Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Int J Mol Sci ; 23(2)2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35055083

RESUMEN

Verticillium nonalfalfae (V. nonalfalfae) is one of the most problematic hop (Humulus lupulus L.) pathogens, as the highly virulent fungal pathotypes cause severe annual yield losses due to infections of entire hop fields. In recent years, the RNA interference (RNAi) mechanism has become one of the main areas of focus in plant-fungal pathogen interaction studies and has been implicated as one of the major contributors to fungal pathogenicity. MicroRNA-like RNAs (milRNAs) have been identified in several important plant pathogenic fungi; however, to date, no milRNA has been reported in the V. nonalfalfae species. In the present study, using a high-throughput sequencing approach and extensive bioinformatics analysis, a total of 156 milRNA precursors were identified in the annotated V. nonalfalfae genome, and 27 of these milRNA precursors were selected as true milRNA candidates, with appropriate microRNA hairpin secondary structures. The stem-loop RT-qPCR assay was used for milRNA validation; a total of nine V. nonalfalfae milRNAs were detected, and their expression was confirmed. The milRNA expression patterns, determined by the absolute quantification approach, imply that milRNAs play an important role in the pathogenicity of highly virulent V. nonalfalfae pathotypes. Computational analysis predicted milRNA targets in the V. nonalfalfae genome and in the host hop transcriptome, and the activity of milRNA-mediated RNAi target cleavage was subsequently confirmed for two selected endogenous fungal target gene models using the 5' RLM-RACE approach.


Asunto(s)
Ascomicetos/genética , Secuenciación de Nucleótidos de Alto Rendimiento , MicroARNs/genética , ARN de Hongos , ARN Pequeño no Traducido/genética , Biología Computacional/métodos , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Ontología de Genes , Interacciones Huésped-Patógeno , Conformación de Ácido Nucleico , Filogenia , Enfermedades de las Plantas/microbiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados
2.
Appl Environ Microbiol ; 87(19): e0109921, 2021 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-34319799

RESUMEN

New approaches for the control of Campylobacter jejuni biofilms in the food industry are being studied intensively. Natural products are promising alternative antimicrobial substances to control biofilm production, with particular emphasis on plant extracts. Dried flowers of Lavandula angustifolia were used to produce essential oil (LEO), an ethanol extract (LEF), and an ethanol extract of Lavandula postdistillation waste material (LEW). The chemical compositions determined for these Lavandula preparations included seven major compounds that were selected for further testing. These were tested against C. jejuni for biofilm degradation and removal. Next-generation sequencing was used to study the molecular mechanisms underlying LEO actions against C. jejuni adhesion and motility. Analysis of LEO revealed 1,8-cineol, linalool, and linalyl acetate as the main components. For LEF and LEW, the main components were phenolic acid glycosides, with flavonoids rarely present. The MICs of the Lavandula preparations and pure compounds against C. jejuni ranged from 0.2 mg/ml to 1 mg/ml. LEO showed the strongest biofilm degradation. The reduction of C. jejuni adhesion was ≥1 log10 CFU/ml, which satisfies European Food Safety Authority recommendations. Lavandula preparations reduced C. jejuni motility by almost 50%, which consequently can impact biofilm formation. These data are in line with the transcriptome analysis of C. jejuni, which indicated that LEO downregulated genes important for biofilm formation. LEW also showed good antibacterial and antibiofilm effects, particularly against adhesion and motility mechanisms. This defines an innovative approach using alternative strategies and novel targets to combat bacterial biofilm formation and, hence, the potential to develop new effective agents with biofilm-degrading activities. IMPORTANCE The Lavandula preparations used in this study are found to be effective against C. jejuni, a common foodborne pathogen. They show antibiofilm properties at subinhibitory concentrations in terms of promoting biofilm degradation and inhibiting cell adhesion and motility, which are involved in the initial steps of biofilm formation. These results are confirmed by transcriptome analysis, which highlights the effect of Lavandula essential oil on C. jejuni biofilm properties. We show that the waste material from the hydrodistillation of Lavandula has particular antibiofilm effects, suggesting that it has potential for reuse for industrial purposes. This study highlights the need for efforts directed toward such innovative approaches and alternative strategies against biofilm formation and maintenance by developing new naturally derived agents with antibiofilm activities.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Campylobacter jejuni/efectos de los fármacos , Lavandula , Aceites Volátiles/farmacología , Extractos Vegetales/farmacología , Aceites de Plantas/farmacología , Antibacterianos/química , Adhesión Bacteriana/efectos de los fármacos , Campylobacter jejuni/genética , Campylobacter jejuni/crecimiento & desarrollo , Campylobacter jejuni/fisiología , Flavonoides/análisis , Flavonoides/farmacología , Flores , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Aceites Volátiles/química , Fitoquímicos/análisis , Fitoquímicos/farmacología , Extractos Vegetales/química , Aceites de Plantas/química , Residuos
3.
Int J Mol Sci ; 22(8)2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33921761

RESUMEN

RNA interference is an evolutionary conserved mechanism by which organisms regulate the expression of genes in a sequence-specific manner to modulate defense responses against various abiotic or biotic stresses. Hops are grown for their use in brewing and, in recent years, for the pharmaceutical industry. Hop production is threatened by many phytopathogens, of which Verticillium, the causal agent of Verticillium wilt, is a major contributor to yield losses. In the present study, we performed identification, characterization, phylogenetic, and expression analyses of three Argonaute, two Dicer-like, and two RNA-dependent RNA polymerase genes in the susceptible hop cultivar Celeia and the resistant cultivar Wye Target after infection with Verticillium nonalfalfae. Phylogeny results showed clustering of hop RNAi proteins with their orthologues from the closely related species Cannabis sativa, Morus notabilis and Ziziphus jujuba which form a common cluster with species of the Rosaceae family. Expression analysis revealed downregulation of argonaute 2 in both cultivars on the third day post-inoculation, which may result in reduced AGO2-siRNA-mediated posttranscriptional gene silencing. Both cultivars may also repress ta-siRNA biogenesis at different dpi, as we observed downregulation of argonaute 7 in the susceptible cultivar on day 1 and downregulation of RDR6 in the resistant cultivar on day 3 after inoculation.


Asunto(s)
Humulus/genética , Humulus/microbiología , MicroARNs/metabolismo , Verticillium/patogenicidad , Cannabis/genética , Cannabis/metabolismo , Cannabis/microbiología , Interacciones Huésped-Patógeno , Humulus/metabolismo , MicroARNs/genética , Filogenia , Interferencia de ARN , Ziziphus/genética , Ziziphus/metabolismo , Ziziphus/microbiología
4.
Front Plant Sci ; 15: 1336519, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38425801

RESUMEN

Microspore embryogenesis (ME) is the most powerful tool for creating homozygous lines in plant breeding and molecular biology research. It is still based mainly on the reprogramming of microspores by temperature, osmotic and/or nutrient stress. New compounds are being sought that could increase the efficiency of microspore embryogenesis or even induce the formation of haploid embryos from recalcitrant genotypes. Among these, the mitogenic factor phytosulfokine alpha (PSK-α) is promising due to its broad spectrum of activity in vivo and in vitro. The aim of our study was to investigate the effect of PSK-α on haploid embryogenesis from microspores of oilseed rape (Brassica napus L., DH4079), one of the most important oil crops and a model plant for studying the molecular mechanisms controlling embryo formation. We tested different concentrations (0, 0.01, 0.1 and 1 µM) of the peptide and evaluated its effect on microspore viability and embryo regeneration after four weeks of culture. Our results showed a positive correlation between addition of PSK-α and cultured microspore viability and a positive effect also on the number of developed embryos. The analysis of transcriptomes across three time points (day 0, 2 and 4) with or without PSK-α supplementation (15 RNA libraries in total) unveiled differentially expressed genes pivotal in cell division, microspore embryogenesis, and subsequent regeneration. PCA grouped transcriptomes by RNA sampling time, with the first two principal components explaining 56.8% variability. On day 2 with PSK, 45 genes (15 up- and 30 down-regulated) were differentially expressed when PSK-α was added and their number increased to 304 by day 4 (30 up- and 274 down-regulated). PSK, PSKR, and PSI gene expression analysis revealed dynamic patterns, with PSK2 displaying the highest increase and overall expression during microspore culture at days 2 and 4. Despite some variations, only PSK1 showed significant differential expression upon PSK-α addition. Of 16 ME-related molecular markers, 3 and 15 exhibited significant differential expression in PSK-supplemented cultures at days 2 and 4, respectively. Embryo-specific markers predominantly expressed after 4 days of culture, with higher expression in medium without PSK, while on day 0, numerous sporophyte-specific markers were highly expressed.

5.
J Plant Physiol ; 303: 154364, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39366099

RESUMEN

The purpose of research was to study in detail the dynamics of the anthocyanin pathway during the ripening of olives, comprising the relative gene expression of nine enzymes and the contents of twelve phenolic compounds. The analyses were conducted on cv. 'Istrska belica' at seven maturity stages, separately in the pulp and the skin. Most phenolic compounds showed a higher content in the skin than in the pulp. Results showed that the accumulation of dihidroquercetin and dihydromyricetin started at the latest maturity stages. The most abundant phenolics evaluated in the current study present in both tissues were cyanidin-3-O-rutinoside and delphinidin-3-O-glucoside, both presented at all maturity stages, even when colour was not yet visible in the skin or pulp. Gene expression of enzymes revealed tissue-specific regulation during ripening. Genes expressions for phenylalanine ammonia lyase, chalcone synthase, chalcone isomerase, flavonoid 3-hydroxylase and flavonoid 3'-hydroxylase showed higher levels in the skin than in the pulp, and an upregulation during ripening in both tissues. Anthocyanidin synthase was the only gene with the highest expression at the beginning of ripening, with extreme decrease between second and third maturity stage, which suggests that the enzyme is mainly synthesized at the beginning of ripening and that enzyme activation starts at latest maturity stages. Our research contributes to a better understanding of the dynamics of phenolic accumulation and the relative gene expression of enzymes involved in the anthocyanin pathway in reveals tissue-specific changes during olive fruit ripening. The previous results are also supported by physical changes, which are reflected in a statistical increase in fruit weight, a decrease in fruit firmness and also by changes in appearance observed during ripening. Understanding the accumulation of anthocyanins could, through further study, help to improve the quality of the fruit and therefore the quality of olive products.

6.
Front Plant Sci ; 14: 1245433, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37849838

RESUMEN

Genome editing techniques, such as Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated systems (CRISPR/Cas9) are undoubtedly becoming an indispensable tool for improving food crops and tackling agricultural challenges. In the present study, key factors affecting transformation efficiency, such as PEG4000 concentration, incubation time, and plasmid amount were evaluated to achieve efficient delivery of CRISPR/Cas9 vector into cabbage protoplasts. Using amplicon sequencing, we confirmed a significant effect of PEG4000 concentration and incubation time on the induced target mutations. By optimizing the transformation protocol, editing efficiency of 26.4% was achieved with 40 µg of plasmid and 15 minutes incubation with 50% PEG4000. While these factors strongly affected the mutation rate, the viability of the transformed protoplasts remained high. Our findings would be useful for successful genome editing in cabbage and other brassicas, as well as in research areas such as gene function analysis and subcellular localization that rely on transient transformation methods in protoplasts.

7.
Microbiol Spectr ; : e0257222, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36722966

RESUMEN

The full role of the luxS gene in the biological processes, such as essential amino acid synthesis, nitrogen and pyruvate metabolism, and flagellar assembly, of Campylobacter jejuni has not been clearly described to date. Therefore, in this study, we used a comprehensive approach at the cellular and molecular levels, including transcriptomics and proteomics, to investigate the key role of the luxS gene and compared C. jejuni 11168ΔluxS (luxS mutant) and C. jejuni NCTC 11168 (wild type) strains. Transcriptomic analysis of the luxS mutant grown under optimal conditions revealed upregulation of luxS mutant metabolic pathways when normalized to wild type, including oxidative phosphorylation, carbon metabolism, citrate cycle, biosynthesis of secondary metabolites, and biosynthesis of various essential amino acids. Interestingly, induction of these metabolic pathways was also confirmed by proteomic analysis, indicating their important role in energy production and the growth of C. jejuni. In addition, genes important for the stress response of C. jejuni, including nutrient starvation and oxidative stress, were upregulated. This was also evident in the better survival of the luxS mutant under starvation conditions than the wild type. At the molecular level, we confirmed that metabolic pathways were upregulated under optimal conditions in the luxS mutant, including those important for the biosynthesis of several essential amino acids. This also modulated the utilization of various carbon and nitrogen sources, as determined by Biolog phenotype microarray analysis. In summary, transcriptomic and proteomic analysis revealed key biological differences in tricarboxylic acid (TCA) cycle, pyruvate, nitrogen, and thiamine metabolism as well as lipopolysaccharide biosynthesis in the luxS mutant. IMPORTANCE Campylobacter jejuni is the world's leading foodborne bacterial pathogen of gastrointestinal disease in humans. C. jejuni is a fastidious but widespread organism and the most frequently reported zoonotic pathogen in the European Union since 2005. This led us to believe that C. jejuni, which is highly sensitive to stress factors (starvation and oxygen concentration) and has a low growth rate, benefits significantly from the luxS gene. The role of this gene in the life cycle of C. jejuni is well known, and the expression of luxS regulates many phenotypes, including motility, biofilm formation, host colonization, virulence, autoagglutination, cellular adherence and invasion, oxidative stress, and chemotaxis. Surprisingly, this study confirmed for the first time that the deletion of the luxS gene strongly affects the central metabolic pathway of C. jejuni, which improves its survival, showing its role beyond the intercellular signaling system.

8.
Cells ; 11(16)2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-36010668

RESUMEN

Abiotic and biotic stresses can lead to changes in host DNA methylation, which in plants is also mediated by an RNA-directed DNA methylation mechanism. Infections with viroids have been shown to affect DNA methylation dynamics in different plant hosts. The aim of our research was to determine the content of 5-methylcytosine (5-mC) in genomic DNA at the whole genome level of hop plants (Humulus lupulus Var. 'Celeia') infected with different viroids and their combinations and to analyse the expression of the selected genes to improve our understanding of DNA methylation dynamics in plant-viroid systems. The adapted HPLC-UV method used proved to be suitable for this purpose, and thus we were able to estimate for the first time that the cytosine methylation level in viroid-free hop plants was 26.7%. Interestingly, the observed 5-mC level was the lowest in hop plants infected simultaneously with CBCVd, HLVd and HSVd (23.7%), whereas the highest level was observed in plants infected with HLVd (31.4%). In addition, we identified three DNA methylases and one DNA demethylase gene in the hop's draft genome. The RT-qPCR revealed upregulation of all newly identified genes in hop plants infected with all three viroids, while no altered expression was observed in any of the other hop plants tested, except for CBCVd-infected hop plants, in which one DNA methylase was also upregulated.


Asunto(s)
Humulus , Viroides , Citosina , ADN , Metilación de ADN/genética , Genómica , Humulus/genética , Enfermedades de las Plantas/genética , Plantas/genética , Viroides/genética
9.
Front Microbiol ; 13: 830866, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35265062

RESUMEN

Diseases caused by viruses and virus-like organisms are one of the major problems in viticulture and grapevine marketing worldwide. Therefore, rapid and accurate diagnosis and identification is crucial. In this study, we used HTS of virus- and viroid-derived small RNAs to determine the virome status of Slovenian preclonal candidates of autochthonous and local grapevine varieties (Vitis vinifera L.). The method applied to the studied vines revealed the presence of nine viruses and two viroids. All viral entities were validated and more than 160 Sanger sequences were generated and deposited in NCBI. In addition, a complete description into the co-infections in each plant studied was obtained. No vine was found to be virus- and viroid-free, and no vine was found to be infected with only one virus or viroid, while the highest number of viral entities in a plant was eight.

10.
Plants (Basel) ; 10(9)2021 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-34579416

RESUMEN

MicroRNAs are 21- to 24-nucleotide-long, non-coding RNA molecules that regulate gene expression at the post-transcriptional level. They can modulate various biological processes, including plant response and resistance to fungal pathogens. Hops are grown for use in the brewing industry and, recently, also for the pharmaceutical industry. Severe Verticillium wilt caused by the phytopathogenic fungus Verticillium nonalfalfae, is the main factor in yield loss in many crops, including hops (Humulus lupulus L.). In our study, we identified 56 known and 43 novel miRNAs and their expression patterns in the roots of susceptible and resistant hop cultivars after inoculation with V. nonalfalfae. In response to inoculation with V. nonalfalfae, we found five known and two novel miRNAs that are differentially expressed in the susceptible cultivar and six known miRNAs in the resistant cultivar. Differentially expressed miRNAs target 49 transcripts involved in protein localization and pigment synthesis in the susceptible cultivar, whereas they are involved in transcription factor regulation and hormone signalling in the resistant cultivar. The results of our study suggest that the susceptible and resistant hop cultivars respond differently to V. nonalfalfae inoculation at the miRNA level and that miRNAs may contribute to the successful defence of the resistant cultivar.

11.
Genes (Basel) ; 11(8)2020 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-32785184

RESUMEN

The main challenge associated with genotyping based on conventional length polymorphisms is the cross-laboratory standardization of allele sizes. This step requires the inclusion of standards and manual sizing to avoid false results. Capillary electrophoresis (CE) approaches limit the information to the length polymorphism and do not allow the determination of a complete marker sequence. As an alternative, high-throughput sequencing (HTS) offers complete information regarding marker sequences and their flanking regions. In this work, we investigated the suitability of a semi-quantitative sequencing approach for microsatellite genotyping using Illumina paired-end technology. Twelve microsatellite loci that are well established for grapevine CE typing were analysed on 96 grapevine samples from six different countries. We redesigned primers to the length of the amplicon for short sequencing (~100 bp). The primer pair was flanked with a 10 bp overhang for the introduction of barcodes on both sides of the amplicon to enable high multiplexing. The highest data peaks were determined as simple sequence repeat (SSR) alleles and compared with the CE dataset based on 12 reference samples. The comparison showed that HTS SSR genotyping can successfully replace the CE system in further experiments. We believe that, with next-generation sequencing, genotyping can be improved in terms of its speed, accuracy, and price.


Asunto(s)
Técnicas de Genotipaje , Secuenciación de Nucleótidos de Alto Rendimiento , Vitis/clasificación , Vitis/genética , Alelos , Biología Computacional , ADN de Plantas , Marcadores Genéticos , Genotipo , Repeticiones de Microsatélite , Reacción en Cadena de la Polimerasa , Sitios de Carácter Cuantitativo
12.
Plants (Basel) ; 9(7)2020 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-32635416

RESUMEN

Phenolic compounds are involved in plant responses to various biotic and abiotic stress factors, with many studies suggesting their role in defense mechanisms against fungal pathogens. Soilborne vascular pathogen Verticillium nonalfalfae causes severe wilting and consequent dieback in a wide range of economically important crops, including hops (Humulus lupulus L.). In this study, we investigated the differential accumulation of phenolics in the susceptible "Celeia" and resistant "Wye Target" hop cultivars during the pathogenesis of Verticillium wilt. Quantitative polymerase chain reaction showed that colonization in the roots of both cultivars was intensive, but decreased continuously throughout the experiment in the resistant cultivar, while the relative fungal amount continuously increased in the stems of the susceptible cultivar. In response to colonization in the roots of the resistant cultivar, a significant increase in total flavanols was detected at three days postinoculation (dpi), suggesting a possible role in preventing fungus spread into the stems. The accumulation of phenolic compounds was less pronounced in the stems of the resistant cultivar since, compared to the latter, significant increases in flavonols at 3 and 15 dpi and hydroxycinnamic acids at 6 dpi were observed in the stems of the susceptible cultivar.

13.
Chemosphere ; 208: 522-529, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29890490

RESUMEN

This study investigated four different environmentally relevant microplastic (MP) pollutants which were derived from two facial cleansers, a plastic bag and polyethylene textile fleece. The mean size range of the particles (according to number distribution) was 20-250 µm when measured as a powder and 0.02-200 µm in suspension. In all MP exposures, plastic particles were found inside the guts of D. magna and A. franciscana, but only in the case of daphnids a clear exponential correlation between MP uptake in the gut and the size of the MP was identified. Exposure tests in which the majority of the MP particles were below 100 µm in size also had higher numbers of daphnids displaying evidence of MP ingestion. As the average MP particle size increased, the percentage of daphnids which had MP in their gut decreased. Using a number distribution value to measure particle size when in a suspension is more experimentally relevant as it provides a more realistic particle size than when samples are measured as a powder. Generally, artemias had fewer MP particles in the gut, than the daphnids, which could be explained by their different food size preferences. No acute effects on D. magna were found, but the growth of A. franciscana was affected. We conclude that zooplankton crustacean can ingest various MPs but none of the exposures tested were highly acutely hazardous to the test species. In addition, no delayed lethal effects in a 24 h post-exposure period were found.


Asunto(s)
Artemia/crecimiento & desarrollo , Daphnia/crecimiento & desarrollo , Contaminantes Ambientales/análisis , Contaminantes Ambientales/toxicidad , Plásticos/análisis , Plásticos/toxicidad , Animales , Artemia/efectos de los fármacos , Daphnia/efectos de los fármacos , Ingestión de Alimentos , Tamaño de la Partícula
14.
Environ Pollut ; 219: 201-209, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27814536

RESUMEN

Microplastic fibers (MP) from textile weathering and washing are increasingly being recognized as environmental pollutants. The majority of studies on the bioavailability and effects of microplastic focused on small polystyrene spherical plastic particles, while less data are available for fibers and for other materials besides polystyrene. We investigated the ingestion and effects of ground polyethylene terephthalate (PET) textile microfibers (length range: 62-1400 µm, width 31-528 µm, thickness 1-21.5 µm) on the freshwater zooplankton crustacean Daphnia magna after a 48 h exposure and subsequent 24 h of recovery in MP free medium and algae. The majority of ingested fibers by D. magna were around 300 µm, but also some very large twisted MP fibers around 1400 µm were found inside the gut. Exposure to these fibers results in increased mortality of daphnids after 48 h only in the case where daphnids were not pre-fed with algae prior to experiment, but no effect was found when daphnids were fed before the experiments. Regardless of the feeding regime, daphnids were not able to recover from MP exposure after additional 24 h incubation period in a MP free medium with algae. The uptake and effects of PET textile MP on D. magna are presented here for the first time.


Asunto(s)
Daphnia/efectos de los fármacos , Ingestión de Alimentos , Agua Dulce/química , Plásticos/toxicidad , Textiles/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Daphnia/fisiología , Tamaño de la Partícula , Poliestirenos/toxicidad , Zooplancton/efectos de los fármacos , Zooplancton/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA