Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 20(5): 534-545, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30962593

RESUMEN

Lymph-node (LN) stromal cell populations expand during the inflammation that accompanies T cell activation. Interleukin-17 (IL-17)-producing helper T cells (TH17 cells) promote inflammation through the induction of cytokines and chemokines in peripheral tissues. We demonstrate a critical requirement for IL-17 in the proliferation of LN and splenic stromal cells, particularly fibroblastic reticular cells (FRCs), during experimental autoimmune encephalomyelitis and colitis. Without signaling via the IL-17 receptor, activated FRCs underwent cell cycle arrest and apoptosis, accompanied by signs of nutrient stress in vivo. IL-17 signaling in FRCs was not required for the development of TH17 cells, but failed FRC proliferation impaired germinal center formation and antigen-specific antibody production. Induction of the transcriptional co-activator IκBζ via IL-17 signaling mediated increased glucose uptake and expression of the gene Cpt1a, encoding CPT1A, a rate-limiting enzyme of mitochondrial fatty acid oxidation. Hence, IL-17 produced by locally differentiating TH17 cells is an important driver of the activation of inflamed LN stromal cells, through metabolic reprogramming required to support proliferation and survival.


Asunto(s)
Proliferación Celular , Fibroblastos/inmunología , Interleucina-17/inmunología , Ganglios Linfáticos/inmunología , Células del Estroma/inmunología , Animales , Formación de Anticuerpos/genética , Formación de Anticuerpos/inmunología , Supervivencia Celular/genética , Supervivencia Celular/inmunología , Células Cultivadas , Colitis/genética , Colitis/inmunología , Colitis/metabolismo , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/metabolismo , Fibroblastos/metabolismo , Interleucina-17/genética , Interleucina-17/metabolismo , Ganglios Linfáticos/citología , Ganglios Linfáticos/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Receptores de Interleucina-17/genética , Receptores de Interleucina-17/inmunología , Receptores de Interleucina-17/metabolismo , Células del Estroma/metabolismo , Células Th17/inmunología , Células Th17/metabolismo
2.
J Immunol ; 208(7): 1711-1718, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35321882

RESUMEN

COVID-19 has had an unprecedented global impact on human health. Understanding the Ab memory responses to infection is one tool needed to effectively control the pandemic. Among 173 outpatients who had virologically confirmed SARS-CoV-2 infection, we evaluated serum Ab concentrations, microneutralization activity, and enumerated SARS-CoV-2-specific B cells in convalescent human blood specimens. Serum Ab concentrations were variable, allowing for stratification of the cohort into high and low responders. Neither participant sex, the timing of blood sampling following the onset of illness, nor the number of SARS-CoV-2 spike protein-specific B cells correlated with serum Ab concentration. Serum Ab concentration was positively associated with microneutralization activity and participant age, with participants under the age of 30 showing the lowest Ab level. These data suggest that young adult outpatients did not generate as robust Ab memory, compared with older adults. Body mass index was also positively correlated with serum Ab levels. Multivariate analyses showed that participant age and body mass index were independently associated with Ab levels. These findings have direct implications for public health policy and current vaccine efforts. Knowledge gained regarding Ab memory following infection will inform the need for vaccination in those previously infected and allow for a better approximation of population-wide protective immunity.


Asunto(s)
Factores de Edad , Formación de Anticuerpos , Índice de Masa Corporal , COVID-19 , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Linfocitos B/inmunología , COVID-19/inmunología , Humanos , Pacientes Ambulatorios , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/inmunología
3.
medRxiv ; 2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34790986

RESUMEN

COVID-19 has had an unprecedented global impact on human health. Understanding the antibody memory responses to infection is one tool needed to effectively control the pandemic. Among 173 outpatients who had virologically confirmed SARS-CoV-2 infection, we evaluated serum antibody concentrations, microneutralization activity, and enumerated SARS-CoV-2 specific B cells in convalescent blood specimens. Serum antibody concentrations were variable, allowing for stratification of the cohort into high and low responders. Serum antibody concentration was positively associated with microneutralization activity and participant age, with participants under the age of 30 showing the lowest antibody level. Neither participant sex, the timing of blood sampling following the onset of illness, nor the number of SARS-CoV-2 spike protein specific B cells correlated with serum antibody concentration. These data suggest that young adult outpatients did not generate as robust antibody memory, compared with older adults. Further, serum antibody concentration or neutralizing activity trended but did not significantly correlate with the number of SARS-CoV-2 memory B cells. These findings have direct implications for public health policy and current vaccine efforts. Knowledge gained regarding antibody memory following infection will inform the need for vaccination in those previously infected and allow for a better approximation of population-wide protective immunity.

4.
Sci Transl Med ; 12(548)2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32554707

RESUMEN

Disseminated candidiasis caused by the fungus Candida albicans is a major clinical problem in individuals with kidney disease and accompanying uremia; disseminated candidiasis fatality is twice as common in patients with uremia as those with normal kidney function. Many antifungal drugs are nephrotoxic, making treatment of these patients particularly challenging. The underlying basis for this impaired capacity to control infections in uremic individuals is poorly understood. Here, we show in multiple models that uremic mice exhibit an increased susceptibility to systemic fungal infection. Uremia inhibits Glut1-mediated uptake of glucose in neutrophils by causing aberrant activation of GSK3ß, resulting in reduced ROS generation and hence impaired killing of C. albicans in mice. Consequently, pharmacological inhibition of GSK3ß restored glucose uptake and rescued ROS production and candidacidal function of neutrophils in uremic mice. Similarly, neutrophils isolated from patients with kidney disease and undergoing hemodialysis showed similar defect in the fungal killing activity, a phenotype rescued in the presence of a GSK3ß inhibitor. These findings reveal a mechanism of neutrophil dysfunction during uremia and suggest a potentially translatable therapeutic avenue for treatment of disseminated candidiasis.


Asunto(s)
Candidiasis , Enfermedades Renales , Animales , Candida albicans , Candidiasis/complicaciones , Candidiasis/tratamiento farmacológico , Glucosa , Humanos , Ratones , Neutrófilos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA