Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 585(7824): 256-260, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32848244

RESUMEN

Temperature controls plant growth and development, and climate change has already altered the phenology of wild plants and crops1. However, the mechanisms by which plants sense temperature are not well understood. The evening complex is a major signalling hub and a core component of the plant circadian clock2,3. The evening complex acts as a temperature-responsive transcriptional repressor, providing rhythmicity and temperature responsiveness to growth through unknown mechanisms2,4-6. The evening complex consists of EARLY FLOWERING 3 (ELF3)4,7, a large scaffold protein and key component of temperature sensing; ELF4, a small α-helical protein; and LUX ARRYTHMO (LUX), a DNA-binding protein required to recruit the evening complex to transcriptional targets. ELF3 contains a polyglutamine (polyQ) repeat8-10, embedded within a predicted prion domain (PrD). Here we find that the length of the polyQ repeat correlates with thermal responsiveness. We show that ELF3 proteins in plants from hotter climates, with no detectable PrD, are active at high temperatures, and lack thermal responsiveness. The temperature sensitivity of ELF3 is also modulated by the levels of ELF4, indicating that ELF4 can stabilize the function of ELF3. In both Arabidopsis and a heterologous system, ELF3 fused with green fluorescent protein forms speckles within minutes in response to higher temperatures, in a PrD-dependent manner. A purified fragment encompassing the ELF3 PrD reversibly forms liquid droplets in response to increasing temperatures in vitro, indicating that these properties reflect a direct biophysical response conferred by the PrD. The ability of temperature to rapidly shift ELF3 between active and inactive states via phase transition represents a previously unknown thermosensory mechanism.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Priónicas/química , Temperatura , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Aclimatación/fisiología , Arabidopsis/química , Calor , Modelos Moleculares , Péptidos/metabolismo , Transición de Fase , Dominios Proteicos , Proteínas Represoras/química , Proteínas Represoras/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(28): e2304714120, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37399408

RESUMEN

Liquid-liquid phase separation (LLPS) is an important mechanism enabling the dynamic compartmentalization of macromolecules, including complex polymers such as proteins and nucleic acids, and occurs as a function of the physicochemical environment. In the model plant, Arabidopsis thaliana, LLPS by the protein EARLY FLOWERING3 (ELF3) occurs in a temperature-sensitive manner and controls thermoresponsive growth. ELF3 contains a largely unstructured prion-like domain (PrLD) that acts as a driver of LLPS in vivo and in vitro. The PrLD contains a poly-glutamine (polyQ) tract, whose length varies across natural Arabidopsis accessions. Here, we use a combination of biochemical, biophysical, and structural techniques to investigate the dilute and condensed phases of the ELF3 PrLD with varying polyQ lengths. We demonstrate that the dilute phase of the ELF3 PrLD forms a monodisperse higher-order oligomer that does not depend on the presence of the polyQ sequence. This species undergoes LLPS in a pH- and temperature-sensitive manner and the polyQ region of the protein tunes the initial stages of phase separation. The liquid phase rapidly undergoes aging and forms a hydrogel as shown by fluorescence and atomic force microscopies. Furthermore, we demonstrate that the hydrogel assumes a semiordered structure as determined by small-angle X-ray scattering, electron microscopy, and X-ray diffraction. These experiments demonstrate a rich structural landscape for a PrLD protein and provide a framework to describe the structural and biophysical properties of biomolecular condensates.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Factores de Transcripción , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Priones , Temperatura , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Biochemistry ; 61(17): 1743-1756, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-35944093

RESUMEN

Parkinson's disease is associated with the aberrant aggregation of α-synuclein. Although the causes of this process are still unclear, post-translational modifications of α-synuclein are likely to play a modulatory role. Since α-synuclein is constitutively N-terminally acetylated, we investigated how this post-translational modification alters the aggregation behavior of this protein. By applying a three-pronged aggregation kinetics approach, we observed that N-terminal acetylation results in a reduced rate of lipid-induced aggregation and slows down both elongation and fibril-catalyzed aggregate proliferation. An analysis of the amyloid fibrils produced by the aggregation process revealed different morphologies for the acetylated and non-acetylated forms in both lipid-induced aggregation and seed-induced aggregation assays. In addition, we found that fibrils formed by acetylated α-synuclein exhibit a lower ß-sheet content. These findings indicate that N-terminal acetylation of α-synuclein alters its lipid-dependent aggregation behavior, reduces its rate of in vitro aggregation, and affects the structural properties of its fibrillar aggregates.


Asunto(s)
Amiloide , alfa-Sinucleína , Acetilación , Amiloide/química , Lípidos , Agregado de Proteínas , Procesamiento Proteico-Postraduccional , alfa-Sinucleína/química
4.
Proc Natl Acad Sci U S A ; 116(13): 6101-6110, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30850528

RESUMEN

Protein misfolding underlies the pathology of a large number of human disorders, many of which are age-related. An exception to this is preeclampsia, a leading cause of pregnancy-associated morbidity and mortality in which misfolded proteins accumulate in body fluids and the placenta. We demonstrate that pregnancy zone protein (PZP), which is dramatically elevated in maternal plasma during pregnancy, efficiently inhibits in vitro the aggregation of misfolded proteins, including the amyloid beta peptide (Aß) that is implicated in preeclampsia as well as with Alzheimer's disease. The mechanism by which this inhibition occurs involves the formation of stable complexes between PZP and monomeric Aß or small soluble Aß oligomers formed early in the aggregation pathway. The chaperone activity of PZP is more efficient than that of the closely related protein alpha-2-macroglobulin (α2M), although the chaperone activity of α2M is enhanced by inducing its dissociation into PZP-like dimers. By immunohistochemistry analysis, PZP is found primarily in extravillous trophoblasts in the placenta. In severe preeclampsia, PZP-positive extravillous trophoblasts are adjacent to extracellular plaques containing Aß, but PZP is not abundant within extracellular plaques. Our data support the conclusion that the up-regulation of PZP during pregnancy represents a major maternal adaptation that helps to maintain extracellular proteostasis during gestation in humans. We propose that overwhelming or disrupting the chaperone function of PZP could underlie the accumulation of misfolded proteins in vivo. Attempts to characterize extracellular proteostasis in pregnancy will potentially have broad-reaching significance for understanding disease-related protein misfolding.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Preeclampsia/metabolismo , Proteínas Gestacionales/metabolismo , Deficiencias en la Proteostasis/metabolismo , Péptidos beta-Amiloides/ultraestructura , Femenino , Humanos , Microscopía Electrónica de Transmisión , Chaperonas Moleculares/metabolismo , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/ultraestructura , Embarazo , Proteínas Gestacionales/ultraestructura , Agregación Patológica de Proteínas/metabolismo , Pliegue de Proteína , Estabilidad Proteica
5.
Molecules ; 27(4)2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35209093

RESUMEN

A wide variety of oligomeric structures are formed during the aggregation of proteins associated with neurodegenerative diseases. Such soluble oligomers are believed to be key toxic species in the related disorders; therefore, identification of the structural determinants of toxicity is of upmost importance. Here, we analysed toxic oligomers of α-synuclein and its pathological variants in order to identify structural features that could be related to toxicity and found a novel structural polymorphism within G51D oligomers. These G51D oligomers can adopt a variety of ß-sheet-rich structures with differing degrees of α-helical content, and the helical structural content of these oligomers correlates with the level of induced cellular dysfunction in SH-SY5Y cells. This structure-function relationship observed in α-synuclein oligomers thus presents the α-helical structure as another potential structural determinant that may be linked with cellular toxicity in amyloid-related proteins.


Asunto(s)
Mutación , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/metabolismo , Multimerización de Proteína , alfa-Sinucleína/química , alfa-Sinucleína/genética , Humanos , Enfermedades Neurodegenerativas , Agregado de Proteínas , Unión Proteica , Multimerización de Proteína/genética , Análisis Espectral , alfa-Sinucleína/metabolismo
6.
J Am Chem Soc ; 143(30): 11473-11481, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34286587

RESUMEN

The propensity to self-assemble into amyloid fibrils with a shared cross-ß architecture is a generic feature of proteins. Amyloid-related diseases affect millions of people worldwide, yet they are incurable and cannot be effectively prevented, largely due to the irreversible assembly and extraordinary stability of amyloid fibrils. Recent studies suggest that labile amyloids may be possible in certain proteins containing low-complexity domains often involved in the formation of subcellular membraneless organelles. Although the fundamental understanding of this reversible amyloid folding process is completely missing, the current view is that a given protein sequence will result in either irreversible, as in most of the cases, or reversible amyloid fibrils, as in few exceptions. Here we show that two common globular proteins, human lysozyme and its homologue from hen egg white, can self-assemble into both reversible and irreversible amyloid fibrils depending on the folding path followed by the protein. In both folding states, the amyloid nature of the fibrils is demonstrated at the molecular level by its cross-ß structure, yet with substantial differences on the mesoscopic polymorphism and the labile nature of the amyloid state. Structural analysis shows that reversible and irreversible amyloid fibrils possess the same full-length protein sequence but different fibril core structures and ß-sheet arrangements. These results illuminate a mechanistic link between the reversible and irreversible nature of amyloids and highlight the central role of protein folding states in regulating the lability and reversibility of amyloids.


Asunto(s)
Amiloide/química , Muramidasa/química , Animales , Pollos , Humanos , Modelos Moleculares , Muramidasa/metabolismo , Pliegue de Proteína
7.
Nano Lett ; 20(11): 8163-8169, 2020 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-33079553

RESUMEN

Oligomers comprised of misfolded proteins are implicated as neurotoxins in the pathogenesis of protein misfolding conditions such as Parkinson's and Alzheimer's diseases. Structural, biophysical, and biochemical characterization of these nanoscale protein assemblies is key to understanding their pathology and the design of therapeutic interventions, yet it is challenging due to their heterogeneous, transient nature and low relative abundance in complex mixtures. Here, we demonstrate separation of heterogeneous populations of oligomeric α-synuclein, a protein central to the pathology of Parkinson's disease, in solution using microfluidic free-flow electrophoresis. We characterize nanoscale structural heterogeneity of transient oligomers on a time scale of seconds, at least 2 orders of magnitude faster than conventional techniques. Furthermore, we utilize our platform to analyze oligomer ζ-potential and probe the immunochemistry of wild-type α-synuclein oligomers. Our findings contribute to an improved characterization of α-synuclein oligomers and demonstrate the application of microchip electrophoresis for the free-solution analysis of biological nanoparticle analytes.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Parkinson , Humanos , alfa-Sinucleína
8.
J Biol Chem ; 294(27): 10392-10406, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-31142553

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder characterized by fibrillar neuronal inclusions composed of aggregated α-synuclein (α-syn). These inclusions are associated with behavioral and pathological PD phenotypes. One strategy for therapeutic interventions is to prevent the formation of these inclusions to halt disease progression. α-Synuclein exists in multiple structural forms, including disordered, nonamyloid oligomers, ordered amyloid oligomers, and fibrils. It is critical to understand which conformers contribute to specific PD phenotypes. Here, we utilized a mouse model to explore the pathological effects of stable ß-amyloid-sheet oligomers compared with those of fibrillar α-synuclein. We biophysically characterized these species with transmission EM, atomic-force microscopy, CD spectroscopy, FTIR spectroscopy, analytical ultracentrifugation, and thioflavin T assays. We then injected these different α-synuclein forms into the mouse striatum to determine their ability to induce PD-related phenotypes. We found that ß-sheet oligomers produce a small but significant loss of dopamine neurons in the substantia nigra pars compacta (SNc). Injection of small ß-sheet fibril fragments, however, produced the most robust phenotypes, including reduction of striatal dopamine terminals, SNc loss of dopamine neurons, and motor-behavior defects. We conclude that although the ß-sheet oligomers cause some toxicity, the potent effects of the short fibrillar fragments can be attributed to their ability to recruit monomeric α-synuclein and spread in vivo and hence contribute to the development of PD-like phenotypes. These results suggest that strategies to reduce the formation and propagation of ß-sheet fibrillar species could be an important route for therapeutic intervention in PD and related disorders.


Asunto(s)
Enfermedad de Parkinson/patología , alfa-Sinucleína/metabolismo , Amiloide/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Masculino , Ratones , Enfermedad de Parkinson/metabolismo , Fenotipo , Agregado de Proteínas , Conformación Proteica en Lámina beta , alfa-Sinucleína/química , alfa-Sinucleína/farmacología
9.
Biochem Biophys Res Commun ; 529(4): 1151-1157, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32819579

RESUMEN

The long-living naked mole-rat (NMR) shows negligible senescence and resistance to age-associated diseases. Recent evidence, based on protein-level assays, suggests that enhanced protein homeostasis machinery contributes to NMR stress-resistance and longevity. Here, we develop NMR-specific, transcriptional assays for measuring the unfolded protein response (UPR), a component of ER proteostasis. By varying doses and response times of pharmacological ER stressors applied to NMR kidney fibroblasts, we probe the NMR UPR in detail, demonstrating that NMR fibroblasts have a higher UPR activation threshold compared to mouse fibroblasts under mild ER-stress induction; whereas temporal analysis reveals that severe ER-stress induction results in no comparative differences. Probing NMR UPR activation with our robust assays may lead to insights into the proteostasis and ageing relationship.


Asunto(s)
Longevidad , Ratas Topo/fisiología , Respuesta de Proteína Desplegada , Animales , Apoptosis , Células Cultivadas , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Degradación Asociada con el Retículo Endoplásmico , Femenino , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Riñón/patología , Masculino , Ratones , Ratas Topo/genética , Pliegue de Proteína , Proteínas Serina-Treonina Quinasas/metabolismo , Empalme del ARN/genética , Proteína 1 de Unión a la X-Box/metabolismo
10.
Proc Natl Acad Sci U S A ; 114(2): E200-E208, 2017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-28011763

RESUMEN

The aggregation of the 42-residue form of the amyloid-ß peptide (Aß42) is a pivotal event in Alzheimer's disease (AD). The use of chemical kinetics has recently enabled highly accurate quantifications of the effects of small molecules on specific microscopic steps in Aß42 aggregation. Here, we exploit this approach to develop a rational drug discovery strategy against Aß42 aggregation that uses as a read-out the changes in the nucleation and elongation rate constants caused by candidate small molecules. We thus identify a pool of compounds that target specific microscopic steps in Aß42 aggregation. We then test further these small molecules in human cerebrospinal fluid and in a Caenorhabditis elegans model of AD. Our results show that this strategy represents a powerful approach to identify systematically small molecule lead compounds, thus offering an appealing opportunity to reduce the attrition problem in drug discovery.


Asunto(s)
Péptidos beta-Amiloides/química , Descubrimiento de Drogas , Fragmentos de Péptidos/química , Enfermedad de Alzheimer , Péptidos beta-Amiloides/metabolismo , Animales , Caenorhabditis elegans , Líquido Cefalorraquídeo/química , Humanos , Fragmentos de Péptidos/metabolismo , Bibliotecas de Moléculas Pequeñas
11.
Int J Mol Sci ; 21(16)2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32824145

RESUMEN

Human cystatin C (HCC), a cysteine-protease inhibitor, exists as a folded monomer under physiological conditions but has the ability to self-assemble via domain swapping into multimeric states, including oligomers with a doughnut-like structure. The structure of the monomeric HCC has been solved by X-ray crystallography, and a covalently linked version of HCC (stab-1 HCC) is able to form stable oligomeric species containing 10-12 monomeric subunits. We have performed molecular modeling, and in conjunction with experimental parameters obtained from atomic force microscopy (AFM), transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) measurements, we observe that the structures are essentially flat, with a height of about 2 nm, and the distance between the outer edge of the ring and the edge of the central cavity is ~5.1 nm. These dimensions correspond to the height and diameter of one stab-1 HCC subunit and we present a dodecamer model for stabilized cystatin C oligomers using molecular dynamics simulations and experimentally measured parameters. Given that oligomeric species in protein aggregation reactions are often transient and very highly heterogeneous, the structural information presented here on these isolated stab-1 HCC oligomers may be useful to further explore the physiological relevance of different structural species of cystatin C in relation to protein misfolding disease.


Asunto(s)
Cistatina C/química , Simulación de Dinámica Molecular , Humanos , Pliegue de Proteína , Multimerización de Proteína , Estabilidad Proteica
12.
Int J Mol Sci ; 21(12)2020 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-32630615

RESUMEN

Alzheimer's disease is associated with the aggregation of the amyloid-ß peptide (Aß), resulting in the deposition of amyloid plaques in brain tissue. Recent scrutiny of the mechanisms by which Aß aggregates induce neuronal dysfunction has highlighted the importance of the Aß oligomers of this protein fragment. Because of the transient and heterogeneous nature of these oligomers, however, it has been challenging to investigate the detailed mechanisms by which these species exert cytotoxicity. To address this problem, we demonstrate here the use of rationally designed single-domain antibodies (DesAbs) to characterize the structure-toxicity relationship of Aß oligomers. For this purpose, we use Zn2+-stabilized oligomers of the 40-residue form of Aß (Aß40) as models of brain Aß oligomers and two single-domain antibodies (DesAb18-24 and DesAb34-40), designed to bind to epitopes at residues 18-24 and 34-40 of Aß40, respectively. We found that the DesAbs induce a change in structure of the Zn2+-stabilized Aß40 oligomers, generating a simultaneous increase in their size and solvent-exposed hydrophobicity. We then observed that these increments in both the size and hydrophobicity of the oligomers neutralize each other in terms of their effects on cytotoxicity, as predicted by a recently proposed general structure-toxicity relationship, and observed experimentally. These results illustrate the use of the DesAbs as research tools to investigate the biophysical and cytotoxicity properties of Aß oligomers.


Asunto(s)
Péptidos beta-Amiloides/inmunología , Anticuerpos/inmunología , Anticuerpos/metabolismo , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Formación de Anticuerpos/inmunología , Encéfalo/metabolismo , Diseño de Fármacos , Humanos , Neuronas/metabolismo , Fragmentos de Péptidos/metabolismo , Placa Amiloide/metabolismo , Agregado de Proteínas/fisiología , Ingeniería de Proteínas/métodos , Relación Estructura-Actividad
13.
Biochemistry ; 58(39): 4086-4095, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31529970

RESUMEN

TAR DNA-binding protein 43 (TDP-43) has been identified as the major constituent of the proteinaceous inclusions that are characteristic of most forms of amyotrophic lateral sclerosis (ALS) and ubiquitin positive frontotemporal lobar degeneration (FTLD). Wild type TDP-43 inclusions are a pathological hallmark of >95% of patients with sporadic ALS and of the majority of familial ALS cases, and they are also found in a significant proportion of FTLD cases. ALS is the most common form of motor neuron disease, characterized by progressive weakness and muscular wasting, and typically leads to death within a few years of diagnosis. To determine how the translocation and misfolding of TDP-43 contribute to ALS pathogenicity, it is crucial to define the dynamic behavior of this protein within the cellular environment. It is therefore necessary to develop cell models that allow the location of the protein to be defined. We report the use of TDP-43 with a tetracysteine tag for visualization using fluorogenic biarsenical compounds and show that this model displays features of ALS observed in other cell models. We also demonstrate that this labeling procedure enables live-cell imaging of the translocation of the protein from the nucleus into the cytosol.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Cisteína/química , Proteínas de Unión al ADN/metabolismo , Fluoresceínas/química , Modelos Biológicos , Compuestos Organometálicos/química , Lugares Marcados de Secuencia , Secuencia de Aminoácidos , Línea Celular Tumoral , Núcleo Celular/metabolismo , Citosol/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Electroporación , Colorantes Fluorescentes , Degeneración Lobar Frontotemporal/metabolismo , Humanos , Cinética , Imagen Óptica , Transporte de Proteínas , Imagen de Lapso de Tiempo , Transfección
14.
Macromol Rapid Commun ; 40(8): e1800898, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30840348

RESUMEN

Silk fibroin is a natural protein obtained from the Bombyx mori silkworm. In addition to being the key structural component in silkworm cocoons, it also has the propensity to self-assemble in vitro into hierarchical structures with desirable properties such as high levels of mechanical strength and robustness. Furthermore, it is an appealing biopolymer due to its biocompatability, low immunogenicity, and lack of toxicity, making it a prime candidate for biomedical material applications. Here, it is demonstrated that nanofibrils formed by reconstituted silk fibroin can be engineered into supramolecular microgels using a soft lithography-based microfluidic approach. Building on these results, a potential application for these protein microgels to encapsulate and release small molecules in a controlled manner is illustrated. Taken together, these results suggest that the tailored self-assembly of biocompatible and biodegradable silk nanofibrils can be used to generate functional micromaterials for a range of potential applications in the biomedical and pharmaceutical fields.


Asunto(s)
Fibroínas/química , Seda/química , Animales , Materiales Biocompatibles/química , Bombyx , Geles/química , Sustancias Macromoleculares/química
15.
Biochemistry ; 56(25): 3225-3233, 2017 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-28493669

RESUMEN

The propensity to misfold and self-assemble into stable aggregates is increasingly being recognized as a common feature of protein molecules. Our understanding of this phenomenon and of its links with human disease has improved substantially over the past two decades. Studies thus far, however, have been almost exclusively focused on cytosolic proteins, resulting in a lack of detailed information about the misfolding and aggregation of membrane proteins. As a consequence, although such proteins make up approximately 30% of the human proteome and have high propensities to aggregate, relatively little is known about the biophysical nature of their assemblies. To shed light on this issue, we have studied as a model system an archetypical representative of the ubiquitous major facilitator superfamily, the Escherichia coli lactose permease (LacY). By using a combination of established indicators of cross-ß structure and morphology, including the amyloid diagnostic dye thioflavin-T, circular dichroism spectroscopy, Fourier transform infrared spectroscopy, X-ray fiber diffraction, and transmission electron microscopy, we show that LacY can form amyloid-like fibrils under destabilizing conditions. These results indicate that transmembrane α-helical proteins, similarly to cytosolic proteins, have the ability to adopt this generic state.


Asunto(s)
Amiloide/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Proteínas de Transporte de Monosacáridos/química , Simportadores/química , Tiazoles/química , Benzotiazoles , Dicroismo Circular , Humanos , Microscopía Electrónica de Transmisión , Conformación Proteica en Hélice alfa , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
16.
Biochemistry ; 56(9): 1177-1180, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28230968

RESUMEN

The Hsp70 family of chaperones plays an essential role in suppressing protein aggregation in the cell. Here we investigate the factors controlling the intrinsic ability of human Hsp70 to inhibit the elongation of amyloid fibrils formed by the Parkinson's disease-related protein α-synuclein. Using kinetic analysis, we show that Hsp70 binds preferentially to α-synuclein fibrils as a consequence of variations in the association and dissociation rate constants of binding to the different aggregated states of the protein. Our findings illustrate the importance of the kinetics of binding of molecular chaperones, and also of potential therapeutic molecules, in the efficient suppression of specific pathogenic events linked to neurodegeneration.


Asunto(s)
Unión Competitiva , Proteínas HSP70 de Choque Térmico/metabolismo , Multimerización de Proteína , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Humanos , Cinética , Estructura Secundaria de Proteína , Especificidad por Sustrato
17.
Biochim Biophys Acta Mol Basis Dis ; 1863(11): 2762-2771, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28711596

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease involving the formation of cytoplasmic aggregates by proteins including TDP-43 and SOD1, in affected cells in the central nervous system (CNS). Pathology spreads from an initial site of onset to contiguous anatomical regions. There is evidence that for disease-associated proteins, including TDP-43 and SOD1, non-native protein conformers can promote misfolding of the natively folded counterparts, and cell-to-cell transfer of pathological aggregates may underlie the spread of the disease throughout the CNS. A variety of studies have demonstrated that SOD1 is released by neuron-like cells into the surrounding culture medium, either in their free state or encapsulated in extracellular vesicles such as exosomes. Extracellular SOD1 can then be internalised by naïve cells incubated in this conditioned medium, leading to the misfolding and aggregation of endogenous intracellular SOD1; an effect that propagates over serial passages. A similar phenomenon has also been observed with other proteins associated with protein misfolding and progressive neurological disorders, including tau, α-synuclein and both mammalian and yeast prions. Conditioned media experiments using TDP-43 have been less conclusive, with evidence for this protein undergoing intercellular transfer being less straightforward. In this review, we describe the properties of TDP-43 and SOD1 and look at the evidence for their respective abilities to participate in cell-to-cell transfer via conditioned medium, and discuss how variations in the nature of cell-to-cell transfer suggests that a number of different mechanisms are involved in the spreading of pathology in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Proteínas de Unión al ADN/metabolismo , Agregación Patológica de Proteínas/metabolismo , Deficiencias en la Proteostasis/metabolismo , Superóxido Dismutasa-1/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Comunicación Celular , Proteínas de Unión al ADN/genética , Humanos , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/patología , Deficiencias en la Proteostasis/genética , Deficiencias en la Proteostasis/patología , Superóxido Dismutasa-1/genética , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
18.
Proc Natl Acad Sci U S A ; 111(20): E2081-90, 2014 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-24799681

RESUMEN

Hypochlorite, an oxidant generated in vivo by the innate immune system, kills invading pathogens largely by inducing the misfolding of microbial proteins. Concomitantly, the nonspecific activity of hypochlorite also damages host proteins, and the accumulation of damaged (misfolded) proteins is implicated in the pathology of a variety of debilitating human disorders (e.g., Alzheimer's disease, atherosclerosis, and arthritis). It is well-known that cells respond to oxidative stress by up-regulating proteostasis machinery, but the direct activation of mammalian chaperones by hypochlorite has not, to our knowledge, been previously reported. In this study, we show that hypochlorite-induced modifications of human α2-macroglobulin (α2M) markedly increase its chaperone activity by generating species, particularly dimers formed by dissociation of the native tetramer, which have enhanced surface hydrophobicity. Moreover, dimeric α2M is generated in whole-blood plasma in the presence of physiologically relevant amounts of hypochlorite. The chaperone activity of hypochlorite-modified α2M involves the formation of stable soluble complexes with misfolded client proteins, including heat-denatured enzymes, oxidized fibrinogen, oxidized LDL, and native or oxidized amyloid ß-peptide (Aß1-42). Here, we show that hypochlorite-modified α2M delivers its misfolded cargo to lipoprotein receptors on macrophages and reduces Aß1-42 neurotoxicity. Our results support the conclusion that α2M is a specialized chaperone that prevents the extracellular accumulation of misfolded and potentially pathogenic proteins, particularly during innate immune system activity.


Asunto(s)
Ácido Hipocloroso/química , Chaperonas Moleculares/química , alfa-Macroglobulinas/química , Animales , Línea Celular , Línea Celular Tumoral , Supervivencia Celular , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Inmunidad Innata , Inflamación , Ratones , Oxidantes/química , Oxígeno/química , Conformación Proteica/efectos de los fármacos , Desnaturalización Proteica , Pliegue de Proteína , Procesamiento Proteico-Postraduccional , Propiedades de Superficie , Termodinámica
19.
Proc Natl Acad Sci U S A ; 111(9): 3620-5, 2014 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-24550511

RESUMEN

Amyotrophic lateral sclerosis (ALS) is predominantly sporadic, but associated with heritable genetic mutations in 5-10% of cases, including those in Cu/Zn superoxide dismutase (SOD1). We previously showed that misfolding of SOD1 can be transmitted to endogenous human wild-type SOD1 (HuWtSOD1) in an intracellular compartment. Using NSC-34 motor neuron-like cells, we now demonstrate that misfolded mutant and HuWtSOD1 can traverse between cells via two nonexclusive mechanisms: protein aggregates released from dying cells and taken up by macropinocytosis, and exosomes secreted from living cells. Furthermore, once HuWtSOD1 propagation has been established, misfolding of HuWtSOD1 can be efficiently and repeatedly propagated between HEK293 cell cultures via conditioned media over multiple passages, and to cultured mouse primary spinal cord cells transgenically expressing HuWtSOD1, but not to cells derived from nontransgenic littermates. Conditioned media transmission of HuWtSOD1 misfolding in HEK293 cells is blocked by HuWtSOD1 siRNA knockdown, consistent with human SOD1 being a substrate for conversion, and attenuated by ultracentrifugation or incubation with SOD1 misfolding-specific antibodies, indicating a relatively massive transmission particle which possesses antibody-accessible SOD1. Finally, misfolded and protease-sensitive HuWtSOD1 comprises up to 4% of total SOD1 in spinal cords of patients with sporadic ALS (SALS). Propagation of HuWtSOD1 misfolding, and its subsequent cell-to-cell transmission, is thus a candidate process for the molecular pathogenesis of SALS, which may provide novel treatment and biomarker targets for this devastating disease.


Asunto(s)
Esclerosis Amiotrófica Lateral/fisiopatología , Exosomas/metabolismo , Pliegue de Proteína , Superóxido Dismutasa/química , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Línea Celular , Electroforesis en Gel de Poliacrilamida , Humanos , Ratones , Microscopía Electrónica , Pinocitosis/fisiología , Interferencia de ARN , ARN Interferente Pequeño/genética , Superóxido Dismutasa/metabolismo
20.
Biophys J ; 111(11): 2358-2367, 2016 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-27926837

RESUMEN

The conversion of human lysozyme into amyloid fibrils is associated with a rare but fatal hereditary form of nonneuropathic systemic amyloidosis. The accumulation of large amounts of aggregated protein is thought to be initiated by the formation of transient intermediate species of disease-related lysozyme variants, essentially due to the loss of global cooperativity under physiologically relevant conditions. Interestingly, all five naturally occurring, amyloidogenic, single-point mutations are located in the ß-domain of lysozyme, the region that is predominantly unfolded during the formation of the transient intermediate species. Given the lack of known naturally occurring, amyloidogenic, single-point mutations in the α-domain, we chose three specific mutations to address the effects that location may have on native-state dynamics, as studied by hydrogen-deuterium (HD) exchange experiments analyzed by NMR spectroscopy, and mass spectrometry. We compared the effect of a destabilizing α-domain mutation (I23A) with that of the well-characterized I59T ß-domain variant. We also investigated the effect of a mutation that has minor effects on native-state stability at the domain interface (I56V) and compared it with that of a variant with similar stability within the C-helix (I89V). We show that when variants have similar reduced native-state stabilities, the location of the mutation (I23A versus I59T) is crucial to the native-state dynamics, with the α-domain mutation having a significantly lower ability to populate transient intermediate species under physiologically relevant conditions. Interestingly, the mutation at the interface (I56V) has a greater effect in facilitating the formation of transient intermediate species at elevated temperatures compared with the variants containing α-domain mutations, even though this mutation results in only minor changes to the native-state stability of lysozyme. These findings reveal that the location of specific mutations is an important factor in determining the native-state dynamical properties of human lysozyme in the context of its propensity to populate the aggregation-prone transient intermediate species associated with pathogenic amyloid formation.


Asunto(s)
Muramidasa/química , Muramidasa/genética , Mutación , Amiloide/química , Estabilidad de Enzimas , Humanos , Modelos Moleculares , Dominios Proteicos , Multimerización de Proteína , Estructura Secundaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA