Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(50): e2214396119, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36472957

RESUMEN

Osteoporosis is a major public health problem. Currently, there are no orally available therapies that increase bone formation. Intermittent parathyroid hormone (PTH) stimulates bone formation through a signal transduction pathway that involves inhibition of salt-inducible kinase isoforms 2 and 3 (SIK2 and SIK3). Here, we further validate SIK2/SIK3 as osteoporosis drug targets by demonstrating that ubiquitous deletion of these genes in adult mice increases bone formation without extraskeletal toxicities. Previous efforts to target these kinases to stimulate bone formation have been limited by lack of pharmacologically acceptable, specific, orally available SIK2/SIK3 inhibitors. Here, we used structure-based drug design followed by iterative medicinal chemistry to identify SK-124 as a lead compound that potently inhibits SIK2 and SIK3. SK-124 inhibits SIK2 and SIK3 with single-digit nanomolar potency in vitro and in cell-based target engagement assays and shows acceptable kinome selectivity and oral bioavailability. SK-124 reduces SIK2/SIK3 substrate phosphorylation levels in human and mouse cultured bone cells and regulates gene expression patterns in a PTH-like manner. Once-daily oral SK-124 treatment for 3 wk in mice led to PTH-like effects on mineral metabolism including increased blood levels of calcium and 1,25-vitamin D and suppressed endogenous PTH levels. Furthermore, SK-124 treatment increased bone formation by osteoblasts and boosted trabecular bone mass without evidence of short-term toxicity. Taken together, these findings demonstrate PTH-like effects in bone and mineral metabolism upon in vivo treatment with orally available SIK2/SIK3 inhibitor SK-124.


Asunto(s)
Inhibición Psicológica , Osteogénesis , Humanos , Ratones , Animales , Plomo , Proteínas Serina-Treonina Quinasas/genética
2.
J Chem Inf Model ; 63(14): 4229-4236, 2023 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-37406353

RESUMEN

Fragment-based drug design uses data about where, and how strongly, small chemical fragments bind to proteins, to assemble new drug molecules. Over the past decade, we have been successfully using fragment data, derived from thermodynamically rigorous Monte Carlo fragment-protein binding simulations, in dozens of preclinical drug programs. However, this approach has not been available to the broader research community because of the cost and complexity of doing simulations and using design tools. We have developed a web application, called BMaps, to make fragment-based drug design widely available with greatly simplified user interfaces. BMaps provides access to a large repository (>550) of proteins with 100s of precomputed fragment maps, druggable hot spots, and high-quality water maps. Users can also employ their own structures or those from the Protein Data Bank and AlphaFold DB. Multigigabyte data sets are searched to find fragments in bondable orientations, ranked by a binding-free energy metric. The designers use this to select modifications that improve affinity and other properties. BMaps is unique in combining conventional tools such as docking and energy minimization with fragment-based design, in a very easy to use and automated web application. The service is available at https://www.boltzmannmaps.com.


Asunto(s)
Diseño de Fármacos , Programas Informáticos , Sitios de Unión , Modelos Moleculares , Estructura Terciaria de Proteína
3.
Bioorg Med Chem Lett ; 58: 128518, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34979256

RESUMEN

Hepatitis B virus (HBV) core protein, the building block of the HBV capsid, plays multiple roles in viral replication, and is an attractive target for development of antiviral agents with a new mechanism of action. In addition to the heteroaryldihydropyrimidines (HAPs), sulfamoylbenzamides (SBAs), dibenzothiazepine derivatives (DBTs), and sulfamoylpyrrolamides (SPAs) that inhibit HBV replication by modulation of viral capsid assembly and are currently under clinical trials for the treatment of chronic hepatitis B (CHB), other chemical structures with activity to modulate HBV capsid assembly have also been explored. Here we describe our continued optimization of a benzamide originating from our high throughput screening. A new bicyclic carboxamide lead featuring an electron deficient non-planar core structure was discovered. Evaluations of its ADMET (absorption, distribution, metabolism, excretion and toxicity) and pharmacokinetic (PK) profiles demonstrate improved metabolic stability and good bioavailability.


Asunto(s)
Antivirales/farmacología , Virus de la Hepatitis B/efectos de los fármacos , Quinolinas/farmacología , Animales , Antivirales/síntesis química , Antivirales/química , Relación Dosis-Respuesta a Droga , Humanos , Ratones , Pruebas de Sensibilidad Microbiana , Microsomas Hepáticos/química , Microsomas Hepáticos/metabolismo , Estructura Molecular , Quinolinas/síntesis química , Quinolinas/química , Relación Estructura-Actividad , Proteínas del Núcleo Viral , Replicación Viral/efectos de los fármacos
4.
Med Chem Res ; 30(2): 459-472, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33456291

RESUMEN

We report herein the synthesis and evaluation of phenyl ureas derived from 4-oxotetrahydropyrimidine as novel capsid assembly modulators of hepatitis B virus (HBV). Among the derivatives, compound 27 (58031) and several analogs showed an activity of submicromolar EC50 against HBV and low cytotoxicities (>50 µM). Structure-activity relationship studies revealed a tolerance for an additional group at position 5 of 4-oxotetrahydropyrimidine. The mechanism study indicates that compound 27 (58031) is a type II core protein allosteric modulator (CpAMs), which induces core protein dimers to assemble empty capsids with fast electrophoresis mobility in native agarose gel. These compounds may thus serve as leads for future developments of novel antivirals against HBV.

5.
J Virol ; 91(16)2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28566379

RESUMEN

Chronic hepatitis B virus (HBV) infection is a global public health problem. Although the currently approved medications can reliably reduce the viral load and prevent the progression of liver diseases, they fail to cure the viral infection. In an effort toward discovery of novel antiviral agents against HBV, a group of benzamide (BA) derivatives that significantly reduced the amount of cytoplasmic HBV DNA were discovered. The initial lead optimization efforts identified two BA derivatives with improved antiviral activity for further mechanistic studies. Interestingly, similar to our previously reported sulfamoylbenzamides (SBAs), the BAs promote the formation of empty capsids through specific interaction with HBV core protein but not other viral and host cellular components. Genetic evidence suggested that both SBAs and BAs inhibited HBV nucleocapsid assembly by binding to the heteroaryldihydropyrimidine (HAP) pocket between core protein dimer-dimer interfaces. However, unlike SBAs, BA compounds uniquely induced the formation of empty capsids that migrated more slowly in native agarose gel electrophoresis from A36V mutant than from the wild-type core protein. Moreover, we showed that the assembly of chimeric capsids from wild-type and drug-resistant core proteins was susceptible to multiple capsid assembly modulators. Hence, HBV core protein is a dominant antiviral target that may suppress the selection of drug-resistant viruses during core protein-targeting antiviral therapy. Our studies thus indicate that BAs are a chemically and mechanistically unique type of HBV capsid assembly modulators and warranted for further development as antiviral agents against HBV.IMPORTANCE HBV core protein plays essential roles in many steps of the viral replication cycle. In addition to packaging viral pregenomic RNA (pgRNA) and DNA polymerase complex into nucleocapsids for reverse transcriptional DNA replication to take place, the core protein dimers, existing in several different quaternary structures in infected hepatocytes, participate in and regulate HBV virion assembly, capsid uncoating, and covalently closed circular DNA (cccDNA) formation. It is anticipated that small molecular core protein assembly modulators may disrupt one or multiple steps of HBV replication, depending on their interaction with the distinct quaternary structures of core protein. The discovery of novel core protein-targeting antivirals, such as benzamide derivatives reported here, and investigation of their antiviral mechanism may lead to the identification of antiviral therapeutics for the cure of chronic hepatitis B.


Asunto(s)
Fármacos Anti-VIH/farmacología , Benzamidas/farmacología , Cápside/metabolismo , Virus de la Hepatitis B/efectos de los fármacos , Virus de la Hepatitis B/fisiología , Ensamble de Virus/efectos de los fármacos , Fármacos Anti-VIH/aislamiento & purificación , Benzamidas/aislamiento & purificación , Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos , Unión Proteica
6.
J Virol ; 90(23): 10774-10788, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27654301

RESUMEN

Although a highly effective vaccine is available, the number of yellow fever cases has increased over the past 2 decades, which highlights the pressing need for antiviral therapeutics. In a high-throughput screening campaign, we identified an acetic acid benzodiazepine (BDAA) compound which potently inhibits yellow fever virus (YFV). Interestingly, while treatment of YFV-infected cultures with 2 µM BDAA reduced the virion production by greater than 2 logs, the compound was not active against 21 other viruses from 14 different viral families. Selection and genetic analysis of drug-resistant viruses revealed that replacement of the proline at amino acid 219 (P219) of the nonstructural protein 4B (NS4B) with serine, threonine, or alanine conferred YFV with resistance to BDAA without apparent loss of replication fitness in cultured mammalian cells. However, replacement of P219 with glycine conferred BDAA resistance with significant loss of replication ability. Bioinformatics analysis predicts that the P219 amino acid is localized at the endoplasmic reticulum lumen side of the fifth putative transmembrane domain of NS4B, and the mutation may render the viral protein incapable of interacting with BDAA. Our studies thus revealed an important role and the structural basis for the NS4B protein in supporting YFV replication. Moreover, in YFV-infected hamsters, oral administration of BDAA protected 90% of the animals from death, significantly reduced viral load by greater than 2 logs, and attenuated virus infection-induced liver injury and body weight loss. The encouraging preclinical results thus warrant further development of BDAA or its derivatives as antiviral agents to treat yellow fever. IMPORTANCE Yellow fever is an acute viral hemorrhagic disease which threatens approximately 1 billion people living in tropical areas of Africa and Latin America. Although a highly effective yellow fever vaccine has been available for more than 7 decades, the low vaccination rate fails to prevent outbreaks in at-risk regions. It has been estimated that up to 1.7 million YFV infections occur in Africa each year, resulting in 29,000 to 60,000 deaths. Thus far, there is no specific antiviral treatment for yellow fever. To cope with this medical challenge, we identified a benzodiazepine compound that selectively inhibits YFV by targeting the viral NS4B protein. To our knowledge, this is the first report demonstrating in vivo safety and antiviral efficacy of a YFV NS4B inhibitor in an animal model. We have thus reached a critical milestone toward the development of specific antiviral therapeutics for clinical management of yellow fever.

7.
Bioorg Med Chem ; 25(15): 3947-3963, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28601508

RESUMEN

We have applied simulated annealing of chemical potential (SACP) to a diverse set of ∼150 very small molecules to provide insights into new interactions in the binding pocket of human renin, a historically difficult target for which to find low molecular weight (MW) inhibitors with good bioavailability. In one of its many uses in drug discovery, SACP provides an efficient, thermodynamically principled method of ranking chemotype replacements for scaffold hopping and manipulating physicochemical characteristics for drug development. We introduce the use of Constrained Fragment Analysis (CFA) to construct and analyze ligands composed of linking those fragments with predicted high affinity. This technique addresses the issue of effectively linking fragments together and provides a predictive mechanism to rank order prospective inhibitors for synthesis. The application of these techniques to the identification of novel inhibitors of human renin is described. Synthesis of a limited set of designed compounds provided potent, low MW analogs (IC50s<100nM) with good oral bioavailability (F>20-58%).


Asunto(s)
Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Renina/antagonistas & inhibidores , Animales , Disponibilidad Biológica , Diseño de Fármacos , Inhibidores Enzimáticos/síntesis química , Humanos , Ratas , Relación Estructura-Actividad , Termodinámica
8.
Bioorg Med Chem Lett ; 26(5): 1480-1484, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26852364

RESUMEN

The HIV-1 Nef accessory factor enhances viral replication and promotes immune system evasion of HIV-infected cells, making it an attractive target for drug discovery. Recently we described a novel class of diphenylpyrazolodiazene compounds that bind directly to Nef in vitro and inhibit Nef-dependent HIV-1 infectivity and replication in cell culture. However, these first-generation Nef antagonists have several structural liabilities, including an azo linkage that led to poor oral bioavailability. The azo group was therefore replaced with either a one- or two-carbon linker. The resulting set of non-azo analogs retained nanomolar binding affinity for Nef by surface plasmon resonance, while inhibiting HIV-1 replication with micromolar potency in cell-based assays without cytotoxicity. Computational docking studies show that these non-azo analogs occupy the same predicted binding site within the HIV-1 Nef dimer interface as the original azo compound. Computational methods also identified a hot spot for inhibitor binding within this site that is defined by conserved HIV-1 Nef residues Asp108, Leu112, and Pro122. Pharmacokinetic evaluation of the non-azo B9 analogs in mice showed that replacement of the azo linkage dramatically enhanced oral bioavailability without substantially affecting plasma half-life or clearance. The improved oral bioavailability of non-azo diphenylpyrazolo Nef antagonists provides a starting point for further drug lead optimization in support of future efficacy testing in animal models of HIV/AIDS.


Asunto(s)
Fármacos Anti-VIH/síntesis química , Fármacos Anti-VIH/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/antagonistas & inhibidores , Administración Oral , Animales , Fármacos Anti-VIH/administración & dosificación , Sitios de Unión/efectos de los fármacos , Relación Dosis-Respuesta a Droga , VIH-1/efectos de los fármacos , Ratones , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Conformación Molecular , Simulación del Acoplamiento Molecular , Bibliotecas de Moléculas Pequeñas/administración & dosificación , Bibliotecas de Moléculas Pequeñas/síntesis química , Relación Estructura-Actividad , Células Tumorales Cultivadas , Replicación Viral/efectos de los fármacos
9.
Biomacromolecules ; 15(7): 2369-77, 2014 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-24892212

RESUMEN

Adsorption behavior of a gold binding peptide was experimentally studied to achieve kinetics and thermodynamics parameters toward understanding of the binding of an engineered peptide onto a solid metal surface. The gold-binding peptide, GBP1, was originally selected using a cell surface display library and contains 14 amino acid residues. In this work, single- and three-repeats of GBP1 were used to assess the effects of two parameters: molecular architecture versus secondary structure on adsorption on to gold substrate. The adsorption measurements were carried out using surface plasmon resonance (SPR) spectroscopy at temperatures ranging from 10 to 55 °C. At all temperatures, two different regimes of peptide adsorption were observed, which, based on the model, correspond to two sets of thermodynamics values. The values of enthalpy, ΔH(ads), and entropy, ΔS(ads), in these two regimes were determined using the van't Hoff approach and Gibbs-Helmholtz relationship. In general, the values of enthalpy for both peptides are negative indicating GBP1 binding to gold is an exothermic phenomenon and that the binding of three repeat gold binding peptide (3l-GBP1) is almost 5 times tighter than that for the single repeat (l-GBP1). More intriguing result is that the entropy of adsorption for the 3l-GBP1 is negative (-43.4 ± 8.5 cal/(mol K)), while that for the l-GBP1 is positive (10.90 ± 1.3 cal/(mol K)). Among a number of factors that synergistically contribute to the decrease of entropy, long-range ordered self-assembly of the 3l-GBP1 on gold surface is the most effective, probably through both peptide-solid and peptide-peptide intermolecular interactions. Additional adsorption experiments were conducted in the presence of 2,2,2-trifluoroethanol (TFE) to determine how the conformational structures of the biomolecules responded to the environmental perturbation. We found that the peptides differ in their conformational responses to the change in solution conditions; while l-GBP does not fold in the presence of TFE, 3l-GBP1 adopted two types of secondary structure (ß-strand, α-helix) and that peptide's binding to the solid is enhanced by the presence of low percentages of TFE solvent. Not only do these kinetics and thermodynamics results provide adsorption behavior and binding of genetically engineered peptides for inorganics (GEPI), but they could also provide considerable insights into fundamental understanding peptide molecular recognition and their selective specificity for the solids. Moreover, comprehensive work described herein suggests that multiple repeat forms of the solid binding peptides possess a conformational component that can be exploited to further tailor affinity and binding of a given sequence to a solid material followed by ordered assembly as a convenient tool in future practical applications.


Asunto(s)
Proteínas Portadoras/química , Oro/química , Péptidos/química , Dicroismo Circular , Conformación Molecular , Estructura Secundaria de Proteína , Relación Estructura-Actividad , Resonancia por Plasmón de Superficie , Termodinámica , Trifluoroetanol
10.
J Pept Sci ; 20(5): 366-74, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24648029

RESUMEN

We show that three designed cyclic d,l-peptides are ß-helical in TFE-a solvent in which the archetypal ß-helical peptide, gA, is unstructured. This result represents an advance in the field of ß-helical peptide foldamers and a step toward achieving ß-helical structure under a broad range of solvent conditions. We synthesized two of the three peptides examined using an improved variant of our original CBC strategy. Here, we began with a commercially available PEG-PS composite resin prefunctionalized with the alkanesulfonamide 'SCL' linker and preloaded with glycine. Our new conditions avoided C-terminal epimerization during the CBC step and simplified purification. In addition, we present results to define the scope and limitations of our CBC strategy. These methods and observations will prove useful in designing additional cyclic ß-helical peptides for applications ranging from transmembrane ion channels to ligands for macromolecular targets. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.


Asunto(s)
Péptidos Cíclicos/química , Péptidos Cíclicos/síntesis química , Trifluoroetanol/química , Ciclización , Modelos Moleculares , Estructura Secundaria de Proteína
11.
Antiviral Res ; 226: 105899, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705201

RESUMEN

We recently developed compound FC-7269 for targeting the Molluscum contagiosum virus processivity factor (mD4) and demonstrated its ability to inhibit viral processive DNA synthesis in vitro and cellular infection of an mD4-dependent virus (Antiviral Res 211, 2023,105520). However, despite a thorough medicinal chemistry campaign we were unable to generate a potent second analog as a requisite for drug development. We overcame this impasse, by conjugating a short hydrophobic trivaline peptide to FC-7269 to produce FC-TriVal-7269 which significantly increased antiviral potency and reduced cellular toxicity.


Asunto(s)
Antivirales , Virus del Molusco Contagioso , Antivirales/farmacología , Antivirales/química , Antivirales/síntesis química , Virus del Molusco Contagioso/efectos de los fármacos , Humanos , Replicación Viral/efectos de los fármacos , Molusco Contagioso/tratamiento farmacológico , Oligopéptidos/farmacología , Oligopéptidos/química , Animales , Línea Celular
12.
Antiviral Res ; 211: 105520, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36603771

RESUMEN

Molluscum contagiosum (MC) is an infectious disease that occurs only in humans with a tropism that is narrowly restricted to the outermost epidermal layer of the skin. Molluscum contagiosum virus (MCV) is the causative agent of MC which produces skin lesions that can persist for months to several years. MCV is efficiently transmitted by direct physical contact or by indirect contact with fomites. MC is most prevalent in children and immune compromised patients. The failure to develop a drug that targets MCV replication has been hampered for decades by the inability to propagate MCV in cell culture. To address this dilemma, we recently engineered a surrogate poxvirus expressing the MCV processivity factor (mD4) as the drug target. The mD4 protein is essential for viral replication by keeping the viral polymerase tethered to the DNA template. In this study we have designed and synthesized a lead compound (7269) that is able to prevent mD4 dependent processive DNA synthesis in vitro (IC50 = 6.8 µM) and effectively inhibit propagation of the mD4-VV surrogate virus in BSC-1 cells (EC50 = 13.2 µM) with negligible cytotoxicity. In human liver microsomes, 7269 was shown to be stable for almost 2 h. When tested for penetration into human cadaver skin in a formulated gel, the level of 7269 in the epidermal layer was nearly 100 times the concentration (EC50) needed to inhibit propagation of the mD4-VV surrogate virus in BSC-1 cells. The gel formulated 7269 was scored as a non-irritant on skin and shown to have a shelf-life that was completely stable after several months. In summary, 7269 is a potential Lead for becoming the first MCV anti-viral compound to treat MC and thereby, addresses this unmet medical need that has persisted for many decades.


Asunto(s)
Molusco Contagioso , Virus del Molusco Contagioso , Niño , Humanos , Virus del Molusco Contagioso/genética , Virus del Molusco Contagioso/metabolismo , Proteínas Virales/genética , ADN/metabolismo
13.
Eur J Med Chem ; 259: 115634, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37499290

RESUMEN

A key step of hepatitis B virus (HBV) replication is the selective packaging of pregenomic RNA (pgRNA) by core protein (Cp) dimers, forming a nucleocapsid where the reverse transcriptional viral DNA replication takes place. One approach in the development of new anti-HBV drugs is to disrupt the assembly of HBV nucleocapsids by misdirecting Cp dimers to assemble morphologically normal capsids devoid of pgRNA. In this study, we built upon our previous discovery of benzamide-derived HBV capsid assembly modulators by exploring fused bicyclic scaffolds with an exocyclic amide that is ß, γ to the fused ring, and identified 1,2,3,4-tetrahydroquinoxaline derived phenyl ureas as a novel scaffold. Structure-activity relationship studies showed that a favorable hydrophobic substitution can be tolerated at the 2-position of the 1,2,3,4-tetrahydroquinoxaline core, and the resulting compound 88 demonstrated comparable or improved antiviral potencies in mouse and human hepatocyte-derived HBV-replicating cell lines compared to our previously reported benzamide compound, 38017 (8). In addition, a novel bis-urea series based on 1,2,3,4-tetrahydroquinoxaline was also found to inhibit HBV DNA replication with sub-micromolar EC50 values. The mode of action of these compounds is consistent with specific inhibition of pgRNA encapsidation into nucleocapsids in hepatocytes.


Asunto(s)
Virus de la Hepatitis B , Hepatitis B , Humanos , Animales , Ratones , Virus de la Hepatitis B/metabolismo , Replicación Viral , Ensamble de Virus , Replicación del ADN , ARN Viral/genética , ADN Viral , Nucleocápside/metabolismo , Antivirales/química , Benzamidas/farmacología , Hepatitis B/tratamiento farmacológico
14.
J Clin Invest ; 133(12)2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37317966

RESUMEN

Most drugs used to treat viral disease target a virus-coded product. They inhibit a single virus or virus family, and the pathogen can readily evolve resistance. Host-targeted antivirals can overcome these limitations. The broad-spectrum activity achieved by host targeting can be especially useful in combating emerging viruses and for treatment of diseases caused by multiple viral pathogens, such as opportunistic agents in immunosuppressed patients. We have developed a family of compounds that modulate sirtuin 2, an NAD+-dependent deacylase, and now report the properties of a member of that family, FLS-359. Biochemical and x-ray structural studies show that the drug binds to sirtuin 2 and allosterically inhibits its deacetylase activity. FLS-359 inhibits the growth of RNA and DNA viruses, including members of the coronavirus, orthomyxovirus, flavivirus, hepadnavirus, and herpesvirus families. FLS-359 acts at multiple levels to antagonize cytomegalovirus replication in fibroblasts, causing modest reductions in viral RNAs and DNA, together with a much greater reduction in infectious progeny, and it exhibits antiviral activity in humanized mouse models of infection. Our results highlight the potential of sirtuin 2 inhibitors as broad-spectrum antivirals and set the stage for further understanding of how host epigenetic mechanisms impact the growth and spread of viral pathogens.


Asunto(s)
Infecciones por Coronavirus , Coronavirus , Animales , Ratones , Antivirales/farmacología , Sirtuina 2/genética , ARN Viral
15.
J Comput Aided Mol Des ; 26(5): 583-94, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22290624

RESUMEN

The success of molecular fragment-based design depends critically on the ability to make predictions of binding poses and of affinity ranking for compounds assembled by linking fragments. The SAMPL3 Challenge provides a unique opportunity to evaluate the performance of a state-of-the-art fragment-based design methodology with respect to these requirements. In this article, we present results derived from linking fragments to predict affinity and pose in the SAMPL3 Challenge. The goal is to demonstrate how incorporating different aspects of modeling protein-ligand interactions impact the accuracy of the predictions, including protein dielectric models, charged versus neutral ligands, ΔΔGs solvation energies, and induced conformational stress. The core method is based on annealing of chemical potential in a Grand Canonical Monte Carlo (GC/MC) simulation. By imposing an initially very high chemical potential and then automatically running a sequence of simulations at successively decreasing chemical potentials, the GC/MC simulation efficiently discovers statistical distributions of bound fragment locations and orientations not found reliably without the annealing. This method accounts for configurational entropy, the role of bound water molecules, and results in a prediction of all the locations on the protein that have any affinity for the fragment. Disregarding any of these factors in affinity-rank prediction leads to significantly worse correlation with experimentally-determined free energies of binding. We relate three important conclusions from this challenge as applied to GC/MC: (1) modeling neutral ligands--regardless of the charged state in the active site--produced better affinity ranking than using charged ligands, although, in both cases, the poses were almost exactly overlaid; (2) simulating explicit water molecules in the GC/MC gave better affinity and pose predictions; and (3) applying a ΔΔGs solvation correction further improved the ranking of the neutral ligands. Using the GC/MC method under a variety of parameters in the blinded SAMPL3 Challenge provided important insights to the relevant parameters and boundaries in predicting binding affinities using simulated annealing of chemical potential calculations.


Asunto(s)
Ligandos , Unión Proteica , Proteínas/química , Termodinámica , Simulación por Computador , Entropía , Modelos Moleculares , Conformación Molecular , Método de Montecarlo , Agua/química
16.
J Am Chem Soc ; 133(28): 10740-3, 2011 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-21682273

RESUMEN

Simulated annealing of chemical potential located the highest affinity positions of eight organic probes and water on eight static structures of hen egg white lysozyme (HEWL) in various conformational states. In all HELW conformations, a diverse set of organic probes clustered in the known binding site (hot spot). Fragment clusters at other locations were excluded by tightly-bound waters so that only the hot-spot cluster remained in each case. The location of the hot spot was correctly predicted irrespective of the protein conformation and without accounting for protein flexibility during the simulations. Any one of the static structures could have been used to locate the hot spot. A site on a protein where a diversity of organic probes is calculated to cluster, but where water specifically does not bind, identifies a potential small-molecule binding site or protein-protein interaction hot spot.


Asunto(s)
Modelos Moleculares , Muramidasa/química , Muramidasa/metabolismo , Compuestos Orgánicos/metabolismo , Agua/química , Animales , Sitios de Unión , Conformación Proteica , Termodinámica
17.
Antiviral Res ; 191: 105080, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33933516

RESUMEN

Assembly of hepatitis B virus (HBV) capsids is driven by the hydrophobic interaction of core protein (Cp) at dimer-dimer interface. Binding of core protein allosteric modulators (CpAMs) to a hydrophobic "HAP" pocket formed between the inter-dimer interface strengths the dimer-dimer interaction and misdirects the assembly of Cp dimers into non-capsid Cp polymers or morphologically normal capsids devoid of viral pregenomic (pg) RNA and DNA polymerase. In this study, we performed a systematic mutagenesis analysis to identify Cp amino acid residues at Cp dimer-dimer interface that are critical for capsid assembly, pgRNA encapsidation and resistance to CpAMs. By analyzing 70 mutant Cp with a single amino acid substitution of 25 amino acid residues around the HAP pocket, our study revealed that residue W102 and Y132 are critical for capsid assembly. However, substitution of many other residues did not significantly alter the amount of capsids, but reduced the amount of encapsidated pgRNA, suggesting their critical roles in pgRNA packaging. Interestingly, several mutant Cp with a single amino acid substitution of residue P25, T33 or I105 supported high levels of DNA replication, but conferred strong resistance to multiple chemotypes of CpAMs. In addition, we also found that WT Cp, but not the assembly incompetent Cp, such as Y132A Cp, interacted with HBV DNA polymerase (Pol). This later finding implies that encapsidation of viral DNA polymerase may depend on the interaction of Pol with a capsid assembly intermediate, but not free Cp dimers. Taking together, our findings reported herein shed new light on the mechanism of HBV nucleocapsid assembly and mode of CpAM action.


Asunto(s)
Antivirales/farmacología , Cápside/metabolismo , Virus de la Hepatitis B/efectos de los fármacos , Virus de la Hepatitis B/fisiología , Nucleocápside/metabolismo , ARN/metabolismo , Proteínas del Núcleo Viral/genética , Ensamble de Virus/fisiología , ADN Viral , Células Hep G2 , Virus de la Hepatitis B/química , Virus de la Hepatitis B/genética , Humanos , ARN/genética , ARN Viral/genética , Proteínas del Núcleo Viral/química , Proteínas del Núcleo Viral/metabolismo , Ensamble de Virus/genética
18.
Ocul Surf ; 19: 313-321, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33161128

RESUMEN

PURPOSE: Acyclovir is most commonly used for treating ocular Herpes Keratitis, a leading cause of infectious blindness. However, emerging resistance to Acyclovir resulting from mutations in the thymidine kinase gene of Herpes Simplex Virus -1 (HSV-1), has prompted the need for new therapeutics directed against a different viral protein. One novel target is the HSV-1 Processivity Factor which is essential for tethering HSV-1 Polymerase to the viral genome to enable long-chain DNA synthesis. METHODS: A series of peptides, based on the crystal structure of the C-terminus of HSV-1 Polymerase, were constructed with hydrocarbon staples to retain their alpha-helical conformation. The stapled peptides were tested for blocking both HSV-1 DNA synthesis and infection. The most effective peptide was further optimized by replacing its negative N-terminus with two hydrophobic valine residues. This di-valine stapled peptide was tested for inhibiting HSV-1 infection of human primary corneal epithelial cells. RESULTS: The stapled peptides blocked HSV-1 DNA synthesis and HSV-1 infection. The unstapled control peptide had no inhibitory effects. Specificity of the stapled peptides was confirmed by their inabilities to block infection by an unrelated virus. Significantly, the optimized di-valine stapled peptide effectively blocked HSV-1 infection in human primary corneal epithelial cells with selectivity index of 11.6. CONCLUSIONS: Hydrocarbon stapled peptides that simulate the α-helix from the C-terminus of HSV-1 DNA polymerase can specifically block DNA synthesis and infection of HSV-1 in human primary corneal epithelial cells. These stapled peptides provide a foundation for developing a topical therapeutic for treating human ocular Herpes Keratitis.


Asunto(s)
Herpesvirus Humano 1 , Queratitis Herpética , ADN , Células Epiteliales , Herpesvirus Humano 1/genética , Humanos , Queratitis Herpética/tratamiento farmacológico , Péptidos/farmacología
19.
Langmuir ; 26(9): 6549-56, 2010 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-20170114

RESUMEN

The nanoscale morphology and protein secondary structure of barnacle adhesive plaques were characterized using atomic force microscopy (AFM), far-UV circular dichroism (CD) spectroscopy, transmission Fourier transform infrared (FTIR) spectroscopy, and Thioflavin T (ThT) staining. Both primary cement (original cement laid down by the barnacle) and secondary cement (cement used for reattachment) from the barnacle Balanus amphitrite (= Amphibalanus amphitrite) were analyzed. Results showed that both cements consisted largely of nanofibrillar matrices having similar composition. Of particular significance, the combined results indicate that the nanofibrillar structures are consistent with amyloid, with globular protein components also identified in the cement. Potential properties, functions, and formation mechanisms of the amyloid-like nanofibrils within the adhesive interface are discussed. Our results highlight an emerging trend in structural biology showing that amyloid, historically associated with disease, also has functional roles.


Asunto(s)
Amiloide/química , Nanoestructuras/química , Thoracica/química , Adhesivos/química , Adhesivos/metabolismo , Amiloide/metabolismo , Animales , Dicroismo Circular , Microscopía de Fuerza Atómica , Estructura Secundaria de Proteína , Espectroscopía Infrarroja por Transformada de Fourier
20.
J Phys Chem A ; 114(44): 11948-52, 2010 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-20961136

RESUMEN

This paper examines the self-assembly of cyclic ß-tripeptides using density functional theory. On the basis of literature precedents, these cyclic peptides were expected to self-assemble into cylindrical structures by stacking through backbone-backbone hydrogen bonding. Our calculations show that such stacking is energetically favorable, that the association energy per cyclic peptide decreases (becomes more favorable), and that the overall macrodipole moment of the cylindrical assembly increases with the number of stacked rings, for up to eight rings. For a structure in which two peptide ring units are joined through a single side chain-side chain covalent linker, the association energy between the two rings is favorable, albeit less so than for the unlinked rings. Significantly, the association energy in the dimers is only weakly dependent on the length (above a certain minimum) and conformation of the covalent linkers. Finally, as a plausible route for controlling assembly/disassembly of nanocylinders, we show that, for a pair of rings, each bearing a single amino-functionalized side chain, protonation of the amino group results in a strongly positive (unfavorable) association energy between the two rings.


Asunto(s)
Nanoestructuras/química , Oligopéptidos/química , Péptidos Cíclicos/química , Teoría Cuántica , Dimerización , Enlace de Hidrógeno , Modelos Moleculares , Conformación Proteica , Electricidad Estática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA