Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Mater Sci Mater Med ; 34(7): 31, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37378714

RESUMEN

Bilateral defects (diameter 8 mm) in the medial tibial head of senile, osteopenic female sheep (n = 48; 9.63 ± 0.10 years; mean ± SEM) were treated with hydroxyapatite (HA)/beta-tricalcium phosphate (ß-TCP)/dicalcium phosphate dihydrate (DCPD; brushite) cylinders coated with BMP-2 (25 or 250 micrograms) or growth differentiation factor (GDF)-5 (125 or 1250 micrograms; left side); cylinders without BMP served as controls (right side). Three, 6, and 9 months post-operation (n = 6 each group), bone structure and formation were analyzed in vivo by X-ray and ex vivo by osteodensitometry, histomorphometry, and micro-computed tomography (micro-CT) at 3 and 9 months. Semi-quantitative X-ray evaluation showed significantly increasing bone densities around all implant cylinders over time. High-dose BMP-2-coated cylinders (3 and 9 months) and low-dose GDF-5-coated cylinders (3 and 6 months) demonstrated significantly higher densities than controls (dose-dependent for BMP-2 at 3 months). This was confirmed by osteodensitometry at 9 months for high-dose BMP-2-coated cylinders (and selected GDF-5 groups), and was again dose-dependent for BMP-2. Osteoinduction by BMP-2 was most pronounced in the adjacent bone marrow (dynamic histomorphometry/micro-CT). BMP-2 (and partially GDF-5) significantly increased the bone formation in the vicinity of HA/TCP/DCPD cylinders used to fill tibial bone defects in senile osteopenic sheep and may be suitable for surgical therapy of critical size, non-load-bearing bone defects in cases of failed tibial head fracture or defect healing.


Asunto(s)
Durapatita , Osteogénesis , Femenino , Animales , Ovinos , Durapatita/química , Regeneración Ósea , Factor 5 de Diferenciación de Crecimiento , Microtomografía por Rayos X , Fosfatos de Calcio/química , Hidroxiapatitas
2.
J Bone Miner Metab ; 38(5): 620-630, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32296985

RESUMEN

INTRODUCTION: Existing osteoporosis models in sheep exhibit some disadvantages, e.g., challenging surgical procedures, serious ethical concerns, failure of reliable induction of substantial bone loss, or lack of comparability to the human condition. This study aimed to compare bone morphological and mechanical properties of old and young sheep, and to evaluate the suitability of the old sheep as a model for senile osteopenia. MATERIALS AND METHODS: The lumbar vertebral body L3 of female merino sheep with two age ranges, i.e., old animals (6-10 years; n = 41) and young animals (2-4 years; n = 40), was analyzed concerning its morphological and mechanical properties by bone densitometry, quantitative histomorphometry, and biomechanical testing of the corticalis and/or central spongious region. RESULTS: In comparison with young sheep, old animals showed only marginally diminished bone mineral density of the vertebral bodies, but significantly decreased structural (bone volume, - 15.1%; ventral cortical thickness, - 11.8%; lateral cortical thickness, - 12.2%) and bone formation parameters (osteoid volume, osteoid surface, osteoid thickness, osteoblast surface, all - 100.0%), as well as significantly increased bone erosion (eroded surface, osteoclast surface). This resulted in numerically decreased biomechanical properties (compressive strength; - 6.4%). CONCLUSION: Old sheep may represent a suitable model of senile osteopenia with markedly diminished bone structure and formation, and substantially augmented bone erosion. The underlying physiological aging concept reduces challenging surgical procedures and ethical concerns and, due to complex alteration of different facets of bone turnover, may be well representative of the human condition.


Asunto(s)
Enfermedades Óseas Metabólicas/patología , Modelos Animales de Enfermedad , Ovinos/fisiología , Animales , Fenómenos Biomecánicos , Densidad Ósea , Enfermedades Óseas Metabólicas/fisiopatología , Hueso Esponjoso/patología , Hueso Esponjoso/fisiopatología , Fuerza Compresiva , Módulo de Elasticidad , Femenino , Vértebras Lumbares/patología , Vértebras Lumbares/fisiopatología , Osteogénesis
3.
Cell Tissue Res ; 372(1): 115-133, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29209813

RESUMEN

Extracellular matrix deposition during tubulointerstitial fibrosis (TIF), a central pathological process in patients with diabetic nephropathy (DN), is driven by locally activated, disease-relevant myofibroblasts. Myofibroblasts can arise from various cellular sources, e.g., tubular epithelial cells via a process named epithelial-to-mesenchymal transition (EMT). Transforming growth factor beta 1 (TGF-ß1) and its downstream Smad signaling play a critical role in both TIF and EMT. Whereas Smad3 is one central mediator, the role of the other prominently expressed variant, Smad2, is not completely understood. In this study, we sought to analyze the role of renal Smad2 in the development of TIF and EMT during streptozotocin-induced DN by using a fibroblast-specific protein 1 (FSP1)-promotor-driven SMAD2 knockout mouse model with decreased tubular, endothelial, and interstitial Smad2 expression. In contrast to wild-type diabetic mice, diabetic SMAD2 knockout mice showed the following features: (1) significantly reduced DN and TIF (shown by KIM1 expression; periodic acid Schiff staining; collagen I and III, fibronectin, and connective tissue growth factor deposition); (2) significantly reduced tubular EMT-like changes (e.g., altered Snail1, E-cadherin, matrix metalloproteinase 2, and vimentin deposition); and (3) significantly decreased expression of myofibroblast markers (α-smooth muscle actin, FSP1). As one mechanism for the protection against diabetes-induced TIF and EMT, decreased Smad3 protein levels and, as a possible consequence, reduced TGF-ß1 levels were observed in diabetic SMAD2 knockout mice. Our findings thus support the important role of Smad2 for pro-fibrotic TGF-ß/Smad3 signaling in experimental DN.


Asunto(s)
Diabetes Mellitus Experimental/patología , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Células Endoteliales/metabolismo , Transición Epitelial-Mesenquimal , Túbulos Renales/patología , Proteína de Unión al Calcio S100A4/metabolismo , Proteína Smad2/metabolismo , Animales , Biomarcadores/metabolismo , Proteína Morfogenética Ósea 7/metabolismo , Diabetes Mellitus Experimental/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/patología , Fibrosis , Eliminación de Gen , Túbulos Renales/metabolismo , Ratones Noqueados , Estreptozocina , Factor de Crecimiento Transformador beta/metabolismo
4.
J Cell Physiol ; 230(7): 1677-88, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25545021

RESUMEN

Rheumatoid arthritis synovial fibroblasts (RA-SFs) show an aggressive phenotype and support joint inflammation and tissue destruction. New druggable targets in RA-SFs would therefore be of high therapeutic interest. The present study shows that the intermediate-conductance, calcium-activated potassium channel KCa3.1 (KCNN4) is expressed at the mRNA and protein level in RA-SFs, is functionally active, and has a regulatory impact on cell proliferation and secretion of pro-inflammatory and pro-destructive mediators. Whole-cell patch-clamp recordings identified KCa3.1 as the dominant potassium channel in the physiologically relevant membrane voltage range below 0 mV. Stimulation with transforming growth factor ß1 (TGF-ß1) significantly increased transcription, translation, and channel function of KCa3.1. Inhibition of KCa3.1 by the selective, pore-blocking inhibitor TRAM-34, (and, in part, by siRNA) significantly reduced cell proliferation, as well as expression and secretion of pro-inflammatory factors (IL-6, IL-8, and MCP1) and the tissue-destructive protease MMP3. These effects were observed in non-stimulated and/or TGF-ß1-stimulated RA-SFs. Since small molecule-based interference with KCa3.1 is principally well tolerated in clinical settings, further evaluation of channel blockers in models of rheumatoid arthritis may be a promising approach to identify new pharmacological targets and develop new therapeutic strategies for this debilitating disease.


Asunto(s)
Artritis Reumatoide/metabolismo , Fibroblastos/fisiología , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Membrana Sinovial/química , Artritis Reumatoide/patología , Citocinas/genética , Citocinas/metabolismo , Regulación de la Expresión Génica/fisiología , Humanos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/genética , Metaloproteasas/genética , Metaloproteasas/metabolismo , Pirazoles/farmacología , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Membrana Sinovial/citología
5.
Biomed Mater ; 19(2)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38266275

RESUMEN

Despite their long history of application in orthopedics, the osteogenic and angiogenic properties as well as the cytocompatibility and protein adsorption of the 45S5- (in wt%: 45.0 SiO2, 24.5 Na2O, 24.5 CaO, 6.0 P2O5) and S53P4- (in wt%: 53.0 SiO2, 23.0 Na2O, 20.0 CaO, 4.0 P2O5) bioactive glass (BG) compositions have not yet been directly compared in one and the same experimental setting. In this study, the influence of morphologically equal granules of both BGs on proliferation, viability, osteogenic differentiation and angiogenic response of human bone-marrow-derived mesenchymal stromal cells (BMSCs) was assessed. Furthermore, their impact on vascular tube formation and adsorption of relevant proteins was evaluated. Both BGs showed excellent cytocompatibility and stimulated osteogenic differentiation of BMSCs. The 45S5-BG showed enhanced stimulation of bone morphogenic protein 2 (BMP2) gene expression and protein production compared to S53P4-BG. While gene expression and protein production of vascular endothelial growth factor (VEGF) were stimulated, both BGs had only limited influence on tubular network formation. 45S5-BG adsorbed a higher portion of proteins, namely BMP2 and VEGF, on its surface. In conclusion, both BGs show favorable properties with slight advantages for 45S5-BG. Since protein adsorption on BG surfaces is important for their biological performance, the composition of the proteome formed by osteogenic cells cultured on BGs should be analyzed in order to gain a deeper understanding of the mechanisms that are responsible for BG-mediated stimulation of osteogenic differentiation.


Asunto(s)
Osteogénesis , Factor A de Crecimiento Endotelial Vascular , Humanos , Adsorción , Dióxido de Silicio , Vidrio
6.
Biomimetics (Basel) ; 9(1)2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38248627

RESUMEN

An ICIE16-bioactive glass (BG) composition (in mol%: 49.5 SiO2, 6.6 Na2O, 36.3 CaO, 1.1 P2O5, and 6.6 K2O) has demonstrated excellent in vitro cytocompatibility when cultured with human bone marrow-derived mesenchymal stromal cells (BMSCs). However, its impact on the development of an osseous extracellular matrix (ECM) is limited. Since zinc (Zn) is known to enhance ECM formation and maturation, two ICIE16-BG-based Zn-supplemented BG compositions, namely 1.5 Zn-BG and 3Zn-BG (in mol%: 49.5 SiO2, 6.6 Na2O, 34.8/33.3 CaO, 1.1 P2O5, 6.6 K2O, and 1.5/3.0 ZnO) were developed, and their influence on BMSC viability, osteogenic differentiation, and ECM formation was assessed. Compared to ICIE16-BG, the Zn-doped BGs showed improved cytocompatibility and significantly enhanced osteogenic differentiation. The expression level of the osteopontin gene was significantly higher in the presence of Zn-doped BGs. A larger increase in collagen production was observed when the BMSCs were exposed to the Zn-doped BGs compared to that of the ICIE16-BG. The calcification of the ECM was increased by all the BG compositions; however, calcification was significantly enhanced by the Zn-doped BGs in the early stages of cultivation. Zn constitutes an attractive addition to ICIE16-BG, since it improves its ability to build and calcify an ECM. Future studies should assess whether these positive properties remain in an in vivo environment.

7.
J Biomed Mater Res A ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38623001

RESUMEN

The 0106-B1-bioactive glass (BG) composition (in wt %: 37.5 SiO2, 22.6 CaO, 5.9 Na2O, 4.0 P2O5, 12.0 K2O, 5.5 MgO, and 12.5 B2O3) has demonstrated favorable processing properties and promising bone regeneration potential. The present study aimed to evaluate the biological effects of the incorporation of highly pro-angiogenic copper (Cu) in 0106-B1-BG in vitro using human bone marrow-derived mesenchymal stromal cells (BMSCs) as well as its in vivo potential for bone regeneration. CuO was added to 0106-B1-BG in exchange for CaO, resulting in Cu-doped BG compositions containing 1.0, 2.5 and 5.0 wt % CuO (composition in wt %: 37.5 SiO2, 21.6/ 20.1/17.6 CaO, 5.9 Na2O, 4.0 P2O5, 12.0 K2O, 5.5 MgO, 12.5 B2O3, and 1.0/ 2.5/ 5.0 CuO). In vitro, the BGs' impact on the viability, proliferation, and growth patterns of BMSCs was evaluated. Analyses of protein secretion, matrix formation, and gene expression were used for the assessment of the BGs' influence on BMSCs regarding osteogenic differentiation and angiogenic stimulation. The presence of Cu improved cytocompatibility, osteogenic differentiation, and angiogenic response when compared with unmodified 0106-B1-BG in vitro. In vivo, a critical-size femoral defect in rats was filled with scaffolds made from BGs. Bone regeneration was evaluated by micro-computed tomography. Histological analysis was performed to assess bone maturation and angiogenesis. In vivo effects regarding defect closure, presence of osteoclastic cells or vascular structures in the defect were not significantly changed by the addition of Cu compared with undoped 0106-B1-BG scaffolds. Hence, while the in vitro properties of the 0106-B1-BG were significantly improved by the incorporation of Cu, further evaluation of the BG composition is necessary to transfer these effects to an in vivo setting.

8.
Biomimetics (Basel) ; 8(6)2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37887603

RESUMEN

Besides its favorable biological properties, the release of sodium (Na) from the well-known 45S5-bioactive glass (BG) composition (in mol%: 46.1, SiO2, 24.5 CaO, 24.5 Na2O, 6.0 P2O5) can hamper its cytocompatibility. In this study, particles of Na-reduced variants of 45S5-BG were produced in exchange for CaO and P2O5 via the sol-gel-route resulting in Na contents of 75%, 50%, 25% or 0% of the original composition. The release of ions from the BGs as well as their impact on the cell environment (pH values), viability and osteogenic differentiation (activity of alkaline phosphatase (ALP)), the expression of osteopontin and osteocalcin in human bone-marrow-derived mesenchymal stromal cells in correlation to the Na-content and ion release of the BGs was assessed. The release of Na-ions increased with increasing Na-content in the BGs. With decreasing Na content, the viability of cells incubated with the BGs increased. The Na-reduced BGs showed elevated ALP activity and a pro-osteogenic stimulation with accelerated osteopontin induction and a pronounced upregulation of osteocalcin. In conclusion, the reduction in Na-content enhances the cytocompatibility and improves the osteogenic properties of 45S5-BG, making the Na-reduced variants of 45S5-BG promising candidates for further experimental consideration.

9.
Biomater Adv ; 153: 213521, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37356285

RESUMEN

Since the introduction of the 45S5-bioactive glass (BG), numerous new BG compositions have been developed. Compared to the 45S5-BG, 1393-BG shows favorable processing properties due to its low crystallization tendency and the 1393-BG-based borosilicate 0106-B1-BG exhibits improved angiogenic properties due to its boron content. Despite their close (chemical) relationship, the biological properties of the mentioned BG composition have not yet been comparatively examined. In this study, the effects of the BGs on proliferation, viability, osteogenic differentiation, and angiogenic factor production of human bone marrow-derived mesenchymal stromal cells were assessed. Scaffolds made of the BGs were introduced in a critical-sized femur defect model in rats in order to analyze their impact on bone defect regeneration. In vitro, 1393-BG and 0106-B1-BG outperformed 45S5-BG with regard to cell proliferation and viability. 1393-BG enhanced osteogenic differentiation; 0106-B1-BG promoted angiogenic factor production. In vivo, 0106-B1-BG and 45S5-BG outperformed 1393-BG in terms of angiogenic and osteoclastic response resulting in improved bone regeneration. In conclusion, the biological properties of BGs can be significantly modified by tuning their composition. Demonstrating favorable processing properties and an equally strong in vivo bone regeneration potential as 45S5-BG, 0106-B1-BG qualifies as a basis to incorporate other bioactive ions to improve its biological properties.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Animales , Humanos , Ratas , Inductores de la Angiogénesis/farmacología , Médula Ósea , Fémur , Roedores
10.
Materials (Basel) ; 15(12)2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35744255

RESUMEN

Medical nutrients obtained from plants have been used in traditional medicine since ancient times, owning to the protective and therapeutic properties of plant extracts and products. Glycyrrhizic acid is one of those that, apart from its therapeutic effect, may contribute to stronger bones, inhibiting bone resorption and improving the bone structure and biomechanical strength. In the present study, we investigated the effect of a bioactive glass (BG) addition to the structure-property relationships of supramolecular assemblies formed by glycyrrhizic acid (GA) and its monoammonium salt (MSGA). FTIR spectra of supramolecular assemblies evidenced an interaction between BG components and hydroxyl groups of MSGA and GA. Moreover, it was revealed that BG components may interact and bond to the carboxyl groups of MSGA. In order to assess their biological effects, BG, MSGA, and their supramolecular assemblies were introduced to a culture of human bone-marrow-derived mesenchymal stromal cells (BMSCs). Both the BG and MSGA had positive influence on BMSC growth, viability, and osteogenic differentiation-these positive effects were most pronounced when BG1d-BG and MSGA were introduced together into cell culture in the form of MSGA:BG assemblies. In conclusion, MSGA:BG assemblies revealed a promising potential as a candidate material intended for application in bone defect reconstruction and bone tissue engineering approaches.

11.
J Immunol ; 183(2): 1328-36, 2009 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-19542367

RESUMEN

The present study investigated the influence of PGE(2), E prostanoid (EP) receptors, and their signaling pathways on matrix metalloproteinase (MMP)-1 and IL-6 expression in synovial fibroblasts (SFs) from rheumatoid arthritis (RA) patients. RASFs expressed all four EP receptors, with selective induction of EP2 by TNF-alpha. TNF-alpha time-dependently increased intracellular cAMP/protein kinase A signaling (maximum, 6-12 h) and PGE(2) secretion (maximum, 24 h). PGE(2) and the EP2 agonists butaprost or ONO-AE1-259 ((16)-9-deoxy-9beta-chloro-15-deoxy-16-hydroxy-17,17-trimethylene-19,20-didehydro PGE(1)), in turn, induced a rapid, time-dependent (maximum, 15-30 min) increase of cAMP. Additionally, cyclooxygenase-2 inhibition by NS-398 (N-(2-cyclohexyloxy-4-nitrophenyl)-methanesulfonamide) reduced the TNF-alpha-induced increase in IL-6 mRNA/protein, which was restored by stimulation with PGE(2) or EP2, EP3, and EP4 agonists. In contrast, TNF-alpha-induced MMP-1 secretion was not influenced by NS-398 and diminished by PGE(2) via EP2. Finally, 3-isobutyl-1-methylxanthine enhanced the effects of PGE(2) on MMP-1, but not on IL-6 mRNA. In conclusion, PGE(2) differentially affects TNF-alpha-induced mRNA expression of proinflammatory IL-6 and prodestructive MMP-1 regarding the usage of EP receptors and the dependency on cAMP. Although specific blockade of EP2 receptors is considered a promising therapeutic strategy in RA, opposite regulation of proinflammatory IL-6 and prodestructive MMP-1 by PGE(2) via EP2 may require more complex approaches to successfully inhibit the cyclooxygenase-1/2 cAMP axis.


Asunto(s)
AMP Cíclico/metabolismo , Dinoprostona/fisiología , Fibroblastos/patología , Interleucina-6/genética , Metaloproteinasa 1 de la Matriz/genética , Receptores de Prostaglandina E/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Artritis Reumatoide/inmunología , Artritis Reumatoide/patología , Dinoprostona/agonistas , Dinoprostona/inmunología , Dinoprostona/metabolismo , Humanos , Inflamación , Prostaglandina-Endoperóxido Sintasas , Membrana Sinovial/patología
12.
Materials (Basel) ; 14(8)2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33918612

RESUMEN

Mesoporous bioactive glass nanoparticles (MBGNs) have gained relevance in bone tissue engineering, especially since they can be used as vectors for therapeutically active ions like zinc (Zn) or copper (Cu). In this study, the osteogenic properties of the ionic dissolution products (IDPs) of undoped MBGNs (composition in mol%: 70 SiO2, 30 CaO) and MBGNs doped with 5 mol% of either Zn (5Zn-MBGNs) or Cu (5Cu-MBGNs; compositions in mol%: 70 SiO2, 25 CaO, 5 ZnO/CuO) on human bone marrow-derived mesenchymal stromal cells were evaluated. Extracellular matrix (ECM) formation and calcification were assessed, as well as the IDPs' influence on viability, cellular osteogenic differentiation and the expression of genes encoding for relevant members of the ECM. The IDPs of undoped MBGNs and 5Zn-MBGNs had a comparable influence on cell viability, while it was enhanced by IDPs of 5Cu-MBGNs compared to the other MBGNs. IDPs of 5Cu-MBGNs had slightly positive effects on ECM formation and calcification. 5Zn-MBGNs provided the most favorable pro-osteogenic properties since they increased not only cellular osteogenic differentiation and ECM-related gene expression but also ECM formation and calcification significantly. Future studies should analyze other relevant properties of MBGNs, such as their impact on angiogenesis.

13.
Materials (Basel) ; 14(14)2021 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-34300793

RESUMEN

Oil-based calcium phosphate cement (Paste-CPC) shows not only prolonged shelf life and injection times, but also improved cohesion and reproducibility during application, while retaining the advantages of fast setting, mechanical strength, and biocompatibility. In addition, poly(L-lactide-co-glycolide) (PLGA) fiber reinforcement may decrease the risk for local extrusion. Bone defects (diameter 5 mm; depth 15 mm) generated ex vivo in lumbar (L) spines of female Merino sheep (2-4 years) were augmented using: (i) water-based CPC with 10% PLGA fiber reinforcement (L3); (ii) Paste-CPC (L4); or (iii) clinically established polymethylmethacrylate (PMMA) bone cement (L5). Untouched (L1) and empty vertebrae (L2) served as controls. Cement performance was analyzed using micro-computed tomography, histology, and biomechanical testing. Extrusion was comparable for Paste-CPC(-PLGA) and PMMA, but significantly lower for CPC + PLGA. Compressive strength and Young's modulus were similar for Paste-CPC and PMMA, but significantly higher compared to those for empty defects and/or CPC + PLGA. Expectedly, all experimental groups showed significantly or numerically lower compressive strength and Young's modulus than those of untouched controls. Ready-to-use Paste-CPC demonstrates a performance similar to that of PMMA, but improved biomechanics compared to those of water-based CPC + PLGA, expanding the therapeutic arsenal for bone defects. O, significantly lower extrusion of CPC + PLGA fibers into adjacent lumbar spongiosa may help to reduce the risk of local extrusion in spinal surgery.

14.
Biomed Mater ; 14(5): 055012, 2019 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-31465298

RESUMEN

A brushite-forming calcium phosphate cement (CPC) was mechanically stabilized by addition of poly (l-lactid-co-glycolide; PLGA) fibers (≤10% w/w). It proved highly biocompatible and its fiber component enhanced bone formation in a sheep lumbar vertebroplasty model. However, possible effects on the osteogenic differentiation of resident mesenchymal stem cells (MSCs) remained unexplored. The present study used a novel approach, simultaneously analyzing the influence of a solid CPC scaffold and its relatively low PLGA proportion (a mimicry of natural bone) on osteogenic, chondrogenic, and adipogenic differentiation, as well as the pluripotency of human adipose tissue-derived mesenchymal stem cells (hASCs). hASCs were cultured on CPC discs with/without PLGA fibers (5% and 10%) in the absence of osteogenic medium for 3, 7, and 14 d. Gene expression of osteogenic markers (Runx2, osterix, alkaline phosphatase, collagen I, osteonectin, osteopontin, osteocalcin), chondrogenic markers (collagen II, Sox9, aggrecan), adipogenic markers (PPARG, Leptin, and FABP4), and pluripotency markers (Nanog, Tert, Rex) was analyzed by RT-PCR. The ability of hASCs to synthesize alkaline phosphatase was also evaluated. Cell number and viability were determined by fluorescein diacetate/propidium iodide staining. Compared to pure CPC, cultivation of hASCs on fiber-reinforced CPC transiently induced the gene expression of Runx2 and osterix (day 3), and long-lastingly augmented the expression of alkaline phosphatase (and its enzyme activity), collagen I, and osteonectin (until day 14). In contrast, augmented expression of all chondrogenic, adipogenic, and pluripotency markers was limited to day 3, followed by significant downregulation. Cultivation of hASCs on fiber-reinforced CPC reduced the cell number, but not the proportion of viable cells (viability > 95%). The PLGA component of fiber-reinforced, brushite-forming CPC supports long-lasting osteogenic differentiation of hASCs, whereas chondrogenesis, adipogenesis, and pluripotency are initially augmented, but subsequently suppressed. In view of parallel animal results, PLGA fibers may represent an interesting clinical target for future improvement of CPC- based bone regeneration.


Asunto(s)
Tejido Adiposo/citología , Cementos para Huesos , Fosfatos de Calcio/química , Células Madre Mesenquimatosas/citología , Osteogénesis/efectos de los fármacos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Vertebroplastia/instrumentación , Adulto , Fosfatasa Alcalina/metabolismo , Animales , Regeneración Ósea/efectos de los fármacos , Diferenciación Celular , Linaje de la Célula , Supervivencia Celular , Células Cultivadas , Condrogénesis , Femenino , Humanos , Vértebras Lumbares/fisiopatología , Masculino , Persona de Mediana Edad , Modelos Animales , Ovinos , Vertebroplastia/métodos
15.
Pharmaceutics ; 11(9)2019 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-31484306

RESUMEN

Bone regeneration of sheep lumbar osteopenia is promoted by targeted delivery of bone morphogenetic proteins (BMPs) via a biodegradable, brushite-forming calcium-phosphate-cement (CPC) with stabilizing poly(l-lactide-co-glycolide) acid (PLGA) fibers. The present study sought to quantify the release and bioactivity of BMPs from a specific own CPC formulation successfully used in previous in vivo studies. CPC solid bodies with PLGA fibers (0%, 5%, 10%) containing increasing dosages of GDF5, BB-1, and BMP-2 (2 to 1000 µg/mL) were ground and extracted in phosphate-buffered saline (PBS) or pure sheep serum/cell culture medium containing 10% fetal calf serum (FCS; up to 30/31 days). Released BMPs were quantified by ELISA, bioactivity was determined via alkaline phosphatase (ALP) activity after 3-day exposure of different osteogenic cell lines (C2C12; C2C12BRlb with overexpressed BMP-receptor-1b; MCHT-1/26; ATDC-5) and via the influence of the extracts on the expression of osteogenic/chondrogenic genes and proteins in human adipose tissue-derived mesenchymal stem cells (hASCs). There was hardly any BMP release in PBS, whereas in medium + FCS or sheep serum the cumulative release over 30/31 days was 11-34% for GDF5 and 6-17% for BB-1; the release of BMP-2 over 14 days was 25.7%. Addition of 10% PLGA fibers significantly augmented the 14-day release of GDF5 and BMP-2 (to 22.6% and 43.7%, respectively), but not of BB-1 (13.2%). All BMPs proved to be bioactive, as demonstrated by increased ALP activity in several cell lines, with partial enhancement by 10% PLGA fibers, and by a specific, early regulation of osteogenic/chondrogenic genes and proteins in hASCs. Between 10% and 45% of bioactive BMPs were released in vitro from CPC + PLGA fibers over a time period of 14 days, providing a basis for estimating and tailoring therapeutically effective doses for experimental and human in vivo studies.

16.
Biofabrication ; 11(1): 015001, 2018 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-30376451

RESUMEN

Repaired cartilage tissue lacks the typical zonal structure of healthy native cartilage needed for appropriate function. Current grafts for treatment of full thickness cartilage defects focus primarily on a nonzonal design and this may be a reason why inferior nonzonal regeneration tissue developed in vivo. No biomaterial-based solutions have been developed so far to induce a proper zonal architecture into a non-mineralized and a calcified cartilage layer. The objective was to grow bizonal cartilage with a calcified cartilage bottom zone wherein main tissue development is occurring in vivo. We hypothesized that starPEG/heparin-hydrogel owing to the glycosaminoglycan heparin contained as a building-block would prevent mineralization of the upper cartilage zone and be beneficial in inhibiting long-term progression of calcified cartilage into bone. MSCs were pre-cultured as self-assembling non-mineralized cell discs before a chondrocyte-seeded fibrin- or starPEG/heparin-hydrogel layer was cast on top directly before ectopic implantation. Bizonal cartilage with a calcified bottom-layer developed in vivo showing stronger mineralization compared to in vitro samples, but the hydrogel strongly determined outcome. Zonal fibrin-constructs lost volume and allowed non-organized expansion of collagen type X, ALP-activity and mineralization from the bottom-layer into upper regions, whereas zonal starPEG/heparin-constructs were of stable architecture. While non-zonal MSCs-derived discs formed bone over 12 weeks, the starPEG/heparin-chondrocyte layer prevented further progression of calcified cartilage into bone tissue. Conclusively, starPEG/heparin-hydrogel-controlled and cell-type mediated spatiotemporal regulation allowed in vivo growth of bizonal cartilage with a stable calcified cartilage layer. Altogether our work is an important milestone encouraging direct in vivo growth of organized cartilage after biofabrication.


Asunto(s)
Cartílago Articular/crecimiento & desarrollo , Condrocitos/citología , Heparina/química , Hidrogeles/química , Polietilenglicoles/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Animales , Calcificación Fisiológica , Cartílago Articular/citología , Cartílago Articular/metabolismo , Proliferación Celular , Células Cultivadas , Condrocitos/metabolismo , Colágeno Tipo X/metabolismo , Glicosaminoglicanos/química , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Porcinos , Porcinos Enanos , Ingeniería de Tejidos/instrumentación
17.
Spine J ; 18(2): 357-369, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29031993

RESUMEN

BACKGROUND CONTEXT: Targeted delivery of osteoinductive bone morphogenetic proteins (eg, GDF5) in bioresorbable calcium phosphate cement (CPC), potentially suitable for vertebroplasty and kyphoplasty of osteoporotic vertebral fractures, may be required to counteract augmented local bone catabolism and to support complete bone regeneration. The biologically optimized GDF5 mutant BB-1 may represent an attractive drug candidate for this purpose. PURPOSE: The aim of the current study was to test an injectable, poly(l-lactide-co-glycolide) acid (PLGA) fiber-reinforced, brushite-forming CPC containing low-dose BB-1 in a sheep lumbar osteopenia model. STUDY DESIGN/ SETTING: This is a prospective experimental animal study. METHODS: Bone defects (diameter 5 mm) were generated in aged, osteopenic female sheep and were filled with fiber-reinforced CPC alone (L4; CPC+fibers) or with CPC containing different dosages of BB-1 (L5; CPC+fibers+BB-1; 5, 100, and 500 µg BB-1; n=6 each). The results were compared with those of untouched controls (L1). Three and 9 months after the operation, structural and functional effects of the CPC (±BB-1) were analyzed ex vivo by measuring (1) bone mineral density (BMD); (2) bone structure, that is, bone volume/total volume (BV/TV) (assessed by micro-CT and histomorphometry), trabecular thickness (Tb.Th), and trabecular number (Tb.N); (3) bone formation, that is, osteoid volume/bone volume (OV/BV), osteoid surface/bone surface (OS/BS), osteoid thickness, mineralizing surface/bone surface (MS/BS), mineral apposition rate, and bone formation rate/bone surface; (4) bone resorption, that is, eroded surface/bone surface; and (5) compressive strength. RESULTS: Compared with untouched controls (L1), CPC+fibers (L4) and/or CPC+fibers+BB-1 (L5) significantly improved all parameters of bone formation, bone resorption, and bone structure. These effects were observed at 3 and 9 months, but were less pronounced for some parameters at 9 months. Compared with CPC without BB-1, additional significant effects of BB-1 were demonstrated for BMD, bone structure (BV/TV, Tb.Th, and Tb.N), and bone formation (OS/BS and MS/BS). The BB-1 effects on bone formation at 3 and 9 months were dose dependent, with 100 µg as the potentially optimal dosage. CONCLUSIONS: BB-1 significantly enhanced the bone formation induced by a PLGA fiber-reinforced CPC in sheep lumbar osteopenia. A single local dose as low as 100 µg BB-1 was sufficient to augment middle- to long-term bone formation. A CPC containing the novel GDF5 mutant BB-1 may thus represent an alternative to the bioinert, supraphysiologically stiff polymethylmethacrylate cement presently used to treat osteoporotic vertebral fractures by vertebroplasty and kyphoplasty.


Asunto(s)
Cementos para Huesos/uso terapéutico , Enfermedades Óseas Metabólicas/tratamiento farmacológico , Regeneración Ósea/efectos de los fármacos , Factor 5 de Diferenciación de Crecimiento/uso terapéutico , Ácido Láctico/uso terapéutico , Osteogénesis/efectos de los fármacos , Ácido Poliglicólico/uso terapéutico , Vertebroplastia/métodos , Animales , Densidad Ósea/efectos de los fármacos , Fuerza Compresiva , Modelos Animales de Enfermedad , Femenino , Factor 5 de Diferenciación de Crecimiento/administración & dosificación , Ácido Láctico/administración & dosificación , Región Lumbosacra , Ácido Poliglicólico/administración & dosificación , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Polimetil Metacrilato/administración & dosificación , Polimetil Metacrilato/uso terapéutico , Estudios Prospectivos , Ovinos
18.
Tissue Cell ; 49(6): 697-710, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29102397

RESUMEN

A pre-washing protocol was developed for resorbable, brushite-forming calcium phosphate cements (CPCs) to avoid harmful in vitro effects on cells. CPC discs (JectOS+, Kasios; self-developed CPC) were pre-washed with repeated changes of phosphate-buffered saline (PBS; 24h total). Unwashed or PBS-pre-washed discs were incubated in culture medium (5% fetal calf serum; up to 10days) and then tested for their influence on pH/calcium/phosphate levels in H2O extracts. Effects on pH/calcium/phosphate levels in culture supernatants, and morphology, adherence, number, and viability of ATDC5 cells and adipose-tissue derived stem cells were analyzed in co-culture. Pre-washing did not alter CPC surface morphology or Ca/P ratio (scanning electron microscopy; energy-dispersive X-ray spectroscopy). However, acidic pH of unwashed JectOS+ and self-developed CPC (5.82; 5.11), and high concentrations of Ca (2.17; 2.40mM) and PO4 (38.15; 49.28mM) in H2O extracts were significantly counteracted by PBS-pre-washing (pH: 7.92; 7.92; Ca: 0.64; 1.11mM; PO4: 5.39-5.97mM). Also, PBS-pre-washing led to physiological pH (approx. 7.5) and PO4 levels (max. 5mM), and sub-medium Ca levels (0.5-1mM) in supernatants and normalized cell morphology, adherence, number, and viability. This CPC pre-washing protocol improves in vitro co-culture conditions without influencing its structure or chemical composition.


Asunto(s)
Cementos para Huesos/química , Sustitutos de Huesos/química , Fosfatos de Calcio/química , Supervivencia Celular/efectos de los fármacos , Adulto , Animales , Cementos para Huesos/farmacología , Sustitutos de Huesos/farmacología , Fosfatos de Calcio/farmacología , Adhesión Celular/efectos de los fármacos , Células Cultivadas , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad
19.
Spine J ; 17(5): 709-719, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27871820

RESUMEN

BACKGROUND CONTEXT: Injectable, brushite-forming calcium phosphate cements (CPC) show potential for bone replacement, but they exhibit low mechanical strength. This study tested a CPC reinforced with poly(l-lactide-co-glycolide) acid (PLGA) fibers in a minimally invasive, sheep lumbar vertebroplasty model. PURPOSE: The study aimed to test the in vivo biocompatibility and osteogenic potential of a PLGA fiber-reinforced, brushite-forming CPC in a sheep large animal model. STUDY DESIGN/SETTING: This is a prospective experimental animal study. METHODS: Bone defects (diameter: 5 mm) were placed in aged, osteopenic female sheep, and left empty (L2) or injected with pure CPC (L3) or PLGA fiber-reinforced CPC (L4; fiber diameter: 25 µm; length: 1 mm; 10% [wt/wt]). Three and 9 months postoperation (n=20 each), the structural and functional CPC effects on bone regeneration were documented ex vivo by osteodensitometry, histomorphometry, micro-computed tomography (micro-CT), and biomechanical testing. RESULTS: Addition of PLGA fibers enhanced CPC osteoconductivity and augmented bone formation. This was demonstrated by (1) significantly enhanced structural (bone volume/total volume, shown by micro-CT and histomorphometry; 3 or 9 months) and bone formation parameters (osteoid volume and osteoid surface; 9 months); (2) numerically enhanced bone mineral density (3 and 9 months) and biomechanical compression strength (9 months); and (3) numerically decreased bone erosion (eroded surface; 3 and 9 months). CONCLUSIONS: The PLGA fiber-reinforced CPC is highly biocompatible and its PLGA fiber component enhanced bone formation. Also, PLGA fibers improve the mechanical properties of brittle CPC, with potential applicability in load-bearing areas.


Asunto(s)
Cementos para Huesos/química , Regeneración Ósea , Osteogénesis , Vertebroplastia/métodos , Animales , Cementos para Huesos/efectos adversos , Fosfatos de Calcio/química , Femenino , Ácido Láctico/química , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ovinos , Vertebroplastia/efectos adversos
20.
Spine J ; 17(11): 1699-1711, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28619686

RESUMEN

BACKGROUND CONTEXT: Bioresorbable calcium phosphate cement (CPC) may be suitable for vertebroplasty/kyphoplasty of osteoporotic vertebral fractures. However, additional targeted delivery of osteoinductive bone morphogenetic proteins (BMPs) in the CPC may be required to counteract the augmented local bone catabolism and support complete bone regeneration. PURPOSE: This study aimed at testing an injectable, poly (l-lactide-co-glycolide) acid (PLGA) fiber-reinforced, brushite-forming cement (CPC) containing low-dose bone morphogenetic protein BMP-2 in a sheep lumbar osteopenia model. STUDY DESIGN/ SETTING: This is a prospective experimental animal study. METHODS: Bone defects (diameter 5 mm) were generated in aged, osteopenic female sheep and filled with fiber-reinforced CPC alone (L4; CPC+fibers) or with CPC containing different dosages of BMP-2 (L5; CPC+fibers+BMP-2; 1, 5, 100, and 500 µg BMP-2; n=5 or 6 each). The results were compared with those of untouched controls (L1). Three and 9 months after the operation, structural and functional effects of the CPC (±BMP-2) were analyzed ex vivo by measuring (1) bone mineral density (BMD); (2) bone structure, that is, bone volume/total volume (assessed by micro-computed tomography [micro-CT] and histomorphometry), trabecular thickness, and trabecular number; (3) bone formation, that is, osteoid volume/bone volume, osteoid surface/bone surface, osteoid thickness, mineralizing surface/bone surface, mineral apposition rate, and bone formation rate/bone surface; (4) bone resorption, that is, eroded surface/bone surface; and (5) compressive strength. RESULTS: Compared with untouched controls (L1), CPC+fibers (L4) and/or CPC+fibers+BMP-2 (L5) significantly improved all parameters of bone formation, bone resorption, and bone structure. These effects were observed at 3 and 9 months, but were less pronounced for some parameters at 9 months. Compared with CPC without BMP-2, additional significant effects of BMP-2 were demonstrated for bone structure (bone volume/total volume, trabecular thickness, trabecular number) and formation (osteoid surface/bone surface and mineralizing surface/bone surface), as well as for the compressive strength. The BMP-2 effects on bone formation at 3 and 9 months were dose-dependent, with 5-100 µg as the optimal dosage. CONCLUSIONS: BMP-2 significantly enhanced the bone formation induced by a PLGA fiber-reinforced CPC in sheep lumbar osteopenia. A single local dose as low as ≤100 µg BMP-2 was sufficient to augment middle to long-term bone formation. The novel CPC+BMP-2 may thus represent an alternative to the bioinert, supraphysiologically stiff polymethylmethacrylate cement presently used to treat osteoporotic vertebral fractures by vertebroplasty/kyphoplasty.


Asunto(s)
Cementos para Huesos/química , Enfermedades Óseas Metabólicas/tratamiento farmacológico , Proteína Morfogenética Ósea 2/uso terapéutico , Regeneración Ósea/efectos de los fármacos , Región Lumbosacra/patología , Animales , Cementos para Huesos/uso terapéutico , Densidad Ósea , Proteína Morfogenética Ósea 2/administración & dosificación , Proteína Morfogenética Ósea 2/farmacología , Fosfatos de Calcio/química , Fuerza Compresiva , Femenino , Polimetil Metacrilato/química , Ovinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA