insights into the degree of aggregation and the net helicity. In addition, we apply a theoretical model of supramolecular copolymerization to substantiate the experimental results. We find that the model describes the two-component system well and allows deriving the hetero-interaction energies. The interactions between the same kinds of monomers (BTA-BTA and thioBTA-thioBTA) are slightly more favorable than those between different monomers (BTA-thioBTA), corresponding to a nearly random copolymerization. Finally, to study the interactions of the monomers at the molecular level, we perform density functional theory-based computations. The results corroborate that the two-component system exhibits a random distribution of the two monomer units along the copolymer chain.

19.
Macromolecules ; 51(15): 5883-5890, 2018 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-30135611

RESUMEN

Chiral conjugated polymers bearing enantiopure side chains offer the possibility to harness the effect of chirality in organic electronic devices. However, its use is hampered by the low degree of circular polarization in absorption (gabs) in most of the conjugated polymer thin-films studied. Here we demonstrate a versatile method to significantly increase the gabs by using a few weight percentages of a commercially available achiral long-chain alcohol as an additive. This additive enhances the chiroptical properties in both absorption and emission by ca. 5-10 times in the thin-films. We envisage that the alcohol additive acts as a plasticizer which enhances the long-range chiral liquid crystalline ordering of the polymer chains, thereby amplifying the chiroptical properties in the thin-film. The application of this methodology to various conjugated polymers has been demonstrated.

20.
J Phys Chem B ; 121(51): 11520-11527, 2017 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-29200297

RESUMEN

The molecular organization in thermally annealed films of poly(9,9-bis((S)-3,7-dimethyloctyl)-2,7-fluorene-alt-benzothiadiazole) is investigated using polarized light. Measurement of linear polarization in transmission and reflection as a function of layer thickness and orientation directly show a left handed cholesteric organization with a pitch length of 600 nm. Results are corroborated by measurements of circularly polarized reflection and generalized ellipsometry and are compared to calculations of the optical properties based on the Maugin-Oseen-DeVries model. For wavelengths near the lowest allowed optical transition, light with the same handedness as the cholesteric arrangement (left) is found to be reflected and transmitted with a probability higher than right circularly polarized light. The high transmission for left polarized light is interpreted as an optical manifestation of the Borrmann effect.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA