Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Hepatology ; 77(6): 1849-1865, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36799446

RESUMEN

BACKGROUND AND AIMS: Secretin (SCT) and secretin receptor (SR, only expressed on cholangiocytes within the liver) play key roles in modulating liver phenotypes. Forkhead box A2 (FoxA2) is required for normal bile duct homeostasis by preventing the excess of cholangiocyte proliferation. Short-term administration of the SR antagonist (SCT 5-27) decreased ductular reaction and liver fibrosis in bile duct ligated and Mdr2 -/- [primary sclerosing cholangitis (PSC), model] mice. We aimed to evaluate the effectiveness and risks of long-term SCT 5-27 treatment in Mdr2 -/- mice. APPROACH AND RESULTS: In vivo studies were performed in male wild-type and Mdr2 -/- mice treated with saline or SCT 5-27 for 3 months and human samples from late-stage PSC patients and healthy controls. Compared with controls, biliary SCT/SR expression and SCT serum levels increased in Mdr2 -/- mice and late-stage PSC patients. There was a significant increase in ductular reaction, biliary senescence, liver inflammation, angiogenesis, fibrosis, biliary expression of TGF-ß1/VEGF-A axis, and biliary phosphorylation of protein kinase A and ERK1/2 in Mdr2 -/- mice. The biliary expression of miR-125b and FoxA2 decreased in Mdr2 -/- compared with wild-type mice, which was reversed by long-term SCT 5-27 treatment. In vitro , SCT 5-27 treatment of a human biliary PSC cell line decreased proliferation and senescence and SR/TGF-ß1/VEGF-A axis but increased the expression of miR-125b and FoxA2. Downregulation of FoxA2 prevented SCT 5-27-induced reduction in biliary damage, whereas overexpression of FoxA2 reduced proliferation and senescence in the human PSC cell line. CONCLUSIONS: Modulating the SCT/SR axis may be critical for managing PSC.


Asunto(s)
Colangitis Esclerosante , MicroARNs , Humanos , Masculino , Ratones , Animales , Secretina/farmacología , Secretina/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Factor A de Crecimiento Endotelial Vascular , Colangitis Esclerosante/genética , Cirrosis Hepática/metabolismo , Hígado/patología , Ratones Noqueados , MicroARNs/metabolismo , Modelos Animales de Enfermedad
2.
Hepatology ; 78(1): 243-257, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-36799449

RESUMEN

BACKGROUND AND AIMS: NAFLD is characterized by steatosis, hepatic inflammation, and fibrosis, which can develop into NASH. Patients with NAFLD/NASH have increased ductular reaction (DR) and biliary senescence. High fat/high cholesterol diet feeding increases biliary senescence, DR, and biliary insulin-like growth factor-1 (IGF-1) expression in mice. p16/IGF-1 converges with fork-head box transcription factor O1 (FOXO1) through E2F1. We evaluated p16 inhibition on NAFLD phenotypes and biliary E2F1/FOXO1/IGF-1 signaling. APPROACH AND RESULTS: 4-week wild-type (C57BL/6J) male mice were fed a control diet (CD) or high fat/high cholesterol diet and received either p16 or control Vivo Morpholino (VM) by tail vein injection 2× during the 16th week of feeding. We confirmed p16 knockdown and examined: (i) NAFLD phenotypes; (ii) DR and biliary senescence; (iii) serum metabolites; and (iv) biliary E2F1/FOXO1/IGF-1 signaling. Human normal, NAFLD, and NASH liver samples and isolated cholangiocytes treated with control or p16 VM were evaluated for p16/E2F1/FOXO1/IGF-1 signaling. p16 VM treatment reduced cholangiocyte and hepatocyte p16. In wild-type high fat/high cholesterol diet mice with control VM, there were increased (i) NAFLD phenotypes; (ii) DR and biliary senescence; (iii) serum metabolites; and (iv) biliary E2F1/FOXO1/IGF-1 signaling; however, p16 VM treatment reduced these parameters. Biliary E2F1/FOX-O1/IGF-1 signaling increased in human NAFLD/NASH but was blocked by p16 VM. In vitro , p16 VM reduced biliary E2f1 and Foxo1 transcription by inhibiting RNA pol II binding and E2F1 binding at the Foxo1 locus, respectively. Inhibition of E2F1 reduced biliary FOXO1 in vitro. CONCLUSION: Attenuating hepatic p16 expression may be a therapeutic approach for improving NAFLD/NASH phenotypes.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Humanos , Masculino , Ratones , Colesterol/metabolismo , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F1/metabolismo , Proteína Forkhead Box O1 , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Hígado/metabolismo , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Fenotipo , Inhibidor p16 de la Quinasa Dependiente de Ciclina
3.
J Hepatol ; 78(1): 99-113, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35987275

RESUMEN

BACKGROUND & AIMS: Primary biliary cholangitis (PBC) is characterised by ductopenia, ductular reaction, impairment of anion exchanger 2 (AE2) and the 'bicarbonate umbrella'. Ductulo-canalicular junction (DCJ) derangement is hypothesised to promote PBC progression. The secretin (Sct)/secretin receptor (SR) axis regulates cystic fibrosis transmembrane receptor (CFTR) and AE2, thus promoting choleresis. We evaluated the role of Sct/SR signalling on biliary secretory processes and subsequent injury in a late-stage PBC mouse model and human samples. METHODS: At 32 weeks of age, female and male wild-type and dominant-negative transforming growth factor beta receptor II (late-stage PBC model) mice were treated with Sct for 1 or 8 weeks. Bulk RNA-sequencing was performed in isolated cholangiocytes from mouse models. RESULTS: Biliary Sct/SR/CFTR/AE2 expression and bile bicarbonate levels were reduced in late-stage PBC mouse models and human samples. Sct treatment decreased bile duct loss, ductular reaction, inflammation, and fibrosis in late-stage PBC models. Sct reduced hepatic bile acid levels, modified bile acid composition, and restored the DCJ and 'bicarbonate umbrella'. RNA-sequencing identified that Sct promoted mature epithelial marker expression, specifically anterior grade protein 2 (Agr2). Late-stage PBC models and human samples exhibited reduced biliary mucin 1 levels, which were enhanced by Sct treatment. CONCLUSION: Loss of Sct/SR signalling in late-stage PBC results in a faulty 'bicarbonate umbrella' and reduced Agr2-mediated mucin production. Sct restores cholangiocyte secretory processes and DCJ formation through enhanced mature cholangiocyte phenotypes and bile duct growth. Sct treatment may be beneficial for individuals with late-stage PBC. IMPACT AND IMPLICATIONS: Secretin (Sct) regulates biliary proliferation and bicarbonate secretion in cholangiocytes via its receptor, SR, and in mouse models and human samples of late-stage primary biliary cholangitis (PBC), the Sct/SR axis is blunted along with loss of the protective 'bicarbonate umbrella'. We found that both short- and long-term Sct treatment ameliorated ductular reaction, immune cell influx, and liver fibrosis in late-stage PBC mouse models. Importantly, Sct treatment promoted bicarbonate and mucin secretion and hepatic bile acid efflux, thus reducing cholestatic and toxic bile acid-associated injury in late-stage PBC mouse models. Our work perpetuates the hypothesis that PBC pathogenesis hinges on secretory defects, and restoration of secretory processes that promote the 'bicarbonate umbrella' may be important for amelioration of PBC-associated damage.


Asunto(s)
Cirrosis Hepática Biliar , Secretina , Masculino , Femenino , Humanos , Ratones , Animales , Recién Nacido , Secretina/metabolismo , Cirrosis Hepática Biliar/metabolismo , Bicarbonatos/metabolismo , Vías Secretoras , Regulador de Conductancia de Transmembrana de Fibrosis Quística , Conductos Biliares/metabolismo , Antiportadores de Cloruro-Bicarbonato/metabolismo , Ácidos y Sales Biliares/metabolismo , ARN/metabolismo , Mucinas/metabolismo , Mucoproteínas/metabolismo , Proteínas Oncogénicas/metabolismo
4.
Am J Physiol Gastrointest Liver Physiol ; 324(1): G60-G77, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36410025

RESUMEN

Primary sclerosing cholangitis (PSC) is characterized by increased ductular reaction (DR), liver fibrosis, hepatic total bile acid (TBA) levels, and mast cell (MC) infiltration. Apical sodium BA transporter (ASBT) expression increases in cholestasis, and ileal inhibition reduces PSC phenotypes. FVB/NJ and multidrug-resistant 2 knockout (Mdr2-/-) mice were treated with control or ASBT Vivo-Morpholino (VM). We measured 1) ASBT expression and MC presence in liver/ileum; 2) liver damage/DR; 3) hepatic fibrosis/inflammation; 4) biliary inflammation/histamine serum content; and 5) gut barrier integrity/hepatic bacterial translocation. TBA/BA composition was measured in cholangiocyte/hepatocyte supernatants, intestine, liver, serum, and feces. Shotgun analysis was performed to ascertain microbiome changes. In vitro, cholangiocytes were treated with BAs ± ASBT VM, and histamine content and farnesoid X receptor (FXR) signaling were determined. Treated cholangiocytes were cocultured with MCs, and FXR signaling, inflammation, and MC activation were measured. Human patients were evaluated for ASBT/MC expression and histamine/TBA content in bile. Control patient- and PSC patient-derived three-dimensional (3-D) organoids were generated; ASBT, chymase, histamine, and fibroblast growth factor-19 (FGF19) were evaluated. ASBT VM in Mdr2-/- mice decreased 1) biliary ASBT expression, 2) PSC phenotypes, 3) hepatic TBA, and 4) gut barrier integrity compared with control. We found alterations between wild-type (WT) and Mdr2-/- mouse microbiome, and ASBT/MC and bile histamine content increased in cholestatic patients. BA-stimulated cholangiocytes increased MC activation/FXR signaling via ASBT, and human PSC-derived 3-D organoids secrete histamine/FGF19. Inhibition of hepatic ASBT ameliorates cholestatic phenotypes by reducing cholehepatic BA signaling, biliary inflammation, and histamine levels. ASBT regulation of hepatic BA signaling offers a therapeutic avenue for PSC.NEW & NOTEWORTHY We evaluated knockdown of the apical sodium bile acid transporter (ASBT) using Vivo-Morpholino in Mdr2KO mice. ASBT inhibition decreases primary sclerosing cholangitis (PSC) pathogenesis by reducing hepatic mast cell infiltration, altering bile acid species/cholehepatic shunt, and regulating gut inflammation/dysbiosis. Since a large cohort of PSC patients present with IBD, this study is clinically important. We validated findings in human PSC and PSC-IBD along with studies in novel human 3-D organoids formed from human PSC livers.


Asunto(s)
Colangitis Esclerosante , Colestasis , Enfermedades Inflamatorias del Intestino , Humanos , Animales , Ratones , Colangitis Esclerosante/tratamiento farmacológico , Colangitis Esclerosante/genética , Colangitis Esclerosante/patología , Ácidos y Sales Biliares , Histamina , Morfolinos/uso terapéutico , Hígado/metabolismo , Colestasis/patología , Cirrosis Hepática/patología , Inflamación/patología , Proteínas de Transporte de Membrana , Enfermedades Inflamatorias del Intestino/patología
5.
Am J Pathol ; 192(9): 1200-1217, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35640676

RESUMEN

Cholangiocarcinoma (CCA) is the second most common primary liver tumor and is associated with late diagnosis, limited treatment options, and a 5-year survival rate of around 30%. CCA cell lines were first established in 1971, and since then, only 70 to 80 CCA cell lines have been established. These cell lines have been essential in basic and translational research to understand and identify novel mechanistic pathways, biomarkers, and disease-specific genes. Each CCA cell line has unique characteristics, reflecting a specific genotype, sex-related properties, and patient-related signatures, making them scientifically and commercially valuable. CCA cell lines are crucial in the use of novel technologies, such as three-dimensional organoid models, which help to model the tumor microenvironment and cell-to-cell crosstalk between tumor-neighboring cells. This review highlights crucial information on CCA cell lines, including: i) type of CCA (eg, intra- or extrahepatic), ii) isolation source (eg, primary tumor or xenograft), iii) chemical digestion method (eg, trypsin or collagenase), iv) cell-sorting method (colony isolation or removal of fibroblasts), v) maintenance-medium choice (eg, RPMI or Dulbecco's modified Eagle's medium), vi) cell morphology (eg, spindle or polygonal shape), and vii) doubling time of cells.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Neoplasias de los Conductos Biliares/patología , Conductos Biliares Intrahepáticos/metabolismo , Línea Celular Tumoral , Colangiocarcinoma/patología , Xenoinjertos , Humanos , Microambiente Tumoral
6.
Hepatology ; 74(1): 164-182, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33434322

RESUMEN

BACKGROUND AND AIMS: Nonalcoholic fatty liver disease (NAFLD) is simple steatosis but can develop into nonalcoholic steatohepatitis (NASH), characterized by liver inflammation, fibrosis, and microvesicular steatosis. Mast cells (MCs) infiltrate the liver during cholestasis and promote ductular reaction (DR), biliary senescence, and liver fibrosis. We aimed to determine the effects of MC depletion during NAFLD/NASH. APPROACH AND RESULTS: Wild-type (WT) and KitW-sh (MC-deficient) mice were fed a control diet (CD) or a Western diet (WD) for 16 weeks; select WT and KitW-sh WD mice received tail vein injections of MCs 2 times per week for 2 weeks prior to sacrifice. Human samples were collected from normal, NAFLD, or NASH mice. Cholangiocytes from WT WD mice and human NASH have increased insulin-like growth factor 1 expression that promotes MC migration/activation. Enhanced MC presence was noted in WT WD mice and human NASH, along with increased DR. WT WD mice had significantly increased steatosis, DR/biliary senescence, inflammation, liver fibrosis, and angiogenesis compared to WT CD mice, which was significantly reduced in KitW-sh WD mice. Loss of MCs prominently reduced microvesicular steatosis in zone 1 hepatocytes. MC injection promoted WD-induced biliary and liver damage and specifically up-regulated microvesicular steatosis in zone 1 hepatocytes. Aldehyde dehydrogenase 1 family, member A3 (ALDH1A3) expression is reduced in WT WD mice and human NASH but increased in KitW-sh WD mice. MicroRNA 144-3 prime (miR-144-3p) expression was increased in WT WD mice and human NASH but reduced in KitW-sh WD mice and was found to target ALDH1A3. CONCLUSIONS: MCs promote WD-induced biliary and liver damage and may promote microvesicular steatosis development during NAFLD progression to NASH through miR-144-3p/ALDH1A3 signaling. Inhibition of MC activation may be a therapeutic option for NAFLD/NASH treatment.


Asunto(s)
Sistema Biliar/patología , Dieta Occidental/efectos adversos , Cirrosis Hepática/inmunología , Mastocitos/inmunología , Enfermedad del Hígado Graso no Alcohólico/inmunología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Aldehído Oxidorreductasas/genética , Animales , Sistema Biliar/inmunología , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica/inmunología , Hepatocitos/patología , Humanos , Hígado/inmunología , Hígado/patología , Cirrosis Hepática/genética , Cirrosis Hepática/patología , Masculino , Mastocitos/metabolismo , Ratones , MicroARNs/metabolismo , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología , Adulto Joven
7.
Hepatology ; 74(5): 2684-2698, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34164827

RESUMEN

BACKGROUND AND AIMS: Cholestasis is characterized by increased total bile acid (TBA) levels, which are regulated by farnesoid X receptor (FXR)/FGF15. Patients with primary sclerosing cholangitis (PSC) typically present with inflammatory bowel disease (IBD). Mast cells (MCs) (i) express FXR and (ii) infiltrate the liver during cholestasis promoting liver fibrosis. In bile-duct-ligated (BDL) MC-deficient mice (B6.Cg-KitW-sh /HNihrJaeBsmJ [KitW-sh ]), ductular reaction (DR) and liver fibrosis decrease compared with BDL wild type, and MC injection exacerbates liver damage in normal mice. APPROACH AND RESULTS: In this study, we demonstrated that MC-FXR regulates biliary FXR/FGF15, DR, and hepatic fibrosis and alters intestinal FXR/FGF15. We found increased MC number and biliary FXR expression in patients with liver injury compared with control. Histamine and FGF19 serum levels and small heterodimer partner expression increase in patients PSC and PSC-IBD compared with healthy controls. MC injection increased liver damage, DR, inflammation, biliary senescence/senescence-associated secretory phenotype (SASP), fibrosis, and histamine in KitW-sh mice. Inhibition of MC-FXR before injection reduced these parameters. BDL and KitW-sh mice injected with MCs displayed increased TBA content, biliary FXR/FGF15, and intestinal inflammation, which decreased in BDL KitW-sh and KitW-sh mice injected with MC-FXR. MCs increased ileal FXR/FGF15 expression in KitW-sh mice that was reduced following FXR inhibition. BDL and multidrug resistance 2/ATP-binding cassette family 2 member 4 knockout (Mdr2-/- ) mice, models of PSC, displayed increased intestinal MC infiltration and FXR/FGF15 expression. These were reduced following MC stabilization with cromolyn sodium in Mdr2-/- mice. In vitro, MC-FXR inhibition decreased biliary proliferation/SASP/FGF and hepatic stellate cell activation. CONCLUSIONS: Our studies demonstrate that MC-FXR plays a key role in liver damage and DR, including TBA regulation through alteration of intestinal and biliary FXR/FGF15 signaling.


Asunto(s)
Colangitis Esclerosante/complicaciones , Colestasis/inmunología , Enfermedades Inflamatorias del Intestino/inmunología , Mastocitos/inmunología , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Conductos Biliares/inmunología , Conductos Biliares/patología , Colangitis Esclerosante/inmunología , Colangitis Esclerosante/patología , Colestasis/patología , Modelos Animales de Enfermedad , Factores de Crecimiento de Fibroblastos/metabolismo , Humanos , Masculino , Mastocitos/metabolismo , Ratones
8.
Hepatology ; 73(6): 2397-2410, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32761972

RESUMEN

BACKGROUND AND AIMS: Following liver injury, mast cells (MCs) migrate into the liver and are activated in patients with cholestasis. Inhibition of MC mediators decreases ductular reaction (DR) and liver fibrosis. Transforming growth factor beta 1 (TGF-ß1) contributes to fibrosis and promotes liver disease. Our aim was to demonstrate that reintroduction of MCs induces cholestatic injury through TGF-ß1. APPROACH AND RESULTS: Wild-type, KitW-sh (MC-deficient), and multidrug resistance transporter 2/ABC transporter B family member 2 knockout mice lacking l-histidine decarboxylase were injected with vehicle or PKH26-tagged murine MCs pretreated with 0.01% dimethyl sulfoxide (DMSO) or the TGF-ß1 receptor inhibitor (TGF-ßRi), LY2109761 (10 µM) 3 days before sacrifice. Hepatic damage was assessed by hematoxylin and eosin (H&E) and serum chemistry. Injected MCs were detected in liver, spleen, and lung by immunofluorescence (IF). DR was measured by cytokeratin 19 (CK-19) immunohistochemistry and F4/80 staining coupled with real-time quantitative PCR (qPCR) for interleukin (IL)-1ß, IL-33, and F4/80; biliary senescence was evaluated by IF or qPCR for p16, p18, and p21. Fibrosis was evaluated by sirius red/fast green staining and IF for synaptophysin 9 (SYP-9), desmin, and alpha smooth muscle actin (α-SMA). TGF-ß1 secretion/expression was measured by enzyme immunoassay and qPCR. Angiogenesis was detected by IF for von Willebrand factor and vascular endothelial growth factor C qPCR. In vitro, MC-TGF-ß1 expression/secretion were measured after TGF-ßRi treatment; conditioned medium was collected. Cholangiocytes and hepatic stellate cells (HSCs) were treated with MC-conditioned medium, and biliary proliferation/senescence was measured by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium and qPCR; HSC activation evaluated for α-SMA, SYP-9, and collagen type-1a expression. MC injection recapitulates cholestatic liver injury characterized by increased DR, fibrosis/TGF-ß1 secretion, and angiogenesis. Injection of MC-TGF-ßRi reversed these parameters. In vitro, MCs induce biliary proliferation/senescence and HSC activation that was reversed with MCs lacking TGF-ß1. CONCLUSIONS: Our study demonstrates that reintroduction of MCs mimics cholestatic liver injury and that MC-derived TGF-ß1 may be a target in chronic cholestatic liver disease.


Asunto(s)
Actinas/metabolismo , Colestasis Intrahepática/metabolismo , Cirrosis Hepática , Hígado/patología , Mastocitos , Factor de Crecimiento Transformador beta1 , Factor C de Crecimiento Endotelial Vascular/metabolismo , Animales , Conductos Biliares/metabolismo , Conductos Biliares/patología , Ensayos de Migración Celular , Proliferación Celular , Senescencia Celular , Descubrimiento de Drogas , Células Estrelladas Hepáticas , Histamina/sangre , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Mastocitos/metabolismo , Mastocitos/patología , Ratones , Transducción de Señal , Factor de Crecimiento Transformador beta1/antagonistas & inhibidores , Factor de Crecimiento Transformador beta1/metabolismo , Regulación hacia Arriba
9.
Am J Pathol ; 190(5): 1018-1029, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32142732

RESUMEN

Histamine binds to one of the four G-protein-coupled receptors expressed by large cholangiocytes and increases large cholangiocyte proliferation via histamine-2 receptor (H2HR), which is increased in patients with primary sclerosing cholangitis (PSC). Ranitidine decreases liver damage in Mdr2-/- (ATP binding cassette subfamily B member 4 null) mice. We targeted hepatic H2HR in Mdr2-/- mice using vivo-morpholino. Wild-type and Mdr2-/- mice were treated with mismatch or H2HR vivo-morpholino by tail vein injection for 1 week. Liver damage, mast cell (MC) activation, biliary H2HR, and histamine serum levels were studied. MC markers were determined by quantitative real-time PCR for chymase and c-kit. Intrahepatic biliary mass was detected by cytokeratin-19 and F4/80 to evaluate inflammation. Biliary senescence was determined by immunofluorescence and senescence-associated ß-galactosidase staining. Hepatic fibrosis was evaluated by staining for desmin, Sirius Red/Fast Green, and vimentin. Immunofluorescence for transforming growth factor-ß1, vascular endothelial growth factor-A/C, and cAMP/ERK expression was performed. Transforming growth factor-ß1 and vascular endothelial growth factor-A secretion was measured in serum and/or cholangiocyte supernatant. Treatment with H2HR vivo-morpholino in Mdr2-/--mice decreased hepatic damage; H2HR protein expression and MC presence or activation; large intrahepatic bile duct mass, inflammation and senescence; and fibrosis, angiogenesis, and cAMP/phospho-ERK expression. Inhibition of H2HR signaling ameliorates large ductal PSC-induced damage. The H2HR axis may be targeted in treating PSC.


Asunto(s)
Conductos Biliares/metabolismo , Colangitis Esclerosante/metabolismo , Colangitis Esclerosante/patología , Receptores Histamínicos H2/metabolismo , Animales , Conductos Biliares/patología , Mastocitos/metabolismo , Ratones , Ratones Noqueados , Morfolinos/farmacología , Receptores Histamínicos H2/genética
10.
J Pineal Res ; 70(2): e12699, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33020940

RESUMEN

Our daily rhythmicity is controlled by a circadian clock with a specific set of genes located in the suprachiasmatic nucleus in the hypothalamus. Mast cells (MCs) are major effector cells that play a protective role against pathogens and inflammation. MC distribution and activation are associated with the circadian rhythm via two major pathways, IgE/FcεRI- and IL-33/ST2-mediated signaling. Furthermore, there is a robust oscillation between clock genes and MC-specific genes. Melatonin is a hormone derived from the amino acid tryptophan and is produced primarily in the pineal gland near the center of the brain, and histamine is a biologically active amine synthesized from the decarboxylation of the amino acid histidine by the L-histidine decarboxylase enzyme. Melatonin and histamine are previously reported to modulate circadian rhythms by pathways incorporating various modulators in which the nuclear factor-binding near the κ light-chain gene in B cells, NF-κB, is the common key factor. NF-κB interacts with the core clock genes and disrupts the production of pro-inflammatory cytokine mediators such as IL-6, IL-13, and TNF-α. Currently, there has been no study evaluating the interdependence between melatonin and histamine with respect to circadian oscillations in MCs. Accumulating evidence suggests that restoring circadian rhythms in MCs by targeting melatonin and histamine via NF-κB may be promising therapeutic strategy for MC-mediated inflammatory diseases. This review summarizes recent findings for circadian-mediated MC functional roles and activation paradigms, as well as the therapeutic potentials of targeting circadian-mediated melatonin and histamine signaling in MC-dependent inflammatory diseases.


Asunto(s)
Histamina/metabolismo , Mastocitos/metabolismo , Melatonina/metabolismo , Glándula Pineal/metabolismo , Animales , Ritmo Circadiano/fisiología , Histidina Descarboxilasa/metabolismo , Humanos , Interleucina-13/metabolismo , Interleucina-6/metabolismo , Mastocitos/inmunología , Glándula Pineal/inmunología , Factor de Necrosis Tumoral alfa/metabolismo
14.
Cell Mol Gastroenterol Hepatol ; 16(4): 513-540, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37336290

RESUMEN

BACKGROUND & AIMS: Primary sclerosing cholangitis (PSC) leads to ductular reaction and fibrosis and is complicated by vascular dysfunction. Cholangiocyte and endothelial cell crosstalk modulates their proliferation in cholestatic models. Endothelin (ET)-1 and ET-2 bind to their receptor, ET-A, and cholangiocytes are a key source of ET-1 after bile duct ligation. We aimed to evaluate the therapeutic potential of ET-A inhibition in PSC and biliary-endothelial crosstalk mediated by this pathway. METHODS: Wild-type and multidrug resistance 2 knockout (Mdr2-/-) mice at 12 weeks of age were treated with vehicle or Ambrisentan (ET-A antagonist) for 1 week by daily intraperitoneal injections. Human control and PSC samples were used. RESULTS: Mdr2-/- mice at 4, 8, and 12 weeks displayed angiogenesis that peaked at 12 weeks. Mdr2-/- mice at 12 weeks had enhanced biliary ET-1/ET-2/ET-A expression and secretion, whereas human PSC had enhanced ET-1/ET-A expression and secretion. Ambrisentan reduced biliary damage, immune cell infiltration, and fibrosis in Mdr2-/- mice. Mdr2-/- mice had squamous cholangiocytes with blunted microvilli and dilated arterioles lacking cilia; however, Ambrisentan reversed these alterations. Ambrisentan decreased cholangiocyte expression of pro-angiogenic factors, specifically midkine, through the regulation of cFOS. In vitro, ET-1/ET-A caused cholangiocyte senescence, endothelial cell angiogenesis, and macrophage inflammation. In vitro, human PSC cholangiocyte supernatants increased endothelial cell migration, which was blocked with Ambrisentan treatment. CONCLUSIONS: ET-A inhibition reduced biliary and liver damage in Mdr2-/- mice. ET-A promotes biliary angiocrine signaling that may, in turn, enhance angiogenesis. Targeting ET-A may prove therapeutic for PSC, specifically patients displaying vascular dysfunction.


Asunto(s)
Colangitis Esclerosante , Colangitis , Humanos , Ratones , Animales , Recién Nacido , Colangitis Esclerosante/tratamiento farmacológico , Colangitis Esclerosante/metabolismo , Receptores de Endotelina/uso terapéutico , Ratones Noqueados , Cirrosis Hepática/metabolismo , Fibrosis , Endotelinas/uso terapéutico
15.
Compr Physiol ; 13(3): 4909-4943, 2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-37358507

RESUMEN

Cholestatic liver diseases are named primarily due to the blockage of bile flow and buildup of bile acids in the liver. Cholestasis can occur in cholangiopathies, fatty liver diseases, and during COVID-19 infection. Most literature evaluates damage occurring to the intrahepatic biliary tree during cholestasis; however, there may be associations between liver damage and gallbladder damage. Gallbladder damage can manifest as acute or chronic inflammation, perforation, polyps, cancer, and most commonly gallstones. Considering the gallbladder is an extension of the intrahepatic biliary network, and both tissues are lined by biliary epithelial cells that share common mechanisms and properties, it is worth further evaluation to understand the association between bile duct and gallbladder damage. In this comprehensive article, we discuss background information of the biliary tree and gallbladder, from function, damage, and therapeutic approaches. We then discuss published findings that identify gallbladder disorders in various liver diseases. Lastly, we provide the clinical aspect of gallbladder disorders in liver diseases and ways to enhance diagnostic and therapeutic approaches for congruent diagnosis. © 2023 American Physiological Society. Compr Physiol 13:4909-4943, 2023.


Asunto(s)
Sistema Biliar , COVID-19 , Colestasis , Cálculos Biliares , Humanos , Cálculos Biliares/complicaciones , Hígado
16.
Hepatol Commun ; 6(10): 2715-2731, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35799467

RESUMEN

Bile ducts are heterogenous in structure and function, and primary sclerosing cholangitis (PSC) damages specific bile ducts leading to ductular reaction (DR), mast cell (MC) infiltration, increased histamine release, inflammation, and fibrosis. Bile duct ligation (BDL) induces large duct damage via cyclic adenosine monophosphate (cAMP)/extracellular signal-related protein kinase (ERK) signaling, and large cholangiocytes express H2 histamine receptor (H2HR). We evaluated how MCs interact with large cholangiocytes during cholestasis. Male wild-type (WT) and MC-deficient (KitW-sh ) mice 10-12 weeks of age were subjected to BDL for 7 days. Select KitW-sh mice were injected with MCs pretreated with control or H2HR antagonist (ranitidine, 25 µm, 48 h) via tail vein injection. In vitro, MC migration toward small mouse cholangiocytes (SMCCs) and large mouse cholangiocytes (LMCCs) treated with lipopolysaccharide or histamine (±ranitidine) was measured. LMCCs were stimulated with MC supernatants pretreated with control, α-methyl-dl-histidine (to block histamine release), or ranitidine. Liver damage, large duct DR/senescence, inflammation, fibrosis, and cAMP/ERK immunoreactivity increased in BDL WT and KitW-sh +MC mice but decreased in BDL KitW-sh and KitW-sh +MC-H2HR mice. In vitro, MCs migrate toward damaged LMCCs (but not SMCCs) blocked by inhibition of H2HR. Loss of MC histamine or MC-H2HR decreases LMCC proliferation, senescence, H2HR, and cAMP/ERK levels. Human PSC livers have increased MC number found near DR, senescent ducts, and H2HR-positive ducts. Conclusion: Infiltrating MCs preferentially interact with large ducts via H2HR signaling promoting biliary and liver damage. Mediation of MCs may be a therapeutic strategy for PSC.


Asunto(s)
Histamina , Hepatopatías , Adenosina Monofosfato/metabolismo , Animales , AMP Cíclico/metabolismo , Fibrosis , Histamina/metabolismo , Histidina/metabolismo , Humanos , Inflamación/metabolismo , Lipopolisacáridos/metabolismo , Hepatopatías/metabolismo , Masculino , Mastocitos , Ratones , Proteínas Quinasas/metabolismo , Ranitidina/farmacología , Receptores Histamínicos H2/genética
17.
Cell Mol Gastroenterol Hepatol ; 14(4): 877-904, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35863741

RESUMEN

BACKGROUND & AIMS: Primary sclerosing cholangitis (PSC) is characterized by biliary senescence and hepatic fibrosis. Melatonin exerts its effects by interacting with Melatonin receptor 1 and 2 (MT1/MT2) melatonin receptors. Short-term (1 wk) melatonin treatment reduces a ductular reaction and liver fibrosis in bile duct-ligated rats by down-regulation of MT1 and clock genes, and in multidrug resistance gene 2 knockout (Mdr2-/-) mice by decreased miR200b-dependent angiogenesis. We aimed to evaluate the long-term effects of melatonin on liver phenotype that may be mediated by changes in MT1/clock genes/miR200b/maspin/glutathione-S transferase (GST) signaling. METHODS: Male wild-type and Mdr2-/- mice had access to drinking water with/without melatonin for 3 months. Liver damage, biliary proliferation/senescence, liver fibrosis, peribiliary inflammation, and angiogenesis were measured by staining in liver sections, and by quantitative polymerase chain reaction and enzyme-linked immunosorbent assay in liver samples. We confirmed a link between MT1/clock genes/miR200b/maspin/GST/angiogenesis signaling by Ingenuity Pathway Analysis software and measured liver phenotypes and the aforementioned signaling pathway in liver samples from the mouse groups, healthy controls, and PSC patients and immortalized human PSC cholangiocytes. RESULTS: Chronic administration of melatonin to Mdr2-/- mice ameliorates liver phenotypes, which were associated with decreased MT1 and clock gene expression. CONCLUSIONS: Melatonin improves liver histology and restores the circadian rhythm by interaction with MT1 through decreased angiogenesis and increased maspin/GST activity.


Asunto(s)
Colangitis Esclerosante , Colestasis , Agua Potable , Melatonina , Animales , Colangitis Esclerosante/tratamiento farmacológico , Colangitis Esclerosante/genética , Colangitis Esclerosante/metabolismo , Colestasis/tratamiento farmacológico , Modelos Animales de Enfermedad , Glutatión/genética , Humanos , Cirrosis Hepática/patología , Masculino , Melatonina/farmacología , Melatonina/uso terapéutico , Ratones , Fenotipo , Ratas , Receptores de Melatonina/genética , Transferasas/genética
18.
Front Mol Biosci ; 8: 803098, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34993234

RESUMEN

Cellular senescence is a pathophysiological phenomenon in which proliferative cells enter cell cycle arrest following DNA damage and other stress signals. Natural, permanent DNA damage can occur after repetitive cell division; however, acute stress or other injuries can push cells into premature senescence and eventually a senescence-associated secretory phenotype (SASP). In recent years, there has been increased evidence for the role of premature senescence in disease progression including diabetes, cardiac diseases, and end-stage liver diseases including cholestasis. Liver size and function change with aging, and presumably with increasing cellular senescence, so it is important to understand the mechanisms by which cellular senescence affects the functional nature of the liver in health and disease. As well, cells in a SASP state secrete a multitude of inflammatory and pro-fibrogenic factors that modulate the microenvironment. Cellular SASP and the associated, secreted factors have been implicated in the progression of liver diseases, such as cholestatic injury that target the biliary epithelial cells (i.e., cholangiocytes) lining the bile ducts. Indeed, cholangiocyte senescence/SASP is proposed to be a driver of disease phenotypes in a variety of liver injuries. Within this review, we will discuss the impact of cholangiocyte senescence and SASP in the pathogenesis of cholestatic disorders.

19.
Cells ; 10(8)2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34440841

RESUMEN

Fatty liver diseases, such as non-alcoholic fatty liver disease (NAFLD), are global health disparities, particularly in the United States, as a result of cultural eating habits and lifestyle. Pathological studies on NAFLD have been mostly focused on hepatocytes and other inflammatory cell types; however, the impact of other biliary epithelial cells (i.e., cholangiocytes) in the promotion of NAFLD is growing. This review article will discuss how cholestatic injury and cholangiocyte activity/ductular reaction influence NAFLD progression. Furthermore, this review will provide informative details regarding the fundamental properties of cholangiocytes and bile acid signaling that can influence NAFLD. Lastly, studies relating to the pathogenesis of NAFLD, cholangiopathies, and ductular reaction will be analyzed to help gain insight for potential therapies.


Asunto(s)
Conductos Biliares/metabolismo , Colestasis/patología , Enfermedad del Hígado Graso no Alcohólico/patología , Transducción de Señal , Ácidos y Sales Biliares/metabolismo , Conductos Biliares/citología , Cannabinoides/metabolismo , Colestasis/etiología , Células Epiteliales/citología , Células Epiteliales/metabolismo , Humanos , Sistemas Neurosecretores/metabolismo , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Factor A de Crecimiento Endotelial Vascular/metabolismo
20.
Front Med (Lausanne) ; 7: 15, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32064266

RESUMEN

In the past ten years, our understanding of the importance of bile acids has expanded from fat absorption and glucose/lipid/energy homeostasis into potential therapeutic targets for amelioration of chronic cholestatic liver diseases. The discovery of important bile acid signaling mechanisms, as well as their role in metabolism, has increased the interest in bile acid/bile acid receptor research development. Bile acid levels and speciation are dysregulated during liver injury/damage resulting in cytotoxicity, inflammation, and fibrosis. An increasing focus to target bile acid receptors, responsible for bile acid synthesis and circulation, such as Farnesoid X receptor and apical sodium-dependent bile acid transporter to reduce bile acid synthesis have resulted in clinical trials for treatment of previously untreatable chronic liver diseases such as non-alcoholic steatohepatitis and primary sclerosing cholangitis. This review focuses on current bile acid receptor mediators and their effects on parenchymal and non-parenchymal cells. Attention will also be brought to the gut/liver axis during chronic liver damage and its treatment with bile acid receptor modulators. Overall, these studies lend evidence to the importance of bile acids and their receptors on liver disease establishment and progression.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA