Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS EST Air ; 1(9): 1137-1146, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39295740

RESUMEN

We report measurements of the absorption Ångström exponent (AAE) and single scattering albedo (SSA) of biomass burning aerosol from the combustion of fuel beds representing three eco-regions of the Southeast U.S. (Piedmont, Coastal Plain, and Blue Ridge Mountains) with moisture content representative of wildfires and prescribed fires. We find a strong correlation between the AAE and SSA for both simulated wildfires (low fuel moisture) and prescribed fires (higher fuel moisture). For wildfires, the AAE and SSA are strongly dependent on the eco-region of the fuel bed and span a much wider range (AAE = 1.3-4.2, SSA = 0.75-0.97) than they do for prescribed fires (AAE = 2.4-3.1, SSA = 0.88-0.96). The AAE and SSA are also found to be correlated with the fraction of total carbon that is elemental carbon (f EC) for both wildfires and prescribed fires, but the range of f EC observed (0.02-0.14) from the fuel beds is much smaller than that reported previously from laboratory studies using individual fuels. The observations from the present study suggest that fuel-bed composition and moisture content are significant factors in determining the relative amount of organic material in biomass burning aerosols and, consequentially, their optical properties.

2.
ACS EST Air ; 1(9): 989-999, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39295745

RESUMEN

This work, as part of the Georgia Wildland fire Simulation Experiment (G-WISE) campaign, explores the aqueous photolysis of water-soluble brown carbon (W-BrC) in biomass burning aerosols from the combustion of fuel beds collected from three distinct ecoregions in Georgia: Piedmont, Coastal Plain, and Blue Ridge. Burns were conducted under conditions representative of wildfires, which are common unplanned occurrences in Southeastern forests (low fuel moisture content), and prescribed fires, which are commonly used in forest management (higher fuel moisture content). Upon exposure to radiation from UV lamps equivalent to approximately 5 h in the atmosphere, the absorption spectra of all six samples exhibited up to 40% photobleaching in the UV range (280-400 nm) and as much as 30% photo-enhancement in the visible range (400-500 nm). Together, these two effects reduced the absorption Ångström exponent (AAE), a measure of the wavelength dependence of the spectrum, from 6.0-7.9 before photolysis to 5.0-5.7 after. Electrospray ionization ultrahigh-resolution mass spectrometry analysis shows the potential formation of oligomeric chromophores due to aqueous photolysis. This work provides insight into the impacts that aqueous photolysis has on W-BrC in biomass burning aerosols and its dependence on fuel bed composition and moisture content.

3.
ACS EST Air ; 1(9): 1124-1136, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39295739

RESUMEN

We investigated the light-absorption properties of brown carbon (BrC) as part of the Georgia Wildland-Fire Simulation Experiment. We constructed fuel beds representative of three ecoregions in the Southeastern U.S. and varied the fuel-bed moisture content to simulate either prescribed fires or drought-induced wildfires. Based on decreasing fire radiative energy normalized by fuel-bed mass loading (FREnorm), the combustion conditions were grouped into wildfire (Wild), prescribed fire (Rx), and wildfire involving duff ignition (WildDuff). The emitted BrC ranged from weakly absorbing (WildDuff) to moderately absorbing (Rx and Wild) with the imaginary part of the refractive index (k) values that were well-correlated with FREnorm. We apportioned the BrC into water-soluble (WSBrC) and water-insoluble (WIBrC). Approximately half of the WSBrC molecules detected using electrospray-ionization mass spectrometry were potential chromophores. Nevertheless, k of WSBrC was an order of magnitude smaller than k of WIBrC. Furthermore, k of WIBrC was well-correlated with FREnorm while k of WSBrC was not, suggesting different formation pathways between WIBrC and WSBrC. Overall, the results signify the importance of combustion conditions in determining BrC light-absorption properties and indicate that variables in wildland fires, such as moisture content and fuel-bed composition, impact BrC light-absorption properties to the extent that they influence combustion conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA