Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Am Chem Soc ; 139(40): 13993-13996, 2017 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-28921978

RESUMEN

We present the first examples of CO2 electro-reduction catalysts that feature charged imidazolium groups in the secondary coordination sphere. The functionalized Lehn-type catalysts display significant differences in their redox properties and improved catalytic activities as compared to the conventional reference catalyst. Our results suggest that the incorporated imidazolium moieties do not solely function as a charged tag but also alter mechanistic aspects of catalysis.

2.
J Am Chem Soc ; 137(29): 9238-41, 2015 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-26161802

RESUMEN

The noninnocent coordinatively saturated mononuclear metal-thiolate complex ReL3 (L = diphenylphosphinobenzenethiolate) serves as an electrocatalyst for hydrogen evolution or hydrogen oxidation dependent on the presence of acid or base and the applied potential. ReL3 reduces acids to H2 in dichloromethane with an overpotential of 380 mV and a turnover frequency of 32 ± 3 s(-1). The rate law displays a second-order dependence on acid concentration and a first-order dependence on catalyst concentration with an overall third-order rate constant (k) of 184 ± 2 M(-2) s(-1). Reactions with deuterated acid display a kinetic isotope effect of 9 ± 1. In the presence of base, ReL3 oxidizes H2 with a turnover frequency of 4 ± 1 s(-1). The X-ray crystal structure of the monoprotonated species [Re(LH)L2](+), an intermediate in both catalytic H2 evolution and oxidation, has been determined. A ligand-centered mechanism, which does not require metal hydride intermediates, is suggested based on similarities to the redox-regulated, ligand-centered binding of ethylene to ReL3.

3.
Inorg Chem ; 53(23): 12372-7, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25397591

RESUMEN

Kinetic investigations inspired by the metalloenzyme nitrile hydratase were performed on a series of ruthenium(II) complexes to determine the effect of sulfur oxidation on catalytic nitrile hydration. The rate of benzonitrile hydration was quantified as a function of catalyst, nitrile, and water concentrations. Precatalysts L(n)RuPPh3 (n = 1-3; L(1) = 4,7-bis(2'-methyl-2'-mercapto-propyl)-1-thia-4,7-diazacyclononane; L(2) = 4-(2'-methyl-2'-sulfinatopropyl)-7-(2'-methyl-2'-mercapto-propyl)-1-thia-4,7-diazacyclononane; L(3) = 4-(2'-methyl-2'-sulfinatopropyl)-7-(2'-methyl-2'-sulfenato-propyl)-1-thia-4,7-diazacyclononane) were activated by substitution of triphenylphosphine with substrate in hot dimethylformamide solution. Rate measurements are consistent with a dynamic equilibrium between inactive aqua (L(n)Ru-OH2) and active nitrile (L(n)Ru-NCR) derivatives with K = 21 ± 1, 9 ± 0.9, and 23 ± 3 for L(1) to L(3), respectively. Subsequent hydration of the L(n)Ru-NCR intermediate yields the amide product with measured hydration rate constants (k's) of 0.37 ± 0.01, 0.82 ± 0.07, and 1.59 ± 0.12 M(-1) h(-1) for L(1) to L(3), respectively. Temperature dependent studies reveal that sulfur oxidation lowers the enthalpic barrier by 27 kJ/mol, but increases the entropic barrier by 65 J/(mol K). Density functional theory (DFT) calculations (B3LYP/LanL2DZ (Ru); 6-31G(d) (all other atoms)) support a nitrile bound catalytic cycle with lowering of the reaction barrier as a consequence of sulfur oxidation through enhanced nitrile binding and attack of the water nucleophile through a highly organized transition state.


Asunto(s)
Hidroliasas/metabolismo , Nitrilos/química , Compuestos de Rutenio/química , Azufre/química , Dominio Catalítico , Biología Computacional , Simulación por Computador , Hidroliasas/química , Cinética , Estructura Molecular , Oxidación-Reducción
4.
J Tradit Chin Med ; 44(2): 403-407, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38504547

RESUMEN

Herbal medicine is safe and effective in treating various diseases. Traditional herbal medicine plays a tremendous role in treatment of various diseases and accompanying complications, hence herbal medicine requires remarkable attention in further research for the development of numerous active formulations for treatment of health troubles. The plant needs special consideration for development and research of unidentified compound and characterization of novel active molecules that overcome multiple pathological abnormalities. The genus Manilkara contains 135 plants around the world. This overview discusses all the virtues of most important and commonly used plant Manilkara zapota (L.) P. Royen (M. zapota), also known as Sapodilla. M. zapota has various traditional beneficial effects in treatment of various diseases and disorders dating back to prehistoric times and used in ancient traditional system of herbal medicine.


Asunto(s)
Manilkara , Plantas Medicinales , Humanos , Extractos Vegetales/farmacología
5.
Ther Deliv ; 15(3): 193-210, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38449420

RESUMEN

Alopecia areata (AA) is a kind of alopecia that affects hair follicles and nails. It typically comes with round patches and is a type of nonscarring hair loss. Various therapies are accessible for the management and treatment of AA, including topical, systemic and injectable modalities. It is a very complex type of autoimmune disease and is identified as round patches of hair loss and may occur at any age. This review paper highlights the epidemiology, clinical features, pathogenesis and new treatment options for AA, with a specific emphasis on nanoparticulate drug-delivery systems. By exploring these innovative treatment approaches, researchers aim to enhance the effectiveness and targeted delivery of therapeutic agents, ultimately improving outcomes for individuals living with AA.


Asunto(s)
Alopecia Areata , Enfermedades Autoinmunes , Humanos , Alopecia Areata/tratamiento farmacológico , Alopecia Areata/epidemiología , Folículo Piloso , Uñas/patología
6.
Future Med Chem ; 16(6): 563-581, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38353003

RESUMEN

This review meticulously examines the synthesis techniques for 1,3,4-thiadiazole derivatives, focusing on cyclization, condensation reactions and functional group transformations. It enhances the understanding of these chemical methods that re crucial for tailoring derivative properties and functionalities. This study is considered to be vital for researchers, detailing established effects such as antioxidant, antimicrobial and anticancer activities, and revealing emerging pharmacological potentials such as neuroprotective, antiviral and antidiabetic properties. It also discusses the molecular mechanisms underlying these effects. In addition, this article covers structure-activity relationship studies and computational modelling that are essential for designing potent, selective 1,3,4-thiadiazole compounds. This work lays a foundation for future research and targeted therapeutic development.


Asunto(s)
Antiinfecciosos , Tiadiazoles , Relación Estructura-Actividad , Antiinfecciosos/farmacología , Tiadiazoles/farmacología , Tiadiazoles/química , Ciclización
7.
Artículo en Inglés | MEDLINE | ID: mdl-38415490

RESUMEN

BACKGROUND: A nanoemulsion is a colloidal system of small droplets dispersed in another liquid. It has attracted considerable attention due to its unique properties and various applications. Throughout this review, we provide an overview of nanoemulsions and how they can be applied to various applications such as drug delivery, food applications, and pesticide formulations. OBJECTIVE: This updated review aims to comprehensively overview nanoemulsions and their applications as a versatile platform for drug delivery, food applications, and pesticide formulations. METHODS: Research relevant scientific literature across various databases, including PubMed, Scopus, and Web of Science. Suitable keywords for this purpose include "nanoemulsion," "drug delivery," and "food applications." Ensure the search criteria include recent publications to ensure current knowledge is included. RESULTS: Several benefits have been demonstrated in the delivery of drugs using nanoemulsions, including improved solubility, increased bioavailability, and controlled delivery. Nanoemulsions have improved some bioactive compounds in food applications, including vitamins and antioxidants. At the same time, pesticide formulations based on nanoemulsions have also improved solubility, shelf life, and effectiveness. CONCLUSION: The versatility of nanoemulsions makes them ideal for drug delivery, food, and pesticide formulation applications. These products are highly soluble, bioavailable, and targeted, providing significant advantages. More research and development are required to implement nanoemulsion-based products on a commercial scale.

8.
EXCLI J ; 23: 672-713, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38887396

RESUMEN

Malaria has developed as a serious worldwide health issue as a result of the introduction of resistant Plasmodium species strains. Because of the common chemo resistance to most of the existing drugs on the market, it poses a severe health problem and significant obstacles in drug research. Malaria treatment has evolved during the last two decades in response to Plasmodium falciparum drug sensitivity and a return of the disease in tropical areas. Plasmodium falciparum is now highly resistant to the majority of antimalarial drugs. The parasite resistance drew focus to developing novel antimalarials to combat parasite resistance. The requirement for many novel antimalarial drugs in the future year necessitates adopting various drug development methodologies. Different innovative strategies for discovering antimalarial drugs are now being examined here. This review is primarily concerned with the description of newly synthesized antimalarial compounds, i.e. Tafenoquine, Cipargamin, Ferroquine, Artefenomel, DSM265, MMV390048 designed to improve the activity of pure antimalarial enantiomers. In this review, we selected the representative malarial drugs in clinical trials, classified them with detailed targets according to their action, discussed the relationship within the human trials, and generated a summative discussion with prospective expectations.

9.
Artículo en Inglés | MEDLINE | ID: mdl-39108105

RESUMEN

Antioxidants play a pivotal role in maintaining skin health and integrity, combating the deleterious effects of oxidative stress induced by environmental aggressors such as UV ra-diation, pollution, and lifestyle factors. This paper reviews the contributions of key antioxidants, including Vitamin C, Vitamin E, Vitamin A, green tea extract, Coenzyme Q10, Resveratrol, Selenium, and Polyphenols, in skin health care. Vitamin C, known for its collagen synthesis promotion and photoprotection properties, alongside Vitamin E, a lipid-soluble antioxidant, syn-ergistically works to neutralize free radicals and repair damaged skin cells. Vitamin A, in the form of retinol, plays a critical role in skin cell regeneration and the maintenance of skin integ-rity. Green tea extract, rich in Polyphenols, offers anti-inflammatory and anticarcinogenic prop-erties, making it a potent ingredient for skin protection. Coenzyme Q10, a naturally occurring antioxidant in the body, aids in energy production for cell repair and regeneration, while Resveratrol, found in grapes and berries, provides anti-ageing benefits by enhancing skin's re-sistance to oxidative stress. Selenium, an essential mineral, contributes to the protection of skin cells from oxidative damage. The incorporation of these antioxidants in skincare products and dietary sources is discussed, highlighting the importance of a holistic approach in skincare re-gimes. The paper emphasizes the synergy between topical applications and dietary intake of antioxidants, advocating for a comprehensive strategy for promoting skin health and preventing age-related skin alterations. Method: For the review article, a variety of search engines and databases were used to identify relevant articles. Furthermore, for biomedical literature focusing on antioxidants and their ef-fects on skin health, PubMed was used. Moreover, to access a wide range of scholarly articles, including those related to dermatology and skincare, Google Scholar was used. Scopus provides comprehensive coverage of peer-reviewed literature across various scientific disciplines. Web of Science identifies high-impact articles and research on antioxidants in skincare. In addition, for accessing full-text articles on antioxidants and their applications in dermatology, Science Direct was used. The inclusion criteria for the review paper were as follows: only studies pub-lished in peer-reviewed journals were included to ensure the credibility and reliability of the information. Articles published in English were considered, to avoid language-related biases and ensure comprehension. Studies published within the last 10 years were included to provide the most current insights into antioxidant research in skincare. Articles must specifically focus on the role of antioxidants (Vitamin C, Vitamin E, Vitamin A, green tea extract, Coenzyme Q10, Resveratrol, Selenium, Polyphenols) in skin health care. Both experimental studies (in vivo and in vitro) and clinical trials were included to provide a comprehensive overview of the antioxidant effects. Full-text articles were included to allow for thorough data extraction and analysis. The exclusion criteria for the review paper were as follows: Publications that were not peer-re-viewed, such as editorials, opinion pieces, and non-scholarly articles, were excluded. Articles published in languages other than English were excluded due to potential translation challenges and to maintain consistency. Studies that did not focus on the specified antioxidants or their impact on skin health were excluded. Duplicate publications were excluded to avoid redundancy in the review. Articles with insufficient or incomplete data were excluded to ensure the quality and reliability of the review findings.

10.
Artículo en Inglés | MEDLINE | ID: mdl-37691225

RESUMEN

Background - Breast cancer is the most prevalent cancer among women. About 685K deaths were globally listed in 2020 by the World Health Organization. Nowadays, scientists prefer to use herbal medicines due to their low toxicity. Herbal medicines are used to overcome the toxicity effects of surgical removal, radio-chemo therapy and medication, which have a lot of risk of damaging the healthy tissues. To overcome this, enhance bioavailability and target specify, nano-formulation chemotherapy was introduced using herbal moiety for anticancer activity. The use of metallic nanoparticles (MNPs), particularly those made of silver, cobalt, zinc, and gold as contrast, antibacterial, anticancer, and drug delivery agents has revolutionised the medicinal field. Although MNPs can be made via exacting physical and chemical processes, a biological method utilising natural materials has been established recently. Objective - This review article will offer a succinct explanation of the use of MNPs and its potential impact on herbal medicines in the future. Methods - Using PRISMA principles, this review systematically examines studies that concentrate on metal nanoparticles loaded with herbal compounds for the treatment of breast cancer. Various Databases were studied: PubMed, Elsevier, ScienceDirect, SpringerLink, Taylor & Francis Online, ACS Publications, Publishing Royal Society of Chemistry, and Future Medicines. Studies were selected if they were peer-reviewed primary studies published in the past 10 years. Results - We found that many herbal nano-formulations are more effective in breast cancer treatment than other types of formulations. Efficacy, safety and drug stability are also enhanced using nano-formulations. Conclusion - Nano-formulation is found to be more effective in the treatment of breast cancer.

11.
Future Med Chem ; 15(24): 2257-2268, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37982252

RESUMEN

Background: A new series of 3,5-disubstituted thiazolidin-2,4-dione molecules were derived and characterized using various spectral techniques (1H NMR, IR, carbon, hydrogen, nitrogen, etc.) and physicochemical parameters. Materials & methods: The molecules were derived using Knoevenagel condensation followed by Mannich reaction and further synthesized analogues were screened for their antioxidant and antimicrobial potential using 2,2-diphenyl-1-picrylhydrazyl free radical scavenging method and serial tube dilution method, respectively, along with in silico studies (docking and absorption, distribution, metabolism and excretion parameters) to explore the drug-receptor interaction and druglikeness. Results & conclusion: In antimicrobial screening, the analogs MP2, MM6, MM7 and MM8 displayed promising activity while molecule MM4 exhibited better antioxidant potential in the series. In molecular docking analysis, the best-fitted analogs, namely, MM6 and MM7, showed good interactions.


Asunto(s)
Antiinfecciosos , Antioxidantes , Antioxidantes/química , Simulación del Acoplamiento Molecular , Antiinfecciosos/farmacología , Antiinfecciosos/química
12.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-37259401

RESUMEN

The world's health system is plagued by cancer and a worldwide effort is underway to find new drugs to treat cancer. There has been a significant improvement in understanding the pathogenesis of cancer, but it remains one of the leading causes of death. The imperative 1,3,4-oxadiazole scaffold possesses a wide variety of biological activities, particularly for cancer treatment. In the development of novel 1,3,4-oxadiazole-based drugs, structural modifications are important to ensure high cytotoxicity towards malignant cells. These structural modification strategies have shown promising results when combined with outstanding oxadiazole scaffolds, which selectively interact with nucleic acids, enzymes, and globular proteins. A variety of mechanisms, such as the inhibition of growth factors, enzymes, and kinases, contribute to their antiproliferative effects. The activity of different 1,3,4-oxadiazole conjugates were tested on the different cell lines of different types of cancer. It is demonstrated that 1,3,4-oxadiazole hybridization with other anticancer pharmacophores have different mechanisms of action by targeting various enzymes (thymidylate synthase, HDAC, topoisomerase II, telomerase, thymidine phosphorylase) and many of the proteins that contribute to cancer cell proliferation. The focus of this review is to highlight the anticancer potential, molecular docking, and SAR studies of 1,3,4-oxadiazole derivatives by inhibiting specific cancer biological targets, such as inhibiting telomerase activity, HDAC, thymidylate synthase, and the thymidine phosphorylase enzyme. The purpose of this review is to summarize recent developments and discoveries in the field of anticancer drugs using 1,3,4-oxadiazoles.

13.
Pharmaceuticals (Basel) ; 16(4)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37111274

RESUMEN

By exploiting the ample biological potential of 1,3,4-oxadiazole/thiadiazole ring, 4-substitutedphenyl-1,3,4-oxadiazol/Thiadiazol-2-yl)-4-(4-substitutedphenyl) azetidin-2-one derivatives were prepared. Various substituted azetidin-2-one derivatives have been identified as immunostimulating and antimicrobial, as well as their antioxidant activity. 2-amino 1,3,4 oxadiazole/thiadiazole conjugates were synthesized by mixing semi/thio carbazides and sodium acetate with water and stirring well, followed by adding aldehydes in methanol at room temperature. Acetate (glacial) was used as the catalyst to produce Schiff's bases (intermediates) by treating substituted aldehydes with 2-amino 1,3,4 oxadiazole/thiadiazole(s). Using the mixture of triethylamine (dropwise) and chloroacetylchloride with vigorous stirring, 4-substitutedphenyl-1,3,4-oxadiazol/Thiadiazol-2-yl)-4-(4-substitutedphenyl) azetidin-2-one derivatives were prepared. The newly synthesized conjugates were evaluated for their anticancer potential using MCF-7 cell lines. Amoxicillin and fluconazole were used as reference drugs to determine their antimicrobial activity. Synthesized derivatives were evaluated for their antioxidant properties using 2-diphenyl-1-picrylhydrazyl (DPPH). In vitro cytotoxicity screening (MTTS assay) revealed that derivatives AZ-5, 9, 10, 14 and 19 demonstrated high efficacy with the percentage of inhibition at different concentration ranges (0.1 µM, 0.5 µM, 1 µM, 2 µM) of 89% to 94% µM as compared to doxorubicin as standard drug. The antimicrobial study indicated that compounds AZ-10, 19, and AZ-20 were found to have significant antimicrobial potential with MIC ranges of 3.34 µM to 3.71 µM in comparison to reference drugs having 4.29 µM to 5.10 µM. Based on antioxidant screening, most of the synthetic derivatives showed greater stability and effectiveness than the standard drug. According to the antioxidant screening, compounds AZ-5 and AZ-15 (IC50 = 45.02 µg/mL and 42.88 µg/mL, respectively) showed the greatest potency, as compared to ascorbic acid (IC50 = 78.63 µg/mL). Structure-activity relationship (SAR) studies of synthesized novel derivatives revealed that para-substituted halogen and nitro derivatives have remarkable potential against MCF-7 cancer cell lines and different microbial strains. Current evidence indicates that the synthesized derivatives may be promising candidates for use in the prevention and treatment of these infections. These synthesized compounds require further mechanism-based research to understand how they interact with the cells.

14.
Curr Drug Metab ; 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36627789

RESUMEN

Cancer is characterized by disrupted molecular variables caused by cells that deviate from regular signal transduction. The uncontrolled segment of such cancerous cells annihilates most of the tissues that contact them. Gene therapy, immunotherapy, and nanotechnology advancements have resulted in novel strategies for anticancer drug delivery. Furthermore, diverse dispersion of nanoparticles in normal stroma cells adversely affects the healthy cells and disrupts the crosstalk of tumour stroma. It can contribute to cancer cell progression inhibition and, conversely, to acquired resistance, enabling cancer cell metastasis and proliferation. The tumour's microenvironment is critical in controlling the dispersion and physiological activities of nano-chemotherapeutics which is one of the targeted drug therapy. As it is one of the methods of treating cancer that involves the use of medications or other substances to specifically target and kill off certain subsets of malignant cells. A targeted therapy may be administered alone or in addition to more conventional methods of care like surgery, chemotherapy, or radiation treatment. The tumour microenvironment, stromatogenesis, barriers and advancement in the drug delivery system across tumour tissue are summarised in this review.

15.
Pharmaceuticals (Basel) ; 16(6)2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37375752

RESUMEN

In this innovative research, a novel series of thiazolidin-4-one analogues having a 1,3,4-oxadiazole/thiadiazole moiety were derived and the structures of all the newly obtained molecules were established using different physicochemical and analytical means (1H-NMR, FTIR, mass spectra, and elemental analyses). The synthesized molecules were then investigated for their antiproliferative, antimicrobial, and antioxidant potential. The cytotoxicity screening studies revealed that analogues D-1, D-6, D-15, and D-16 possessed comparable efficacy, within the IC50 range (1 to 7 µM), when taking doxorubicin as a reference drug (IC50 = 0.5 µM). The antimicrobial activity was assessed using different Gram-(+) and Gram-(-) bacterial and fungal strains and the results revealed that molecules D-2, D-4, D-6, D-19, and D-20 possessed potent activity against selective strains of microbes with MIC ranges of 3.58 to 8.74 µM. The antioxidant evaluation was performed using the DPPH assay and the screening results revealed that analogue D-16 was the most potent derivative (IC50 = 22.3 µM) when compared with the positive control, ascorbic acid (IC50 = 111.6 µM). Structure-activity relationship (SAR) studies of the synthesized novel derivatives revealed that para-substituted halogen and hydroxy derivatives have remarkable potential against the MCF-7 cancer cell line and antioxidant potential. Similarly, electron-withdrawing groups (Cl/NO2) and -donating groups at the para position possess moderate to promising antimicrobial potential.

16.
BMC Chem ; 16(1): 68, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36109764

RESUMEN

BACKGROUND: A novel series of thiazolidine-2,4-dione molecules was derived and their chemical structures were established using physiochemical parameters and spectral techniques (1H-NMR, IR, MS etc.). The synthesized molecule were then evaluated for their antioxidant, anticancer and antimicrobial potential. RESULTS AND DISCUSSION: Serial tube dilution method was employed to evaluate the antimicrobial potential against selected fungal and bacterial strains by taking fluconazole and cefadroxil as reference antifungal and antibacterial drugs respectively. 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity was used to assess the antioxidant potential of the synthesized analogues. Further, the anticancer potential of the selected molecules was assessed against DU-145 cancer cell lines using MTT assay. The drug-likeness was also evaluated by studying in-silico ADME parameters of the synthesized analogues. CONCLUSION: In antioxidant evaluation studies, the analogue H5 with IC50 = 14.85 µg/mL was found to be the most active molecule. The antimicrobial evaluation outcomes suggested that the molecules H5, H13, H15 and H18 possessed moderate to promising activity against the selected species of microbial strains having MIC range 7.3 µM to 26.3 µM. The results of anticancer evaluation revealed that all the screened derivatives possess mild anticancer potential. The in-silico ADME studies revealed that all the compounds were found to be drug-like.

17.
Arab J Sci Eng ; 47(1): 189-195, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33968599

RESUMEN

Anxiety is usually transient in nature, but if the symptoms are severe and persistent in the absence of stressor, then it is considered as anxiety disorder. Corona virus disease 2019 (COVID-19) which was declared as pandemic by World Health Organization in March 2020 affected the lives of human beings worldwide. A panic and anxious situation was created due to the outbreak of COVID-19. Medical health practitioners have been connected with the patients and hence can better speculate the psychology of human beings. The present study was designed to find out the manifestation of anxiety as repercussion of COVID-19 on the basis of opinion of medical practitioners. A survey was conducted among the medical practitioners from India and Bangladesh to find out the possibility of anxiety as after-effect of COVID-19 through questionnaires. Results of the study showed that 95% medical practitioners were in the view to have chances of anxiety with more possibility to have social anxiety and post-traumatic stress anxiety disorder as a consequence of COVID-19. Female and male genders have equal chances, whereas transgender have lesser chances to have anxiety disorders as a consequence of COVID-19. Population above 50 years age might have maximum chance of having anxiety as after-effect of COVID-19. The study concludes to have chances of anxiety as repercussion of COVID-19.

18.
Artículo en Inglés | MEDLINE | ID: mdl-25706371

RESUMEN

A heterocyclic compound is one which possesses a cyclic structure with at least two different kinds of hetero atoms in the ring. Nitrogen, oxygen, and sulphur are the most common heteroatoms. derivatives are an important class of heterocyclic compounds and play a vital role due to their wide range of biological activities and industrial importance. 4-Thiazolidinones are always being an attraction point for researchers because of its efficiency towards various pharmacological usages. This review is an endeavor to highlight the progress in the central nervous system activity of the 4-thiazolidinone derivatives.

19.
Chem Commun (Camb) ; 49(3): 294-6, 2013 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-23183542

RESUMEN

A series of Ru(II) catalysts inspired by the metalloenzyme nitrile hydratase catalyze the hydration of benzonitrile with up to 242 turnovers under neutral conditions with very low catalysts loading. Catalysts with an oxidized sulfur environment are less susceptible to product inhibition increasing the catalytic efficiency at low nitrile : water ratios.


Asunto(s)
Materiales Biocompatibles/química , Complejos de Coordinación/química , Nitrilos/química , Rutenio/química , Compuestos de Sulfhidrilo/química , Materiales Biocompatibles/metabolismo , Catálisis , Complejos de Coordinación/síntesis química , Hidroliasas/química , Hidroliasas/metabolismo , Concentración de Iones de Hidrógeno , Oxidación-Reducción , Azufre/química
20.
Eur J Med Chem ; 45(7): 2806-16, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20347509

RESUMEN

A series of benzylidene hydrazides (1-20) was synthesized and tested, in vitro, for antibacterial, antifungal and antiviral activities. The microbial screening results indicated that compounds having chloro and nitro substituents were the most active ones. The antiviral evaluation depicted that compounds 9 and 19 were active against Vesicular stomatitis virus (VSV) in HeLa cell cultures. QSAR investigations indicated that the multi-target QSAR model was effective in describing the antimicrobial (antibacterial and antifungal) activity over the one-target QSAR models. Further the mt-QSAR model indicated that the topological parameters, second order molecular connectivity index ((2)chi) and third order Kier's alpha shape index (kappaalpha(3)) are effective in describing the antimicrobial activity of synthesized hydrazides.


Asunto(s)
Bacterias/efectos de los fármacos , Compuestos de Bencilideno/química , Hongos/efectos de los fármacos , Hidrazinas/química , Hidrazinas/farmacología , Relación Estructura-Actividad Cuantitativa , Virus/efectos de los fármacos , Antiinfecciosos/síntesis química , Antiinfecciosos/química , Antiinfecciosos/farmacología , Antivirales/síntesis química , Antivirales/química , Antivirales/farmacología , Células HeLa , Humanos , Hidrazinas/síntesis química , Pruebas de Sensibilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA