Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 249, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38430263

RESUMEN

A recombinant L-rhamnose isomerase (L-RhI) from probiotic Lactobacillus rhamnosus Probio-M9 (L. rhamnosus Probio-M9) was expressed. L. rhamnosus Probio-M9 was isolated from human colostrum and identified as a probiotic lactic acid bacterium, which can grow using L-rhamnose. L-RhI is one of the enzymes involved in L-rhamnose metabolism and catalyzes the reversible isomerization between L-rhamnose and L-rhamnulose. Some L-RhIs were reported to catalyze isomerization not only between L-rhamnose and L-rhamnulose but also between D-allulose and D-allose, which are known as rare sugars. Those L-RhIs are attractive enzymes for rare sugar production and have the potential to be further improved by enzyme engineering; however, the known crystal structures of L-RhIs recognizing rare sugars are limited. In addition, the optimum pH levels of most reported L-RhIs are basic rather than neutral, and such a basic condition causes non-enzymatic aldose-ketose isomerization, resulting in unexpected by-products. Herein, we report the crystal structures of L. rhamnosus Probio-M9 L-RhI (LrL-RhI) in complexes with L-rhamnose, D-allulose, and D-allose, which show enzyme activity toward L-rhamnose, D-allulose, and D-allose in acidic conditions, though the activity toward D-allose was low. In the complex with L-rhamnose, L-rhamnopyranose was found in the catalytic site, showing favorable recognition for catalysis. In the complex with D-allulose, D-allulofuranose and ring-opened D-allulose were observed in the catalytic site. However, bound D-allose in the pyranose form was found in the catalytic site of the complex with D-allose, which was unfavorable for recognition, like an inhibition mode. The structure of the complex may explain the low activity toward D-allose. KEY POINTS: • Crystal structures of LrL-RhI in complexes with substrates were determined. • LrL-RhI exhibits enzyme activity toward L-rhamnose, D-allulose, and D-allose. • The LrL-RhI is active in acidic conditions.


Asunto(s)
Isomerasas Aldosa-Cetosa , Lacticaseibacillus rhamnosus , Humanos , Rayos X , Ramnosa , Monosacáridos
2.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38542257

RESUMEN

While essential hypertension (HTN) is very prevalent, pulmonary arterial hypertension (PAH) is very rare in the general population. However, due to progressive heart failure, prognoses and survival rates are much worse in PAH. Patients with PAH are at a higher risk of developing supraventricular arrhythmias and malignant ventricular arrhythmias. The latter underlie sudden cardiac death regardless of the mechanical cardiac dysfunction. Systemic chronic inflammation and oxidative stress are causal factors that increase the risk of the occurrence of cardiac arrhythmias in hypertension. These stressful factors contribute to endothelial dysfunction and arterial pressure overload, resulting in the development of cardiac pro-arrhythmic conditions, including myocardial structural, ion channel and connexin43 (Cx43) channel remodeling and their dysfunction. Myocardial fibrosis appears to be a crucial proarrhythmic substrate linked with myocardial electrical instability due to the downregulation and abnormal topology of electrical coupling protein Cx43. Furthermore, these conditions promote ventricular mechanical dysfunction and heart failure. The treatment algorithm in HTN is superior to PAH, likely due to the paucity of comprehensive pathomechanisms and causal factors for a multitargeted approach in PAH. The intention of this review is to provide information regarding the role of Cx43 in the development of cardiac arrhythmias in hypertensive heart disease. Furthermore, information on the progress of therapy in terms of its cardioprotective and potentially antiarrhythmic effects is included. Specifically, the benefits of sodium glucose co-transporter inhibitors (SGLT2i), as well as sotatercept, pirfenidone, ranolazine, nintedanib, mirabegron and melatonin are discussed. Discovering novel therapeutic and antiarrhythmic strategies may be challenging for further research. Undoubtedly, such research should include protection of the heart from inflammation and oxidative stress, as these are primary pro-arrhythmic factors that jeopardize cardiac Cx43 homeostasis, the integrity of intercalated disk and extracellular matrix, and, thereby, heart function.


Asunto(s)
Insuficiencia Cardíaca , Hipertensión , Hipertensión Arterial Pulmonar , Humanos , Conexina 43/metabolismo , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Arritmias Cardíacas/tratamiento farmacológico , Arritmias Cardíacas/etiología , Antiarrítmicos/farmacología , Antiarrítmicos/uso terapéutico , Trastorno del Sistema de Conducción Cardíaco , Hipertensión Pulmonar Primaria Familiar/complicaciones , Hipertensión/tratamiento farmacológico , Insuficiencia Cardíaca/tratamiento farmacológico , Inflamación/tratamiento farmacológico
3.
Semin Cell Dev Biol ; 94: 40-49, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30445149

RESUMEN

It is now widely accepted that advanced fibrosis underlies many chronic inflammatory disorders and is the main cause of morbidity and mortality of the modern world. The pathogenic mechanism of advanced fibrosis involves diverse and intricate interplays between numerous extracellular and intracellular signaling molecules, among which the non-trivial roles of a stress-responsive Ca2+/Na+-permeable cation channel superfamily, the transient receptor potential (TRP) protein, are receiving growing attention. Available evidence suggests that several TRP channels such as TRPC3, TRPC6, TRPV1, TRPV3, TRPV4, TRPA1, TRPM6 and TRPM7 may play central roles in the progression and/or prevention of fibroproliferative disorders in vital visceral organs such as lung, heart, liver, kidney, and bowel as well as brain, blood vessels and skin, and may contribute to both acute and chronic inflammatory processes involved therein. This short paper overviews the current knowledge accumulated in this rapidly growing field, with particular focus on cardiac and intestinal fibrosis, which are tightly associated with the pathogenesis of atrial fibrillation and inflammatory bowel diseases such as Crohn's disease.


Asunto(s)
Fibrosis/metabolismo , Enfermedades Intestinales/metabolismo , Miocardio/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Animales , Fibrosis/patología , Humanos , Enfermedades Intestinales/patología , Miocardio/patología
4.
J Mol Cell Cardiol ; 148: 50-62, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32889002

RESUMEN

Pulmonary arterial hypertension (PAH) is a multifactorial disease characterized by pulmonary arterial vasoconstriction and remodeling. Src family tyrosine kinases, including Fyn, play critical roles in vascular remodeling via the inhibition of STAT3 signaling. EPA is known to inhibit Fyn kinase activity. This study investigated the therapeutic potential and underlying mechanisms of EPA and its metabolite, resolvin E1 (RvE1), to treat PAH using monocrotaline-induced PAH model rats (MCT-PAH), human pulmonary artery endothelial cells (HPAECs), and human pulmonary artery smooth muscle cells (HPASMCs). Administration of EPA 1 and 2 weeks after MCT injection both ameliorated right ventricular hypertrophy, remodeling and dysfunction, and medial wall thickening of the pulmonary arteries and prolonged survival in MCT-PAH rats. EPA attenuated the enhanced contractile response to 5-hydroxytryptamine in isolated pulmonary arteries of MCT-PAH rats. Mechanistically, the treatment with EPA and RvE1 or the introduction of dominant-negative Fyn prevented TGF-ß2-induced endothelial-to-mesenchymal transition and IL-6-induced phosphorylation of STAT3 in cultured HPAECs. EPA and RvE1 suppressed Src family kinases' activity as evaluated by their phosphorylation status in cultured HPAECs and HPASMCs. EPA and RvE1 suppressed vasocontraction of rat and human PA. Furthermore, EPA and RvE1 inhibited the enhanced proliferation and activity of Src family kinases in HPASMCs derived from patients with idiopathic PAH. EPA ameliorated PAH's pathophysiology by mitigating vascular remodeling and vasoconstriction, probably inhibiting Src family kinases, especially Fyn. Thus, EPA is considered a potent therapeutic agent for the treatment of PAH.


Asunto(s)
Ácido Eicosapentaenoico/uso terapéutico , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/enzimología , Proteínas Proto-Oncogénicas c-fyn/antagonistas & inhibidores , Animales , Proliferación Celular/efectos de los fármacos , Ácido Eicosapentaenoico/análogos & derivados , Ácido Eicosapentaenoico/farmacología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/patología , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/patología , Endotelio Vascular/fisiopatología , Humanos , Hipertensión Pulmonar/fisiopatología , Hipertrofia Ventricular Derecha/complicaciones , Hipertrofia Ventricular Derecha/fisiopatología , Interleucina-6/farmacología , Masculino , Mesodermo/efectos de los fármacos , Mesodermo/patología , Mesodermo/fisiopatología , Monocrotalina , Contracción Miocárdica/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/fisiopatología , Ratas Sprague-Dawley , Factor de Transcripción STAT3/metabolismo , Análisis de Supervivencia , Factor de Crecimiento Transformador beta2/farmacología , Vasodilatación/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos , Familia-src Quinasas/metabolismo
5.
Int J Mol Sci ; 21(8)2020 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-32325836

RESUMEN

A perennial task is to prevent the occurrence and/or recurrence of most frequent or life-threatening cardiac arrhythmias such as atrial fibrillation (AF) and ventricular fibrillation (VF). VF may be lethal in cases without an implantable cardioverter defibrillator or with failure of this device. Incidences of AF, even the asymptomatic ones, jeopardize the patient's life due to its complication, notably the high risk of embolic stroke. Therefore, there has been a growing interest in subclinical AF screening and searching for novel electrophysiological and molecular markers. Considering the worldwide increase in cases of thyroid dysfunction and diseases, including thyroid carcinoma, we aimed to explore the implication of thyroid hormones in pro-arrhythmic signaling in the pathophysiological setting. The present review provides updated information about the impact of altered thyroid status on both the occurrence and recurrence of cardiac arrhythmias, predominantly AF. Moreover, it emphasizes the importance of both thyroid status monitoring and AF screening in the general population, as well as in patients with thyroid dysfunction and malignancies. Real-world data on early AF identification in relation to thyroid function are scarce. Even though symptomatic AF is rare in patients with thyroid malignancies, who are under thyroid suppressive therapy, clinicians should be aware of potential interaction with asymptomatic AF. It may prevent adverse consequences and improve the quality of life. This issue may be challenging for an updated registry of AF in clinical practice. Thyroid hormones should be considered a biomarker for cardiac arrhythmias screening and their tailored management because of their multifaceted cellular actions.


Asunto(s)
Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/etiología , Hipertiroidismo/complicaciones , Hipertiroidismo/metabolismo , Transducción de Señal , Hormonas Tiroideas/metabolismo , Arritmias Cardíacas/tratamiento farmacológico , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/etiología , Calcio/metabolismo , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Metabolismo Energético/efectos de los fármacos , Humanos , Hipertiroidismo/diagnóstico , Hipertiroidismo/etiología , Canales Iónicos/metabolismo , Terapia Molecular Dirigida , Neoplasias de la Tiroides/complicaciones , Neoplasias de la Tiroides/terapia , Fibrilación Ventricular/diagnóstico , Fibrilación Ventricular/etiología
6.
Int J Mol Sci ; 20(15)2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31374823

RESUMEN

Heart function and its susceptibility to arrhythmias are modulated by thyroid hormones (THs) but the responsiveness of hypertensive individuals to thyroid dysfunction is elusive. We aimed to explore the effect of altered thyroid status on crucial factors affecting synchronized heart function, i.e., connexin-43 (Cx43) and extracellular matrix proteins (ECM), in spontaneously hypertensive rats (SHRs) compared to normotensive Wistar Kyoto rats (WKRs). Basal levels of circulating THs were similar in both strains. Hyperthyroid state (HT) was induced by injection of T3 (0.15 mg/kg b.w. for eight weeks) and hypothyroid state (HY) by the administration of methimazol (0.05% for eight weeks). The possible benefit of omega-3 polyunsaturated fatty acids (Omacor, 200 mg/kg for eight weeks) intake was examined as well. Reduced levels of Cx43 in SHRs were unaffected by alterations in THs, unlike WKRs, in which levels of Cx43 and its phosphorylated form at serine368 were decreased in the HT state and increased in the HY state. This specific Cx43 phosphorylation, attributed to enhanced protein kinase C-epsilon signaling, was also increased in HY SHRs. Altered thyroid status did not show significant differences in markers of ECM or collagen deposition in SHRs. WKRs exhibited a decrease in levels of profibrotic transforming growth factor ß1 and SMAD2/3 in HT and an increase in HY, along with enhanced interstitial collagen. Short-term intake of omega-3 polyunsaturated fatty acids did not affect any targeted proteins significantly. Key findings suggest that myocardial Cx43 and ECM responses to altered thyroid status are blunted in SHRs compared to WKRs. However, enhanced phosphorylation of Cx43 at serine368 in hypothyroid SHRs might be associated with preservation of intercellular coupling and alleviation of the propensity of the heart to malignant arrhythmias.


Asunto(s)
Conexina 43/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Hipertensión/metabolismo , Miocardio/metabolismo , Hormonas Tiroideas/metabolismo , Animales , Hipertensión/sangre , Masculino , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Hormonas Tiroideas/sangre
7.
Biomedicines ; 12(3)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38540144

RESUMEN

Intestinal bacteria play important roles in the progression of colitis-associated carcinogenesis. Colostrum-derived Lacticaseibacillus rhamnosus Probio-M9 (Probio-M9) has shown a protective effect in a colitis-associated cancer (CAC) model, but detailed metagenomic analysis had not been performed. Here, we investigated the preventive effects of the probiotic Probio-M9 on CAC-model mice, tracking the microbiota. Feces were obtained at four time points for evaluation of gut microbiota. The effect of Probio-M9 on tight junction protein expression was evaluated in co-cultured Caco-2 cells. Probio-M9 treatment decreased the number of tumors as well as stool consistency score, spleen weight, inflammatory score, and macrophage expression in the CAC model. Probio-M9 accelerated the recovery of the structure, composition, and function of the intestinal microbiota destroyed by azoxymethane (AOM)/dextran sulfate sodium (DSS) by regulating key bacteria (including Lactobacillus murinus, Muribaculaceae bacterium DSM 103720, Muribaculum intestinale, and Lachnospiraceae bacterium A4) and pathways from immediately after administration until the end of the experiment. Probio-M9 co-culture protected against lipopolysaccharide-induced impairment of tight junctions in Caco-2 cells. This study provides valuable insight into the role of Probio-M9 in correcting gut microbiota defects associated with inflammatory bowel disease carcinogenesis and may have clinical application in the treatment of inflammatory carcinogenesis.

8.
Cell Mol Gastroenterol Hepatol ; 18(1): 105-131, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38614455

RESUMEN

BACKGROUND & AIMS: Inflammatory bowel disease is associated with carcinogenesis, which limits the prognosis of the patients. The local expression of proteinases and proteinase-activated receptor 1 (PAR1) increases in inflammatory bowel disease. The present study investigated the therapeutic effects of PAR1 antagonism on colitis-associated carcinogenesis. METHODS: A colitis-associated carcinogenesis model was prepared in mice by treatment with azoxymethane (AOM) and dextran sulfate sodium (DSS). PAR1 antagonist E5555 was administered in long- and short-term protocol, starting on the day of AOM injection and 1 week after completing AOM/DSS treatment, respectively. The fecal samples were collected for metagenome analysis of gut microbiota. The intestinal myofibroblasts of the Crohn's disease patients were used to elucidate underlying cellular mechanisms. Caco-2 cells were used to investigate a possible source of PAR1 agonist proteinases. RESULTS: AOM/DSS model showed weight loss, diarrhea, tumor development, inflammation, fibrosis, and increased production of inflammatory cytokines. The ß-diversity, but not α-diversity, of microbiota significantly differed between AOM/DSS and control mice. E5555 alleviated these pathological changes and altered the microbiota ß-diversity in AOM/DSS mice. The thrombin expression was up-regulated in tumor and non-tumor areas, whereas PAR1 mRNA expression was higher in tumor areas compared with non-tumor areas. E5555 inhibited thrombin-triggered elevation of cytosolic Ca2+ concentration and ERK1/2 phosphorylation, as well as IL6-induced signal transducer and activator of transcription 3 (STAT3) phosphorylation in intestinal myofibroblasts. Caco-2 cell-conditioned medium contained immunoreactive thrombin, which cleaved the recombinant protein containing the extracellular domain of PAR1 at the thrombin cleavage site. CONCLUSIONS: PAR1 antagonism is proposed to be a novel therapeutic strategy for treatment of inflammatory bowel disease and its associated carcinogenesis.


Asunto(s)
Azoximetano , Sulfato de Dextran , Modelos Animales de Enfermedad , Microbioma Gastrointestinal , Receptor PAR-1 , Animales , Receptor PAR-1/metabolismo , Receptor PAR-1/antagonistas & inhibidores , Humanos , Ratones , Células CACO-2 , Sulfato de Dextran/toxicidad , Azoximetano/toxicidad , Microbioma Gastrointestinal/efectos de los fármacos , Masculino , Colitis/complicaciones , Colitis/inducido químicamente , Colitis/patología , Colitis/tratamiento farmacológico , Carcinogénesis/efectos de los fármacos , Carcinogénesis/patología , Factor de Transcripción STAT3/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/patología , Miofibroblastos/efectos de los fármacos , Neoplasias Asociadas a Colitis/patología , Neoplasias Asociadas a Colitis/microbiología , Neoplasias Asociadas a Colitis/tratamiento farmacológico , Neoplasias Asociadas a Colitis/inmunología , Trombina/metabolismo , Ratones Endogámicos C57BL , Enfermedad de Crohn/patología , Enfermedad de Crohn/tratamiento farmacológico , Enfermedad de Crohn/microbiología , Enfermedad de Crohn/inducido químicamente
9.
J Smooth Muscle Res ; 58(0): 50-62, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35944979

RESUMEN

Pulmonary arterial hypertension (PAH) is an intractable vascular disease characterized by a progressive increase in pulmonary vascular resistance caused by pulmonary vascular remodeling, which ultimately leads to right-sided heart failure. PAH remains incurable, despite the development of PAH-targeted therapeutics centered on pulmonary artery relaxants. It is necessary to identify the target molecules that contribute to pulmonary artery remodeling. Transient receptor potential (TRP) channels have been suggested to modulate pulmonary artery remodeling. Our study focused on the transient receptor potential ion channel subfamily M, member 7, or the TRPM7 channel, which modulates endothelial-to-mesenchymal transition and smooth muscle proliferation in the pulmonary artery. In this review, we summarize the role and expression profile of TRPM7 channels in PAH progression and discuss TRPM7 channels as possible therapeutic targets. In addition, we discuss the therapeutic effect of a Chinese herbal medicine, Ophiocordyceps sinensis (OCS), on PAH progression, which partly involves TRPM7 inhibition.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Canales Catiónicos TRPM , Canales de Potencial de Receptor Transitorio , Proliferación Celular , Hipertensión Pulmonar Primaria Familiar/metabolismo , Humanos , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/metabolismo , Miocitos del Músculo Liso/metabolismo , Proteínas Serina-Treonina Quinasas , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Arteria Pulmonar/metabolismo , Canales Catiónicos TRPM/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Canales de Potencial de Receptor Transitorio/uso terapéutico , Remodelación Vascular
10.
Nutrients ; 14(3)2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35277009

RESUMEN

Lactulose, a galactose-fructose disaccharide, is made from the milk sugar lactose by heating or isomerization processes. Lactulose is proposed to modulate gut microbiota and thus expected to be beneficial in treating inflammatory bowel disease. In the present study, we investigated the therapeutic effect of lactulose on gastrointestinal inflammation and inflammation-related tumorigenesis in a mouse model of colorectal cancer as well as its effect on gut microbiota composition. Azoxymethane (AOM)/dextran sulfate sodium (DSS) model was used in this study. Lactulose treatment was performed by feeding 2% lactulose for 14 weeks. Stool samples collected at 4 time points were used for metagenomic analysis of the microbiota. Pathological analysis was performed 21 weeks after AOM injection. AOM/DSS increased the macrophage counts, inflammatory cytokine expression, colorectal tumorigenesis, and imbalance in gut microbiota composition, as evidenced by increased pathogen abundance (e.g., Escherichia and Clostridium). Lactulose significantly inhibited the inflammatory events, and ameliorated inflammation and tumorigenesis. The composition of the intestinal microbiota was also restored upon lactulose treatment, and lactulose reduced pathogen abundance and increased the abundance of Muribaculum and Lachnospiraceae. Meanwhile, the pathways related to Crohn's disease were downregulated after lactulose treatment. Our findings suggest that lactulose restores the structure and composition of the intestinal microbiota, mitigates inflammation, and suppresses inflammatory tumorigenesis.


Asunto(s)
Colitis , Microbioma Gastrointestinal , Animales , Carcinogénesis , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/patología , Sulfato de Dextran/farmacología , Lactulosa/farmacología , Ratones
11.
Biomedicines ; 10(11)2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36359339

RESUMEN

This review focuses on cardiac atrophy resulting from mechanical or metabolic unloading due to various conditions, describing some mechanisms and discussing possible strategies or interventions to prevent, attenuate or reverse myocardial atrophy. An improved awareness of these conditions and an increased focus on the identification of mechanisms and therapeutic targets may facilitate the development of the effective treatment or reversion for cardiac atrophy. It appears that a decrement in the left ventricular mass itself may be the central component in cardiac deconditioning, which avoids the occurrence of life-threatening arrhythmias. The depressed myocardial contractility of atrophied myocardium along with the upregulation of electrical coupling protein, connexin43, the maintenance of its topology, and enhanced PKCƐ signalling may be involved in the anti-arrhythmic phenotype. Meanwhile, persistent myocardial atrophy accompanied by oxidative stress and inflammation, as well as extracellular matrix fibrosis, may lead to severe cardiac dysfunction, and heart failure. Data in the literature suggest that the prevention of heart failure via the attenuation or reversion of myocardial atrophy is possible, although this requires further research.

12.
Nutrients ; 13(4)2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-33808480

RESUMEN

Chronic inflammation is a risk factor for colorectal cancer, and inflammatory cytokines secreted from inflammatory cells and active oxygen facilitate tumorigenesis. Intestinal bacteria are thought to regulate tumorigenesis. The longer the breastfeeding period, the lower is the risk of inflammatory bowel disease. Here, we investigated preventive effects of the probiotic Lactobacillus rhamnosus M9 (Probio-M9) on colitis-associated tumorigenesis. An inflammatory colorectal tumor model was established using a 6-week-old male C57BL/6NCrSlc mouse, which was intraperitoneally administered with azoxymethane (AOM: 12 mg/kg body weight). On weeks 2 and 4, 2% dextran sulfate sodium (DSS) was administered to mice for 7 days through drinking water. On weeks 8 and 10, Probio-M9 (2 × 109/day) was orally administered for 7 days. Animals were sacrificed at 20 weeks after AOM administration and immunohistochemical staining and Western blotting was performed. The α-diversity of microflora (Shannon index), principal coordinate analysis, and distribution of intestinal bacterium genera and metabolic pathways were compared. The AOM/DSS group showed weight loss, diarrhea, intestinal shortening, increased number of colon tumors, proliferating tumorigenesis, increased inflammation score, fibrosis, increased CD68+, or CD163+ macrophage cells in the subserosal layer of non-tumor areas. Inflammation and tumorigenesis ameliorated after Probio-M9 treatment. Fecal microbial functions were altered by AOM/DSS treatment. Probio-M9 significantly upregulated the fecal microbial diversity and reversed fecal microbial functions. Thus, Probio-M9 could suppress tumor formation in the large intestine by regulating the intestinal environment and ameliorating inflammation, suggesting its therapeutic potential for treatment of inflammation and colitis-associated tumorigenesis.


Asunto(s)
Colitis/inducido químicamente , Neoplasias del Colon/etiología , Microbioma Gastrointestinal , Lacticaseibacillus rhamnosus/fisiología , Leche Humana/microbiología , Carcinogénesis , Colitis/complicaciones , Neoplasias del Colon/prevención & control , Sulfato de Dextran/toxicidad , Humanos , Inflamación/prevención & control , Lacticaseibacillus rhamnosus/clasificación , Masculino , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/patología
13.
Cells ; 10(5)2021 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-33922380

RESUMEN

A Ca2+-activated monovalent cation-selective TRPM4 channel is abundantly expressed in the heart. Recently, a single gain-of-function mutation identified in the distal N-terminus of the human TRPM4 channel (Glu5 to Lys5; E7K) was found to be arrhythmogenic because of enhanced cell membrane expression. In this study, we conducted detailed analyses of this mutant channel from more functional aspects, in comparison with its wild type (WT). In an expression system, intracellular application of a short soluble PIP2 (diC8PIP2) restored the single-channel activities of both WT and E7K, which had quickly faded after membrane excision. The potency (Kd) of diC8PIP2 for this recovery was stronger in E7K than its WT (1.44 vs. 2.40 µM). FRET-based PIP2 measurements combined with the Danio rerio voltage-sensing phosphatase (DrVSP) and patch clamping revealed that lowering the endogenous PIP2 level by DrVSP activation reduced the TRPM4 channel activity. This effect was less prominent in E7K than its WT (apparent Kd values estimated from DrVSP-mediated PIP2 depletion: 0.97 and 1.06 µM, respectively), being associated with the differential PIP2-mediated modulation of voltage dependence. Moreover, intracellular perfusion of short N-terminal polypeptides containing either the 'WT' or 'E7K' sequences respectively attenuated the TRPM4 channel activation at whole-cell and single-channel levels, but in both configurations, the E7K polypeptide exerted greater inhibitory effects. These results collectively suggest that N-terminal interaction with endogenous PIP2 is essential for the TRPM4 channel to function, the extent of which may be abnormally strengthened by the E7K mutation through modulating voltage-dependent activation. The altered PIP2 interaction may account for the arrhythmogenic potential of this mutation.


Asunto(s)
Potenciales de Acción , Arritmias Cardíacas/patología , Mutación con Ganancia de Función , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismo , Arritmias Cardíacas/genética , Células HEK293 , Humanos
14.
Transl Res ; 233: 127-143, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33691194

RESUMEN

Ophiocordyceps sinensis (OCS), an entomopathogenic fungus, is known to exert antiproliferative and antitissue remodeling effects. Vascular remodeling and vasoconstriction play critical roles in the development of pulmonary hypertension (PH). The therapeutic potential of OCS for PH was investigated using rodent PH models, and cultured pulmonary artery endothelial and smooth muscle cells (PAECs and PASMCs), with a focus on the involvement of TRPM7. OCS ameliorated the development of PH, right ventricular hypertrophy and dysfunction in the monocrotaline-induced PH rats. The genetic knockout of TRPM7 attenuated the development of PH in mice with monocrotaline pyrrole-induced PH. TRPM7 was associated with medial hypertrophy and the plexiform lesions in rats and humans with PH. OCS suppressed proliferation of PASMCs derived from the PH patients. Ethanol extracts of OCS inhibited TRPM7-like current, TGF-ß2-induced endothelial-mesenchymal transition, IL-6-induced STAT3 phosphorylation, and PDGF-induced Akt phosphorylation in PAECs or PASMCs. These inhibitory effects were recapitulated by either siRNA-mediated TRPM7 knockdown or treatment with TRPM7 antagonist FTY-720. OCS and FTY-720 induced vasorelaxation in the isolated normal human pulmonary artery. As a result, the present study proposes the therapeutic potential of OCS for the treatment of PH. The inhibition of TRPM7 is suggested to underlie the therapeutic effect of OCS.


Asunto(s)
Cordyceps/fisiología , Hipertensión Pulmonar/fisiopatología , Hipertensión Pulmonar/terapia , Canales Catiónicos TRPM/antagonistas & inhibidores , Animales , Proliferación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Clorhidrato de Fingolimod/farmacología , Técnicas de Silenciamiento del Gen , Humanos , Hipertensión Pulmonar/patología , Masculino , Medicina Tradicional China , Ratones , Ratones Noqueados , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Arteria Pulmonar/patología , Arteria Pulmonar/fisiopatología , Ratas , Ratas Sprague-Dawley , Factor de Transcripción STAT3/metabolismo , Canales Catiónicos TRPM/deficiencia , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/fisiología , Investigación Biomédica Traslacional , Vasodilatación
15.
J Smooth Muscle Res ; 55(0): 81-107, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32023567

RESUMEN

In the past few decades, solid evidence has been accumulated for the pivotal significance of immunoinflammatory processes in the initiation, progression, and exacerbation of many diseases and disorders. This groundbreaking view came from original works by Ross who first described that excessive inflammatory-fibroproliferative response to various forms of insult to the endothelium and smooth muscle of the artery wall is essential for the pathogenesis of atherosclerosis (Ross, Nature 1993; 362(6423): 801-9). It is now widely recognized that both innate and adaptive immune reactions are avidly involved in the inflammation-related remodeling of many tissues and organs. When this state persists, irreversible fibrogenic changes would occur often culminating in fatal insufficiencies of many vital parenchymal organs such as liver, lung, heart, kidney and intestines. Thus, inflammatory diseases are becoming the common life-threatening risk for and urgent concern about the public health in developed countries (Wynn et al., Nature Medicine 2012; 18(7): 1028-40). Considering this timeliness, we organized a special symposium entitled "Implications of immune/inflammatory responses in smooth muscle dysfunction and disease" in the 58th annual meeting of the Japan Society of Smooth Muscle Research. This symposium report will provide detailed synopses of topics presented in this symposium; (1) the role of inflammasome in atherosclerosis and abdominal aortic aneurysms by Fumitake Usui-Kawanishi and Masafumi Takahashi; (2) Mechanisms underlying the pathogenesis of hyper-contractility of bronchial smooth muscle in allergic asthma by Hiroyasu Sakai, Wataru Suto, Yuki Kai and Yoshihiko Chiba; (3) Vascular remodeling in pulmonary arterial hypertension by Keizo Hiraishi, Lin Hai Kurahara and Ryuji Inoue.


Asunto(s)
Inmunidad Adaptativa , Aterosclerosis , Músculo Liso Vascular , Animales , Aterosclerosis/inmunología , Aterosclerosis/patología , Congresos como Asunto , Humanos , Inflamación/inmunología , Inflamación/patología , Japón , Músculo Liso Vascular/inmunología , Músculo Liso Vascular/patología
16.
Cell Mol Gastroenterol Hepatol ; 5(3): 299-318, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29552620

RESUMEN

BACKGROUND & AIMS: The transient receptor potential ankyrin 1 (TRPA1) channel is highly expressed in the intestinal lamina propria, but its contribution to gut physiology/pathophysiology is unclear. Here, we evaluated the function of myofibroblast TRPA1 channels in intestinal remodeling. METHODS: An intestinal myofibroblast cell line (InMyoFibs) was stimulated by transforming growth factor-ß1 to induce in vitro fibrosis. Trpa1 knockout mice were generated using the Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system. A murine chronic colitis model was established by weekly intrarectal trinitrobenzene sulfonic acid (TNBS) administration. Samples from the intestines of Crohn's disease (CD) patients were used for pathologic staining and quantitative analyses. RESULTS: In InMyoFibs, TRPA1 showed the highest expression among TRP family members. In TNBS chronic colitis model mice, the extents of inflammation and fibrotic changes were more prominent in TRPA1-/- knockout than in wild-type mice. One-week enema administration of prednisolone suppressed fibrotic lesions in wild-type mice, but not in TRPA1 knockout mice. Steroids and pirfenidone induced Ca2+ influx in InMyoFibs, which was antagonized by the selective TRPA1 channel blocker HC-030031. Steroids and pirfenidone counteracted transforming growth factor-ß1-induced expression of heat shock protein 47, type 1 collagen, and α-smooth muscle actin, and reduced Smad-2 phosphorylation and myocardin expression in InMyoFibs. In stenotic intestinal regions of CD patients, TRPA1 expression was increased significantly. TRPA1/heat shock protein 47 double-positive cells accumulated in the stenotic intestinal regions of both CD patients and TNBS-treated mice. CONCLUSIONS: TRPA1, in addition to its anti-inflammatory actions, may protect against intestinal fibrosis, thus being a novel therapeutic target for highly incurable inflammatory/fibrotic disorders.

17.
World J Gastroenterol ; 24(35): 4036-4053, 2018 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-30254408

RESUMEN

AIM: To investigate the anti-fibrotic effects of the traditional oriental herbal medicine Daikenchuto (DKT) associated with transient receptor potential ankyrin 1 (TRPA1) channels in intestinal myofibroblasts. METHODS: Inflammatory and fibrotic changes were detected in a 2,4,6-trinitrobenzenesulfonic acid (TNBS) chronic colitis model of wild-type and TRPA1-knockout (TRPA1-KO) mice via pathological staining and immunoblotting analysis. Ca2+ imaging experiments examined the effects of DKT and its components/ingredients on intestinal myofibroblast (InMyoFib) cell TRPA1 channel function. Pro-fibrotic factors and transforming growth factor (TGF)-ß1-associated signaling were tested in an InMyoFib cell line by qPCR and immunoblotting experiments. Samples from non-stenotic and stenotic regions of the intestines of patients with Crohn's disease (CD) were used for pathological analysis. RESULTS: Chronic treatment with TNBS caused more severe inflammation and fibrotic changes in TRPA1-KO than in wild-type mice. A one-week enema administration of DKT reduced fibrotic lesions in wild-type but not in TRPA1-KO mice. The active ingredients of DKT, i.e., hydroxy α-sanshool and 6-shogaol, induced Ca2+ influxes in InMyoFib, and this was antagonized by co-treatment with a selective TRPA1 channel blocker, HC-030031. DKT counteracted TGF-ß1-induced expression of Type I collagen and α-smooth muscle actin (α-SMA), which were accompanied by a reduction in the phosphorylation of Smad-2 and p38-mitogen-activated protein kinase (p38-MAPK) and the expression of myocardin. Importantly, 24-h incubation with a DKT active component Japanese Pepper increased the mRNA and protein expression levels of TRPA1 in InMyoFibs, which in turn negatively regulated collagen synthesis. In the stenotic regions of the intestines of CD patients, TRPA1 expression was significantly enhanced. CONCLUSION: The effects of DKT on the expression and activation of the TRPA1 channel could be advantageous for suppressing intestinal fibrosis, and benefit inflammatory bowel disease treatment.


Asunto(s)
Colitis/tratamiento farmacológico , Colon/patología , Extractos Vegetales/farmacología , Canal Catiónico TRPA1/metabolismo , Adulto , Animales , Línea Celular , Enfermedad Crónica/tratamiento farmacológico , Colitis/inducido químicamente , Colitis/patología , Colon/citología , Colon/efectos de los fármacos , Colon/cirugía , Enfermedad de Crohn/patología , Enfermedad de Crohn/cirugía , Modelos Animales de Enfermedad , Fibrosis , Humanos , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Miofibroblastos/metabolismo , Panax , Extractos Vegetales/uso terapéutico , Canal Catiónico TRPA1/genética , Ácido Trinitrobencenosulfónico/toxicidad , Zanthoxylum , Zingiberaceae
18.
J Smooth Muscle Res ; 52(0): 78-92, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27818466

RESUMEN

Intestinal fibrosis is an intractable complication of Crohn's disease (CD), and, when occurring excessively, causes severe intestinal obstruction that often necessitates surgical resection. The fibrosis is characterized by an imbalance in the turnover of extracellular matrix (ECM) components, where intestinal fibroblasts/myofibroblasts play active roles in ECM production, fibrogenesis and tissue remodeling, which eventually leads to the formation of stenotic lesions. There is however a great paucity of knowledge about how intestinal fibrosis initiates and progresses, which hampers the development of effective pharmacotherapies against CD. Recently, we explored the potential implications of transient receptor potential (TRP) channels in the pathogenesis of intestinal fibrosis, since they are known to act as cellular stress sensors/transducers affecting intracellular Ca2+ homeostasis/dynamics, and are involved in a broad spectrum of cell pathophysiology including inflammation and tissue remodeling. In this review, we will place a particular emphasis on the intestinal fibroblast/myofibroblast TRPC6 channel to discuss its modulatory effects on fibrotic responses and therapeutic potential for anti-fibrotic treatment against CD-related stenosis.


Asunto(s)
Calcio/metabolismo , Enfermedad de Crohn/etiología , Obstrucción Intestinal/etiología , Intestinos/patología , Canales Catiónicos TRPC/fisiología , Enfermedad de Crohn/tratamiento farmacológico , Enfermedad de Crohn/patología , Matriz Extracelular/metabolismo , Fibroblastos/fisiología , Fibrosis , Humanos , Intestinos/citología , Terapia Molecular Dirigida , Miofibroblastos/fisiología , Transducción de Señal/fisiología , Canal Catiónico TRPC6 , Factor de Crecimiento Transformador beta1/fisiología
19.
Inflamm Bowel Dis ; 21(3): 496-506, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25647156

RESUMEN

BACKGROUND: Intestinal fibrosis is a frequent complication of Crohn's disease (CD) and often leads to detrimental stricture formation. Myofibroblasts play active roles in mediating fibrotic changes in various tissues. We investigated whether transient receptor potential channels in intestinal myofibroblasts are involved in CD-associated intestinal fibrosis. METHODS: An intestinal myofibroblast cell line (InMyoFibs) was stimulated with transforming growth factor-ß1 (TGF-ß1) to model excessive fibrosis. Biopsy samples from nonstenotic or stenotic intestinal regions from patients with CD were used for quantitative comparisons of transient receptor potential channel and fibrosis-associated factor expression levels. RESULTS: TGF-ß1 treatment transformed spindle-shaped InMyoFibs into filament-shaped cells with enhanced α-actin stress fiber formation, transient receptor potential canonical (TRPC) 4 and TRPC6 messenger RNA and protein expression, and basal- and agonist-induced Ca influxes. TGF-ß1 also enhanced the formation of TRPC6/smooth muscle α-actin, TRPC6/N-cadherin, and TRPC4/N-cadherin coimmunoprecipitates. Inhibition of TRPC6 in InMyoFibs by RNA interference or dominant-negative mutations suppressed TGF-ß1-induced Ca influxes, stress fiber formation, and smooth muscle α-actin expression, but increased COL1A1, interleukin (IL)-10, and IL-11 expression, as well as Smad-2, ERK, and p38-MAPK phosphorylation. Similar increases in phosphorylation levels were observed with TRPC and calcineurin inhibitors. In stenotic areas in patients with CD, TRPC6, ACTA2 (smooth muscle α-actin), CDH2 (N-cadherin), COL1A1, IL-10, and IL-11 were significantly increased. CONCLUSIONS: These results suggest that augmented Ca influxes due to TRPC6 upregulation facilitate stress fiber formation and strengthen cell-cell interactions by negatively regulating the synthesis of antifibrotic factors in TGF-ß1-treated myofibroblasts. Similar changes observed in stenotic areas of patients with CD suggest the therapeutic significance of targeting TRPC6.


Asunto(s)
Enfermedades del Colon/etiología , Enfermedad de Crohn/complicaciones , Fibrosis/etiología , Mucosa Intestinal/metabolismo , Miofibroblastos/metabolismo , Canales Catiónicos TRPC/metabolismo , Adulto , Western Blotting , Células Cultivadas , Enfermedades del Colon/metabolismo , Enfermedades del Colon/patología , Enfermedad de Crohn/patología , Femenino , Fibrosis/metabolismo , Fibrosis/patología , Humanos , Técnicas para Inmunoenzimas , Inmunoprecipitación , Intestinos/citología , Masculino , Persona de Mediana Edad , Miofibroblastos/citología , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Canales Catiónicos TRPC/genética , Canal Catiónico TRPC6 , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA