Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Chromosoma ; 133(1): 37-56, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37419963

RESUMEN

Transcription-replication conflict is a major cause of replication stress that arises when replication forks collide with the transcription machinery. Replication fork stalling at sites of transcription compromises chromosome replication fidelity and can induce DNA damage with potentially deleterious consequences for genome stability and organismal health. The block to DNA replication by the transcription machinery is complex and can involve stalled or elongating RNA polymerases, promoter-bound transcription factor complexes, or DNA topology constraints. In addition, studies over the past two decades have identified co-transcriptional R-loops as a major source for impairment of DNA replication forks at active genes. However, how R-loops impede DNA replication at the molecular level is incompletely understood. Current evidence suggests that RNA:DNA hybrids, DNA secondary structures, stalled RNA polymerases, and condensed chromatin states associated with R-loops contribute to the of fork progression. Moreover, since both R-loops and replication forks are intrinsically asymmetric structures, the outcome of R-loop-replisome collisions is influenced by collision orientation. Collectively, the data suggest that the impact of R-loops on DNA replication is highly dependent on their specific structural composition. Here, we will summarize our current understanding of the molecular basis for R-loop-induced replication fork progression defects.


Asunto(s)
Replicación del ADN , Estructuras R-Loop , Humanos , ADN/química , Cromosomas , ARN Polimerasas Dirigidas por ADN/genética , Inestabilidad Genómica
2.
Mol Cell ; 65(1): 131-141, 2017 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-27989437

RESUMEN

Eukaryotic chromosomal DNA is faithfully replicated in a complex series of cell-cycle-regulated events that are incompletely understood. Here we report the reconstitution of DNA replication free in solution with purified proteins from the budding yeast Saccharomyces cerevisiae. The system recapitulates regulated bidirectional origin activation; synthesis of leading and lagging strands by the three replicative DNA polymerases Pol α, Pol δ, and Pol ε; and canonical maturation of Okazaki fragments into continuous daughter strands. We uncover a dual regulatory role for chromatin during DNA replication: promoting origin dependence and determining Okazaki fragment length by restricting Pol δ progression. This system thus provides a functional platform for the detailed mechanistic analysis of eukaryotic chromosome replication.


Asunto(s)
Cromatina/genética , Replicación del ADN , ADN de Hongos/genética , Nucleosomas/genética , Origen de Réplica , Saccharomyces cerevisiae/genética , Cromatina/metabolismo , ADN/genética , ADN/metabolismo , ADN Polimerasa I/genética , ADN Polimerasa I/metabolismo , ADN Polimerasa II/genética , ADN Polimerasa II/metabolismo , ADN Polimerasa III/genética , ADN Polimerasa III/metabolismo , ADN-Topoisomerasas de Tipo I/genética , ADN-Topoisomerasas de Tipo I/metabolismo , ADN-Topoisomerasas de Tipo II/genética , ADN-Topoisomerasas de Tipo II/metabolismo , ADN de Hongos/biosíntesis , Genotipo , Humanos , Nucleosomas/metabolismo , Fenotipo , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Tiempo
3.
Nucleic Acids Res ; 51(22): 12185-12206, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37930834

RESUMEN

The Msh2-Msh3 mismatch repair (MMR) complex in Saccharomyces cerevisiae recognizes and directs repair of insertion/deletion loops (IDLs) up to ∼17 nucleotides. Msh2-Msh3 also recognizes and binds distinct looped and branched DNA structures with varying affinities, thereby contributing to genome stability outside post-replicative MMR through homologous recombination, double-strand break repair (DSBR) and the DNA damage response. In contrast, Msh2-Msh3 promotes genome instability through trinucleotide repeat (TNR) expansions, presumably by binding structures that form from single-stranded (ss) TNR sequences. We previously demonstrated that Msh2-Msh3 binding to 5' ssDNA flap structures interfered with Rad27 (Fen1 in humans)-mediated Okazaki fragment maturation (OFM) in vitro. Here we demonstrate that elevated Msh2-Msh3 levels interfere with DNA replication and base excision repair in vivo. Elevated Msh2-Msh3 also induced a cell cycle arrest that was dependent on RAD9 and ELG1 and led to PCNA modification. These phenotypes also required Msh2-Msh3 ATPase activity and downstream MMR proteins, indicating an active mechanism that is not simply a result of Msh2-Msh3 DNA-binding activity. This study provides new mechanistic details regarding how excess Msh2-Msh3 can disrupt DNA replication and repair and highlights the role of Msh2-Msh3 protein abundance in Msh2-Msh3-mediated genomic instability.


Asunto(s)
Inestabilidad Genómica , Proteínas de Saccharomyces cerevisiae , Humanos , ADN/genética , ADN/metabolismo , Reparación de la Incompatibilidad de ADN , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Proteína 3 Homóloga de MutS/genética , Proteína 3 Homóloga de MutS/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Mol Cell ; 60(5): 797-807, 2015 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-26656162

RESUMEN

Eukaryotic genomes are replicated from many origin sites that are licensed by the loading of the replicative DNA helicase, Mcm2-7. How eukaryotic origin positions are specified remains elusive. Here we show that, contrary to the bacterial paradigm, eukaryotic replication origins are not irrevocably defined by selection of the helicase loading site, but can shift in position after helicase loading. Using purified proteins we show that DNA translocases, including RNA polymerase, can push budding yeast Mcm2-7 double hexamers along DNA. Displaced Mcm2-7 double hexamers support DNA replication initiation distal to the loading site in vitro. Similarly, in yeast cells that are defective for transcription termination, collisions with RNA polymerase induce a redistribution of Mcm2-7 complexes along the chromosomes, resulting in a corresponding shift in DNA replication initiation sites. These results reveal a eukaryotic origin specification mechanism that departs from the classical replicon model, helping eukaryotic cells to negotiate transcription-replication conflict.


Asunto(s)
Proteínas de Mantenimiento de Minicromosoma/metabolismo , Origen de Réplica , Saccharomyces cerevisiae/genética , ADN Helicasas/metabolismo , Replicación del ADN , ADN de Hongos/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
STAR Protoc ; 4(1): 101937, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36520635

RESUMEN

To study the direct effects of R-loops on DNA replication and other DNA-templated processes in vitro, R-loop-containing DNA templates need to be prepared efficiently and to near homogeneity. Here, we describe a simple transcription-based approach to form R-loops on plasmid DNA templates in vitro. We detail steps to transcribe a DNA sequence element with a high propensity to form co-transcriptional R-loops using T7 RNA polymerase. We describe nucleolytic digestion of free RNA, deproteinization, and repurification of R-loop-containing templates via gel filtration. For complete details on the use and execution of this protocol, please refer to Kumar et al.1.


Asunto(s)
Estructuras R-Loop , Transcripción Genética , ARN , Plásmidos/genética , ADN/genética
6.
Elife ; 112022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35939393

RESUMEN

The DNA sliding clamp proliferating cell nuclear antigen (PCNA) is an essential co-factor for many eukaryotic DNA metabolic enzymes. PCNA is loaded around DNA by the ATP-dependent clamp loader replication factor C (RFC), which acts at single-stranded (ss)/double-stranded DNA (dsDNA) junctions harboring a recessed 3' end (3' ss/dsDNA junctions) and at DNA nicks. To illuminate the loading mechanism we have investigated the structure of RFC:PCNA bound to ATPγS and 3' ss/dsDNA junctions or nicked DNA using cryogenic electron microscopy. Unexpectedly, we observe open and closed PCNA conformations in the RFC:PCNA:DNA complex, revealing that PCNA can adopt an open, planar conformation that allows direct insertion of dsDNA, and raising the question of whether PCNA ring closure is mechanistically coupled to ATP hydrolysis. By resolving multiple DNA-bound states of RFC:PCNA we observe that partial melting facilitates lateral insertion into the central channel formed by RFC:PCNA. We also resolve the Rfc1 N-terminal domain and demonstrate that its single BRCT domain participates in coordinating DNA prior to insertion into the central RFC channel, which promotes PCNA loading on the lagging strand of replication forks in vitro. Combined, our data suggest a comprehensive and fundamentally revised model for the RFC-catalyzed loading of PCNA onto DNA.


Asunto(s)
ADN , Proteínas de Saccharomyces cerevisiae , Adenosina Trifosfato/metabolismo , ADN/metabolismo , Replicación del ADN , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Conformación Proteica , Proteína de Replicación C/química , Proteína de Replicación C/genética , Proteína de Replicación C/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Elife ; 102021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34494544

RESUMEN

R-loops are a major source of genome instability associated with transcription-induced replication stress. However, how R-loops inherently impact replication fork progression is not understood. Here, we characterize R-loop-replisome collisions using a fully reconstituted eukaryotic DNA replication system. We find that RNA:DNA hybrids and G-quadruplexes at both co-directional and head-on R-loops can impact fork progression by inducing fork stalling, uncoupling of leading strand synthesis from replisome progression, and nascent strand gaps. RNase H1 and Pif1 suppress replication defects by resolving RNA:DNA hybrids and G-quadruplexes, respectively. We also identify an intrinsic capacity of replisomes to maintain fork progression at certain R-loops by unwinding RNA:DNA hybrids, repriming leading strand synthesis downstream of G-quadruplexes, or utilizing R-loop transcripts to prime leading strand restart during co-directional R-loop-replisome collisions. Collectively, the data demonstrates that the outcome of R-loop-replisome collisions is modulated by R-loop structure, providing a mechanistic basis for the distinction of deleterious from non-deleterious R-loops.


Asunto(s)
ADN/química , G-Cuádruplex , Hibridación de Ácido Nucleico , Estructuras R-Loop , ARN/química , Electroforesis en Gel de Agar , Saccharomyces cerevisiae/metabolismo
8.
Nucleus ; 7(3): 292-300, 2016 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-27416360

RESUMEN

The eukaryotic replicative DNA helicase, Mcm2-7, is loaded in inactive form as a double hexameric complex around double-stranded DNA. To ensure that replication origins fire no more than once per S phase, activation of the Mcm2-7 helicase is temporally separated from Mcm2-7 loading in the cell cycle. This 2-step mechanism requires that inactive Mcm2-7 complexes be maintained for variable periods of time in a topologically bound state on chromatin, which may create a steric obstacle to other DNA transactions. We have recently found in the budding yeast, Saccharomyces cerevisiae, that Mcm2-7 double hexamers can respond to collisions with transcription complexes by sliding along the DNA template. Importantly, Mcm2-7 double hexamers remain functional after displacement along DNA and support replication initiation from sites distal to the origin. These results reveal a novel mechanism to specify eukaryotic replication origin sites and to maintain replication origin competence without the need for Mcm2-7 reloading.


Asunto(s)
Eucariontes/genética , Origen de Réplica , Animales , ADN/biosíntesis , ADN/genética , ADN/metabolismo , Activación Enzimática , Humanos , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Transcripción Genética
9.
DNA Repair (Amst) ; 18: 18-30, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24746922

RESUMEN

In Saccharomyces cerevisiae, Msh2-Msh3-mediated mismatch repair (MMR) recognizes and targets insertion/deletion loops for repair. Msh2-Msh3 is also required for 3' non-homologous tail removal (3'NHTR) in double-strand break repair. In both pathways, Msh2-Msh3 binds double-strand/single-strand junctions and initiates repair in an ATP-dependent manner. However, we recently demonstrated that the two pathways have distinct requirements with respect to Msh2-Msh3 activities. We identified a set of aromatic residues in the nucleotide binding pocket (FLY motif) of Msh3 that, when mutated, disrupted MMR, but left 3'NHTR largely intact. One of these mutations, msh3Y942A, was predicted to disrupt the nucleotide sandwich and allow altered positioning of ATP within the pocket. To develop a mechanistic understanding of the differential requirements for ATP binding and/or hydrolysis in the two pathways, we characterized Msh2-Msh3 and Msh2-msh3Y942A ATP binding and hydrolysis activities in the presence of MMR and 3'NHTR DNA substrates. We observed distinct, substrate-dependent ATP hydrolysis and nucleotide turnover by Msh2-Msh3, indicating that the MMR and 3'NHTR DNA substrates differentially modify the ATP binding/hydrolysis activities of Msh2-Msh3. Msh2-msh3Y942A retained the ability to bind DNA and ATP but exhibited altered ATP hydrolysis and nucleotide turnover. We propose that both ATP and structure-specific repair substrates cooperate to direct Msh2-Msh3-mediated repair and suggest an explanation for the msh3Y942A separation-of-function phenotype.


Asunto(s)
Adenosina Trifosfato/metabolismo , Reparación de la Incompatibilidad de ADN , ADN de Hongos/química , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteína 2 Homóloga a MutS/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Dominio Catalítico , Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Hidrólisis , Cinética , Proteína 2 Homóloga a MutS/química , Proteína 2 Homóloga a MutS/genética , Proteína 3 Homóloga de MutS , Mutación , Fenotipo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Especificidad por Sustrato
10.
J Mol Biol ; 425(11): 1881-1898, 2013 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-23458407

RESUMEN

In Saccharomyces cerevisiae, repair of insertion/deletion loops is carried out by Msh2-Msh3-mediated mismatch repair (MMR). Msh2-Msh3 is also required for 3' non-homologous tail removal (3' NHTR) in double-strand break repair. In both pathways, Msh2-Msh3 binds double-strand/single-strand junctions and initiates repair in an ATP-dependent manner. However, the kinetics of the two processes appear different; MMR is likely rapid in order to coordinate with the replication fork, whereas 3' NHTR has been shown to be a slower process. To understand the molecular requirements in both repair pathways, we performed an in vivo analysis of well-conserved residues in Msh3 that are hypothesized to be required for MMR and/or 3' NHTR. These residues are predicted to be involved in either communication between the DNA-binding and ATPase domains within the complex or nucleotide binding and/or exchange within Msh2-Msh3. We identified a set of aromatic residues within the FLY motif of the predicted Msh3 nucleotide binding pocket that are essential for Msh2-Msh3-mediated MMR but are largely dispensable for 3' NHTR. In contrast, mutations in other regions gave similar phenotypes in both assays. Based on these results, we suggest that the two pathways have distinct requirements with respect to the position of the bound ATP within Msh3. We propose that the differences are related, at least in part, to the kinetics of each pathway. Proper binding and positioning of ATP is required to induce rapid conformational changes at the replication fork, but is less important when more time is available for repair, as in 3' NHTR.


Asunto(s)
Adenosina Trifosfato/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/fisiología , Secuencia de Aminoácidos , Análisis Mutacional de ADN , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Cinética , Modelos Biológicos , Modelos Moleculares , Datos de Secuencia Molecular , Proteína 3 Homóloga de MutS , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Unión Proteica , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
11.
J Mol Biol ; 411(4): 765-80, 2011 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-21726567

RESUMEN

DNA mismatch repair (MMR) is a highly conserved mutation avoidance mechanism that corrects DNA polymerase misincorporation errors. In initial steps in MMR, Msh2-Msh6 binds mispairs and small insertion/deletion loops, and Msh2-Msh3 binds larger insertion/deletion loops. The msh2Δ1 mutation, which deletes the conserved DNA-binding domain I of Msh2, does not dramatically affect Msh2-Msh6-dependent repair. In contrast, msh2Δ1 mutants show strong defects in Msh2-Msh3 functions. Interestingly, several mutations identified in patients with hereditary non-polyposis colorectal cancer map to domain I of Msh2; none have been found in MSH3. To understand the role of Msh2 domain I in MMR, we examined the consequences of combining the msh2Δ1 mutation with mutations in two distinct regions of MSH6 and those that increase cellular mutational load (pol3-01 and rad27). These experiments reveal msh2Δ1-specific phenotypes in Msh2-Msh6 repair, with significant effects on mutation rates. In vitro assays demonstrate that msh2Δ1-Msh6 DNA binding is less specific for DNA mismatches and produces an altered footprint on a mismatch DNA substrate. Together, these results provide evidence that, in vivo, multiple factors insulate MMR from defects in domain I of Msh2 and provide insights into how mutations in Msh2 domain I may cause hereditary non-polyposis colorectal cancer.


Asunto(s)
Reparación de la Incompatibilidad de ADN , Proteínas de Unión al ADN/metabolismo , Proteína 2 Homóloga a MutS/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Bases , Western Blotting , Huella de ADN , ADN de Hongos/genética , Proteínas de Unión al ADN/genética , Desoxirribonucleasa I/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Datos de Secuencia Molecular , Proteína 2 Homóloga a MutS/genética , Mutación , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/genética , Homología de Secuencia de Ácido Nucleico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA