Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Circ Res ; 134(9): 1113-1135, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38662856

RESUMEN

Epidemiological studies have found that transportation noise increases the risk for cardiovascular morbidity and mortality, with solid evidence for ischemic heart disease, heart failure, and stroke. According to the World Health Organization, at least 1.6 million healthy life years are lost annually from traffic-related noise in Western Europe. Traffic noise at night causes fragmentation and shortening of sleep, elevation of stress hormone levels, and increased oxidative stress in the vasculature and the brain. These factors can promote vascular (endothelial) dysfunction, inflammation, and arterial hypertension, thus elevating cardiovascular risk. The present review focusses on the indirect, nonauditory cardiovascular health effects of noise. We provide an updated overview of epidemiological research on the effects of transportation noise on cardiovascular risk factors and disease, and mechanistic insights based on the latest clinical and experimental studies and propose new risk markers to address noise-induced cardiovascular effects in the general population. We will discuss the potential effects of noise on vascular dysfunction, oxidative stress, and inflammation in humans and animals. We will elaborately explain the underlying pathomechanisms by alterations of gene networks, epigenetic pathways, circadian rhythm, signal transduction along the neuronal-cardiovascular axis, and metabolism. We will describe current and future noise mitigation strategies. Finally, we will conduct an overall evaluation of the status of the current evidence of noise as a significant cardiovascular risk factor.


Asunto(s)
Enfermedades Cardiovasculares , Ruido del Transporte , Estrés Oxidativo , Humanos , Ruido del Transporte/efectos adversos , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/epidemiología , Animales , Factores de Riesgo de Enfermedad Cardiaca , Exposición a Riesgos Ambientales/efectos adversos , Factores de Riesgo
2.
Basic Res Cardiol ; 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38554187

RESUMEN

CD40L-CD40-TRAF signaling plays a role in atherosclerosis progression and affects the pathogenesis of coronary heart disease (CHD). We tested the hypothesis that CD40L-CD40-TRAF signaling is a potential therapeutic target in hyperlipidemia, diabetes, and hypertension. In mouse models of hyperlipidemia plus diabetes (db/db mice) or hypertension (1 mg/kg/d angiotensin-II for 7 days), TRAF6 inhibitor treatment (2.5 mg/kg/d for 7 or 14 days) normalized markers of oxidative stress and inflammation. As diabetes and hypertension are important comorbidities aggravating CHD, we explored whether the CD40L-CD40-TRAF signaling cascade and their associated inflammatory pathways are expressed in CHD patients suffering from comorbidities. Therefore, we analyzed vascular bypass material (aorta or internal mammary artery) and plasma from patients with CHD with diabetes and/or hypertension. Our Olink targeted plasma proteomic analysis using the IMMUNO-ONCOLOGY panel revealed a pattern of step-wise increase for 13/92 markers of low-grade inflammation with significant changes. CD40L or CD40 significantly correlated with 38 or 56 other inflammatory targets. In addition, specific gene clusters that correlate with the comorbidities were identified in isolated aortic mRNA of CHD patients through RNA-sequencing. These signaling clusters comprised CD40L-CD40-TRAF, immune system, hemostasis, muscle contraction, metabolism of lipids, developmental biology, and apoptosis. Finally, immunological analysis revealed key markers correlated with comorbidities in CHD patients, such as CD40L, NOX2, CD68, and 3-nitrotyrosine. These data indicate that comorbidities increase inflammatory pathways in CHD, and targeting these pathways will be beneficial in reducing cardiovascular events in CHD patients with comorbidities.

3.
Pflugers Arch ; 475(7): 783-796, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37084087

RESUMEN

Smoking tobacco cigarettes is a significant (cardiovascular) health risk factor. Although the number of tobacco cigarette users declined over the last decades, shisha smoking and e-cigarette vaping partially compensated for this health benefit. E-cigarettes may create highly addicted dual users (vaping and smoking). E-cigarettes seem not to represent a healthier alternative to tobacco smoking, although they may be less harmful. E-cigarette vaping causes oxidative stress, inflammation, endothelial dysfunction, and associated cardiovascular sequelae. This is primarily due to a significant overlap of toxic compounds in the vapor compared to tobacco smoke and, accordingly, a substantial overlap of pathomechanistic features between vaping and smoking. Whereas the main toxins in vapor are reactive aldehydes such as formaldehyde and acrolein, the toxic mixture in smoke is more complex, comprising particulate matter, reactive gases, transition metals, volatile organic compounds, and N-nitrosamines. However, it seems that both lifestyle drugs impair endothelial function to a quite similar extent, which may be due to the role of oxidative stress as the central pathomechanism to mediate endothelial dysfunction and vascular damage. Finally, the main selling argument for e-cigarette use that they help to quit smoking and get rid of nicotine addiction may be false because it seems that e-cigarettes instead trigger the opposite-younger entrance age and more frequent use. With our review, we summarize the adverse health impact of tobacco cigarettes and e-cigarettes, emphasizing the detrimental effects on endothelial function and cardiovascular health.


Asunto(s)
Sistema Cardiovascular , Sistemas Electrónicos de Liberación de Nicotina , Vapeo , Humanos , Animales , Vapeo/efectos adversos
4.
Pflugers Arch ; 475(7): 797-805, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36961561

RESUMEN

Tobacco cigarette smoking is among the most complex and least understood health risk factors. A deeper insight into the pathophysiological actions of smoking exposure is of special importance as smoking is a major cause of chronic non-communicable diseases, in particular of cardiovascular disease as well as risk factors such as atherosclerosis and arterial hypertension. It is well known that smoking exerts its negative effects on cardiovascular health through various interdependent pathophysiological actions including hemodynamic and autonomic alterations, oxidative stress, inflammation, endothelial dysfunction, thrombosis, and hyperlipidemia. Importantly, impaired vascular endothelial function is acknowledged as an early key event in the initiation and progression of smoking-induced atherosclerosis. Increasing evidence from human studies indicates that cigarette smoke exposure associates with a pathological state of the vascular endothelium mainly characterized by reduced vascular nitric oxide bioavailability due to increased vascular superoxide production. In the present overview, we provide compact evidence on the effects of tobacco cigarette smoke exposure on vascular biology and function in humans centered on main drivers of adverse cardiovascular effects including endothelial dysfunction, inflammation, and oxidative stress.


Asunto(s)
Aterosclerosis , Endotelio Vascular , Humanos , Endotelio Vascular/metabolismo , Estrés Oxidativo , Aterosclerosis/patología , Inflamación/metabolismo , Fumar Tabaco , Biología
5.
Pflugers Arch ; 475(7): 807-821, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37285062

RESUMEN

Electronic cigarettes (E-cigarettes) have recently become a popular alternative to traditional tobacco cigarettes. Despite being marketed as a healthier alternative, increasing evidence shows that E-cigarette vapour could cause adverse health effects. It has been postulated that degradation products of E-cigarette liquid, mainly reactive aldehydes, are responsible for those effects. Previously, we have demonstrated that E-cigarette vapour exposure causes oxidative stress, inflammation, apoptosis, endothelial dysfunction and hypertension by activating NADPH oxidase in a mouse model. To better understand oxidative stress mechanisms, we have exposed cultured endothelial cells and macrophages to condensed E-cigarette vapour (E-cigarette condensate) and acrolein. In both endothelial cells (EA.hy 926) and macrophages (RAW 264.7), we have observed that E-cigarette condensate incubation causes cell death. Since recent studies have shown that among toxic aldehydes found in E-cigarette vapour, acrolein plays a prominent role, we have incubated the same cell lines with increasing concentrations of acrolein. Upon incubation with acrolein, a translocation of Rac1 to the plasma membrane has been observed, accompanied by an increase in oxidative stress. Whereas reactive oxygen species (ROS) formation by acrolein in cultured endothelial cells was mainly intracellular, the release of ROS in cultured macrophages was both intra- and extracellular. Our data also demonstrate that acrolein activates the nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant pathway and, in general, could mediate E-cigarette vapour-induced oxidative stress and cell death. More mechanistic insight is needed to clarify the toxicity associated with E-cigarette consumption and the possible adverse effects on human health.


Asunto(s)
Cigarrillo Electrónico a Vapor , Sistemas Electrónicos de Liberación de Nicotina , Animales , Ratones , Humanos , Células Endoteliales/metabolismo , Acroleína/toxicidad , Acroleína/metabolismo , Cigarrillo Electrónico a Vapor/metabolismo , Cigarrillo Electrónico a Vapor/farmacología , Especies Reactivas de Oxígeno/metabolismo , NADPH Oxidasas/metabolismo , Macrófagos/metabolismo , Estrés Oxidativo , Aldehídos/metabolismo , Aldehídos/farmacología
6.
Nitric Oxide ; 113-114: 57-69, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34091009

RESUMEN

Arterial hypertension is one of the major health risk factors leading to coronary artery disease, stroke or peripheral artery disease. Dietary uptake of inorganic nitrite (NO2-) and nitrate (NO3-) via vegetables leads to enhanced vascular NO bioavailability and provides antihypertensive effects. The present study aims to understand the underlying vasoprotective effects of nutritional NO2- and NO3- co-therapy in mice with angiotensin-II (AT-II)-induced arterial hypertension. High-dose AT-II (1 mg/kg/d, 1w, s. c.) was used to induce arterial hypertension in male C57BL/6 mice. Additional inorganic nitrite (7.5 mg/kg/d, p. o.) or nitrate (150 mg/kg/d, p. o.) were administered via the drinking water. Blood pressure (tail-cuff method) and endothelial function (isometric tension) were determined. Oxidative stress and inflammation markers were quantified in aorta, heart, kidney and blood. Co-treatment with inorganic nitrite, but not with nitrate, normalized vascular function, oxidative stress markers and inflammatory pathways in AT-II treated mice. Of note, the highly beneficial effects of nitrite on all parameters and the less pronounced protection by nitrate, as seen by improvement of some parameters, were observed despite no significant increase in plasma nitrite levels by both therapies. Methemoglobin levels tended to be higher upon nitrite/nitrate treatment. Nutritional nitric oxide precursors represent a non-pharmacological treatment option for hypertension that could be applied to the general population (e.g. by eating certain vegetables). The more beneficial effects of inorganic nitrite may rely on superior NO bioactivation and stronger blood pressure lowering effects. Future large-scale clinical studies should investigate whether hypertension and cardiovascular outcome in general can be influenced by dietary inorganic nitrite therapy.


Asunto(s)
Antihipertensivos/farmacología , Hipertensión/tratamiento farmacológico , Nitratos/farmacología , Nitritos/farmacología , Administración Oral , Angiotensina II/administración & dosificación , Animales , Antihipertensivos/administración & dosificación , Antihipertensivos/sangre , Presión Sanguínea/efectos de los fármacos , Hipertensión/inducido químicamente , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Masculino , Ratones , Ratones Endogámicos C57BL , Nitratos/administración & dosificación , Nitratos/sangre , Nitritos/administración & dosificación , Nitritos/sangre , Estrés Oxidativo/efectos de los fármacos
7.
Eur Heart J ; 41(41): 4057-4070, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32585699

RESUMEN

Tobacco smoking is a leading cause of non-communicable disease globally and is a major risk factor for cardiovascular disease (CVD) and lung disease. Importantly, recent data by the World Health Organizations (WHO) indicate that in the last two decades global tobacco use has significantly dropped, which was largely driven by decreased numbers of female smokers. Despite such advances, the use of e-cigarettes and waterpipes (shisha, hookah, narghile) is an emerging trend, especially among younger generations. There is growing body of evidence that e-cigarettes are not a harm-free alternative to tobacco cigarettes and there is considerable debate as to whether e-cigarettes are saving smokers or generating new addicts. Here, we provide an updated overview of the impact of tobacco/waterpipe (shisha) smoking and e-cigarette vaping on endothelial function, a biomarker for early, subclinical, atherosclerosis from human and animal studies. Also their emerging adverse effects on the proteome, transcriptome, epigenome, microbiome, and the circadian clock are summarized. We briefly discuss heat-not-burn tobacco products and their cardiovascular health effects. We discuss the impact of the toxic constituents of these products on endothelial function and subsequent CVD and we also provide an update on current recommendations, regulation and advertising with focus on the USA and Europe. As outlined by the WHO, tobacco cigarette, waterpipe, and e-cigarette smoking/vaping may contribute to an increased burden of symptoms due to coronavirus disease 2019 (COVID-19) and to severe health consequences.


Asunto(s)
Enfermedades Cardiovasculares/etiología , Sistemas Electrónicos de Liberación de Nicotina , Endotelio Vascular/fisiopatología , Productos de Tabaco/efectos adversos , Fumar en Pipa de Agua/efectos adversos , Humanos
8.
Eur Heart J ; 41(26): 2472-2483, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-31715629

RESUMEN

AIMS: Electronic (e)-cigarettes have been marketed as a 'healthy' alternative to traditional combustible cigarettes and as an effective method of smoking cessation. There are, however, a paucity of data to support these claims. In fact, e-cigarettes are implicated in endothelial dysfunction and oxidative stress in the vasculature and the lungs. The mechanisms underlying these side effects remain unclear. Here, we investigated the effects of e-cigarette vapour on vascular function in smokers and experimental animals to determine the underlying mechanisms. METHODS AND RESULTS: Acute e-cigarette smoking produced a marked impairment of endothelial function in chronic smokers determined by flow-mediated dilation. In mice, e-cigarette vapour without nicotine had more detrimental effects on endothelial function, markers of oxidative stress, inflammation, and lipid peroxidation than vapour containing nicotine. These effects of e-cigarette vapour were largely absent in mice lacking phagocytic NADPH oxidase (NOX-2) or upon treatment with the endothelin receptor blocker macitentan or the FOXO3 activator bepridil. We also established that the e-cigarette product acrolein, a reactive aldehyde, recapitulated many of the NOX-2-dependent effects of e-cigarette vapour using in vitro blood vessel incubation. CONCLUSIONS: E-cigarette vapour exposure increases vascular, cerebral, and pulmonary oxidative stress via a NOX-2-dependent mechanism. Our study identifies the toxic aldehyde acrolein as a key mediator of the observed adverse vascular consequences. Thus, e-cigarettes have the potential to induce marked adverse cardiovascular, pulmonary, and cerebrovascular consequences. Since e-cigarette use is increasing, particularly amongst youth, our data suggest that aggressive steps are warranted to limit their health risks.


Asunto(s)
Encéfalo , Cigarrillo Electrónico a Vapor/efectos adversos , Sistemas Electrónicos de Liberación de Nicotina , NADPH Oxidasa 2/genética , Estrés Oxidativo , Animales , Encéfalo/metabolismo , Ratones
9.
Int J Mol Sci ; 22(5)2021 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-33670865

RESUMEN

The World Health Organization estimates that only approximately 25% of diversity in longevity is explained by genetic factors, while the other 75% is largely determined by interactions with the physical and social environments. Indeed, aging is a multifactorial process that is influenced by a range of environmental, sociodemographic, and biopsychosocial factors, all of which might act in concert to determine the process of aging. The global average life expectancy increased fundamentally over the past century, toward an aging population, correlating with the development and onset of age-related diseases, mainly from cardiovascular and neurological nature. Therefore, the identification of determinants of healthy and unhealthy aging is a major goal to lower the burden and socioeconomic costs of age-related diseases. The role of environmental factors (such as air pollution and noise exposure) as crucial determinants of the aging process are being increasingly recognized. Here, we critically review recent findings concerning the pathomechanisms underlying the aging process and their correlates in cardiovascular and neurological disease, centered on oxidative stress and inflammation, as well as the influence of prominent environmental pollutants, namely air pollution and traffic noise exposure, which is suggested to accelerate the aging process. Insight into these types of relationships and appropriate preventive strategies are urgently needed to promote healthy aging.


Asunto(s)
Envejecimiento , Contaminación del Aire/efectos adversos , Enfermedades Cardiovasculares/etiología , Enfermedades del Sistema Nervioso/etiología , Ruido del Transporte/efectos adversos , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Enfermedades Cardiovasculares/epidemiología , Femenino , Humanos , Inflamación , Masculino , Persona de Mediana Edad , Enfermedades del Sistema Nervioso/epidemiología , Estrés Oxidativo , Material Particulado , Factores Sexuales
10.
Int J Mol Sci ; 22(14)2021 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-34298890

RESUMEN

Despite extensive efforts to combat cigarette smoking/tobacco use, it still remains a leading cause of global morbidity and mortality, killing more than eight million people each year. While tobacco smoking is a major risk factor for non-communicable diseases related to the four main groups-cardiovascular disease, cancer, chronic lung disease, and diabetes-its impact on neuropsychiatric risk is rather elusive. The aim of this review article is to emphasize the importance of smoking as a potential risk factor for neuropsychiatric disease and to identify central pathophysiological mechanisms that may contribute to this relationship. There is strong evidence from epidemiological and experimental studies indicating that smoking may increase the risk of various neuropsychiatric diseases, such as dementia/cognitive decline, schizophrenia/psychosis, depression, anxiety disorder, and suicidal behavior induced by structural and functional alterations of the central nervous system, mainly centered on inflammatory and oxidative stress pathways. From a public health perspective, preventive measures and policies designed to counteract the global epidemic of smoking should necessarily include warnings and actions that address the risk of neuropsychiatric disease.


Asunto(s)
Trastornos de Ansiedad/inducido químicamente , Fumar/efectos adversos , Fumar Tabaco/efectos adversos , Animales , Humanos , Estrés Oxidativo/efectos de los fármacos , Factores de Riesgo , Transducción de Señal/efectos de los fármacos
11.
Arch Biochem Biophys ; 696: 108662, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33159890

RESUMEN

Environmental pollution is a major cause of global mortality and burden of disease. All chemical pollution forms together may be responsible for up to 12 million annual excess deaths as estimated by the Lancet Commission on pollution and health as well as the World Health Organization. Ambient air pollution by particulate matter (PM) and ozone was found to be associated with an all-cause mortality rate of up to 9 million in the year 2015, with the majority being of cerebro- and cardiovascular nature (e.g. stroke and ischemic heart disease). Recent evidence suggests that exposure to airborne particles and gases contributes to and accelerates neurodegenerative diseases. Especially, airborne toxic particles contribute to these adverse health effects. Whereas it is well established that air pollution in the form of PM may lead to dysregulation of neurohormonal stress pathways and may trigger inflammation as well as oxidative stress, leading to secondary damage of cardiovascular structures, the mechanistic impact of PM-induced mitochondrial damage and dysfunction is not well established. With the present review we will discuss similarities between mitochondrial damage and dysfunction observed in the development and progression of cardiovascular disease and neurodegeneration as well as those adverse mitochondrial pathomechanisms induced by airborne PM.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Enfermedades Cardiovasculares/fisiopatología , Mitocondrias/efectos de los fármacos , Enfermedades Neurodegenerativas/fisiopatología , Estrés Oxidativo/efectos de los fármacos , Material Particulado/toxicidad , Animales , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/etiología , Humanos , Enfermedades Neurodegenerativas/epidemiología , Enfermedades Neurodegenerativas/etiología
14.
Antioxidants (Basel) ; 13(3)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38539800

RESUMEN

Neurodegenerative diseases are often referred to as diseases of old age, and with the aging population, they are gaining scientific and medical interest. Environmental stressors, most notably traffic noise and air pollution, have recently come to the forefront, and have emerged as disease risk factors. The evidence for a connection between environmental risk factors and neurodegenerative disease is growing. In this review, the most common neurodegenerative diseases and their epidemiological association with traffic noise and air pollution are presented. Also, the most important mechanisms involved in neurodegenerative disease development, oxidative stress, and neuroinflammation are highlighted. An overview of the in vivo findings will provide a mechanistic link between noise, air pollution, and neurodegenerative pathology. Finally, the importance of the direct and indirect pathways, by which noise and air pollution cause cerebral damage, is discussed. More high-quality data are still needed from both epidemiological and basic science studies in order to better understand the causal connection between neurodegenerative diseases and environmental risk factors.

15.
Artículo en Inglés | MEDLINE | ID: mdl-38279032

RESUMEN

The recognition of noise exposure as a prominent environmental determinant of public health has grown substantially. While recent years have yielded a wealth of evidence linking environmental noise exposure primarily to cardiovascular ailments, our understanding of the detrimental effects of noise on the brain and mental health outcomes remains limited. Despite being a nascent research area, an increasing body of compelling research and conclusive findings confirms that exposure to noise, particularly from sources such as traffic, can potentially impact the central nervous system. These harms of noise increase the susceptibility to mental health conditions such as depression, anxiety, suicide, and behavioral problems in children and adolescents. From a mechanistic perspective, several investigations propose direct adverse phenotypic changes in brain tissue by noise (e.g. neuroinflammation, cerebral oxidative stress), in addition to feedback signaling by remote organ damage, dysregulated immune cells, and impaired circadian rhythms, which may collectively contribute to noise-dependent impairment of mental health. This concise review linking noise exposure to mental health outcomes seeks to fill research gaps by assessing current findings from studies involving both humans and animals.

16.
Artículo en Inglés | MEDLINE | ID: mdl-38874533

RESUMEN

SIGNIFICANCE: In all modern urbanized and industrialized societies, non-communicable diseases, like cardiovascular disease (CVD), are becoming a more important cause of morbidity and mortality. Classic risk factors for CVDs, such as hypertension, are reinforced by behavioral risk factors, like smoking and diet, and environmental risk factors, like transportation noise and air pollution. RECENT ADVANCES: Both transportation noise and air pollution have individually been shown to increase the risk for CVD in large cohorts. Insights from animal studies have revealed pathophysiologic mechanisms by which these stressors influence the cardiovascular system. Noise primarily causes annoyance and sleep disturbance, promoting the release of stress hormones. Air pollution primarily damages the lung, where it causes local inflammation and an increase in oxidative stress, which can propagate to the circulation and remote organs. CRITICAL ISSUES: Both noise and air pollution converge at the vascular level, where the inflammatory state and oxidative stress cause dysfunction in vascular signaling and promote atherosclerotic plaque formation and thrombosis. Both inflammation and oxidative stress are key aspects of traditional cardiovascular risk factors, such as arterial hypertension. The similarities among the mechanisms of environmental risk factor-induced CVD and hypertension indicate that a complex interplay between them can drive the onset and progression of CVDs, leading to synergistic health impacts. FUTURE DIRECTIONS: Our present overview of the negative effects of noise and air pollution on the cardiovascular system provides a mechanistic link to the traditional CVD risk factor, hypertension, which could be used to protect patients with pre-existing CVD better.

17.
Redox Biol ; 69: 102995, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38142584

RESUMEN

Transportation noise is a ubiquitous urban exposure. In 2018, the World Health Organization concluded that chronic exposure to road traffic noise is a risk factor for ischemic heart disease. In contrast, they concluded that the quality of evidence for a link to other diseases was very low to moderate. Since then, several studies on the impact of noise on various diseases have been published. Also, studies investigating the mechanistic pathways underlying noise-induced health effects are emerging. We review the current evidence regarding effects of noise on health and the related disease-mechanisms. Several high-quality cohort studies consistently found road traffic noise to be associated with a higher risk of ischemic heart disease, heart failure, diabetes, and all-cause mortality. Furthermore, recent studies have indicated that road traffic and railway noise may increase the risk of diseases not commonly investigated in an environmental noise context, including breast cancer, dementia, and tinnitus. The harmful effects of noise are related to activation of a physiological stress response and nighttime sleep disturbance. Oxidative stress and inflammation downstream of stress hormone signaling and dysregulated circadian rhythms are identified as major disease-relevant pathomechanistic drivers. We discuss the role of reactive oxygen species and present results from antioxidant interventions. Lastly, we provide an overview of oxidative stress markers and adverse redox processes reported for noise-exposed animals and humans. This position paper summarizes all available epidemiological, clinical, and preclinical evidence of transportation noise as an important environmental risk factor for public health and discusses its implications on the population level.


Asunto(s)
Isquemia Miocárdica , Ruido del Transporte , Animales , Humanos , Ruido del Transporte/efectos adversos , Exposición a Riesgos Ambientales/efectos adversos , Estudios de Cohortes , Oxidación-Reducción
18.
Redox Biol ; 70: 103071, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38354629

RESUMEN

AIMS: We examined the cardiovascular effects of celiac disease (CeD) in a humanized mouse model, with a focus on vascular inflammation, endothelial dysfunction, and oxidative stress. METHODS AND RESULTS: NOD.DQ8 mice genetically predisposed to CeD were subjected to a diet regime and oral gavage to induce the disease (gluten group vs. control). We tested vascular function, confirmed disease indicators, and evaluated inflammation and oxidative stress in various tissues. Plasma proteome profiling was also performed. CeD markers were confirmed in the gluten group, indicating increased blood pressure and impaired vascular relaxation. Pro-inflammatory genes were upregulated in this group, with increased CD11b+ myeloid cell infiltration and oxidative stress parameters observed in aortic and heart tissue. However, heart function remained unaffected. Plasma proteomics suggested the cytokine interleukin-17A (IL-17A) as a link between gut and vascular inflammation. Cardiovascular complications were reversed by adopting a gluten-free diet. CONCLUSION: Our study sheds light in the heightened cardiovascular risk associated with active CeD, revealing a gut-to-cardiovascular inflammatory axis potentially mediated by immune cell infiltration and IL-17A. These findings augment our understanding of the link between CeD and cardiovascular disease providing clinically relevant insight into the underlying mechanism. Furthermore, our discovery that cardiovascular complications can be reversed by a gluten-free diet underscores a critical role for dietary interventions in mitigating cardiovascular risks associated with CeD.


Asunto(s)
Enfermedad Celíaca , Hipertensión , Ratones , Animales , Interleucina-17/genética , Interleucina-17/metabolismo , Interleucina-17/farmacología , Ratones Endogámicos NOD , Estrés Oxidativo , Inflamación , Glútenes/farmacología
19.
Mech Ageing Dev ; 214: 111857, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37611809

RESUMEN

The world population is aging rapidly, and by some estimates, the number of people older than 60 will double in the next 30 years. With the increase in life expectancy, adverse effects of environmental exposures start playing a more prominent role in human health. Air pollution is now widely considered the most detrimental of all environmental risk factors, with some studies estimating that almost 20% of all deaths globally could be attributed to poor air quality. Cardiovascular diseases are the leading cause of death worldwide and will continue to account for the most significant percentage of non-communicable disease burden. Cardiovascular aging with defined pathomechanisms is a major trigger of cardiovascular disease in old age. Effects of environmental risk factors on cardiovascular aging should be considered in order to increase the health span and reduce the burden of cardiovascular disease in older populations. In this review, we explore the effects of air pollution on cardiovascular aging, from the molecular mechanisms to cardiovascular manifestations of aging and, finally, the age-related cardiovascular outcomes. We also explore the distinction between the effects of air pollution on healthy aging and disease progression. Future efforts should focus on extending the health span rather than the lifespan.


Asunto(s)
Contaminación del Aire , Enfermedades Cardiovasculares , Sistema Cardiovascular , Humanos , Anciano , Envejecimiento , Longevidad
20.
Eur Cardiol ; 18: e09, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37377448

RESUMEN

During the last two decades, large epidemiological studies have shown that the physical environment, including noise, air pollution or heavy metals, have a considerable impact on human health. It is known that the most common cardiovascular risk factors are all associated with endothelial dysfunction. Vascular tone, circulation of blood cells, inflammation, and platelet activity are some of the most essential functions regulated by the endothelium that suffer negative effects as a consequence of environmental pollution, causing endothelial dysfunction. In this review, we delineate the impact of environmental risk factors in connection to endothelial function. On a mechanistic level, a significant number of studies suggest the involvement of endothelial dysfunction to fundamentally drive the adverse endothelium health effects of the different pollutants. We focus on well-established studies that demonstrate the negative effects on the endothelium, with a focus on air, noise, and heavy metal pollution. This in-depth review on endothelial dysfunction as a consequence of the physical environment aims to contribute to the associated research needs by evaluating current findings from human and animal studies. From a public health perspective, these findings may also help to reinforce efforts promoting the research for adequate promising biomarkers for cardiovascular diseases since endothelial function is considered a hallmark of environmental stressor health effects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA