Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(17): e2218204121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38621141

RESUMEN

Inherited arrhythmia syndromes (IASs) can cause life-threatening arrhythmias and are responsible for a significant proportion of sudden cardiac deaths (SCDs). Despite progress in the development of devices to prevent SCDs, the precise molecular mechanisms that induce detrimental arrhythmias remain to be fully investigated, and more effective therapies are desirable. In the present study, we screened a large-scale randomly mutagenized mouse library by electrocardiography to establish a disease model of IASs and consequently found one pedigree that exhibited spontaneous ventricular arrhythmias (VAs) followed by SCD within 1 y after birth. Genetic analysis successfully revealed a missense mutation (p.I4093V) of the ryanodine receptor 2 gene to be a cause of the arrhythmia. We found an age-related increase in arrhythmia frequency accompanied by cardiomegaly and decreased ventricular contractility in the Ryr2I4093V/+ mice. Ca2+ signaling analysis and a ryanodine binding assay indicated that the mutant ryanodine receptor 2 had a gain-of-function phenotype and enhanced Ca2+ sensitivity. Using this model, we detected the significant suppression of VA following flecainide or dantrolene treatment. Collectively, we established an inherited life-threatening arrhythmia mouse model from an electrocardiogram-based screen of randomly mutagenized mice. The present IAS model may prove feasible for use in investigating the mechanisms of SCD and assessing therapies.


Asunto(s)
Taquicardia Ventricular , Ratones , Animales , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Arritmias Cardíacas/genética , Flecainida , Mutación Missense , Muerte Súbita Cardíaca , Mutación
2.
Proc Natl Acad Sci U S A ; 119(32): e2201286119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35925888

RESUMEN

Thermoregulation is an important aspect of human homeostasis, and high temperatures pose serious stresses for the body. Malignant hyperthermia (MH) is a life-threatening disorder in which body temperature can rise to a lethal level. Here we employ an optically controlled local heat-pulse method to manipulate the temperature in cells with a precision of less than 1 °C and find that the mutants of ryanodine receptor type 1 (RyR1), a key Ca2+ release channel underlying MH, are heat hypersensitive compared with the wild type (WT). We show that the local heat pulses induce an intracellular Ca2+ burst in human embryonic kidney 293 cells overexpressing WT RyR1 and some RyR1 mutants related to MH. Fluorescence Ca2+ imaging using the endoplasmic reticulum-targeted fluorescent probes demonstrates that the Ca2+ burst originates from heat-induced Ca2+ release (HICR) through RyR1-mutant channels because of the channels' heat hypersensitivity. Furthermore, the variation in the heat hypersensitivity of four RyR1 mutants highlights the complexity of MH. HICR likewise occurs in skeletal muscles of MH model mice. We propose that HICR contributes an additional positive feedback to accelerate thermogenesis in patients with MH.


Asunto(s)
Hipertermia Maligna , Canal Liberador de Calcio Receptor de Rianodina , Animales , Calcio/metabolismo , Células HEK293 , Calor , Humanos , Hipertermia Maligna/genética , Hipertermia Maligna/patología , Proteínas de la Membrana , Ratones , Músculo Esquelético/metabolismo , Mutación , Canal Liberador de Calcio Receptor de Rianodina/genética , Retículo Sarcoplasmático/metabolismo
3.
Circ Res ; 130(2): 234-248, 2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-34875852

RESUMEN

BACKGROUND: During the development of heart failure, a fetal cardiac gene program is reactivated and accelerates pathological cardiac remodeling. We previously reported that a transcriptional repressor, NRSF (neuron restrictive silencer factor), suppresses the fetal cardiac gene program, thereby maintaining cardiac integrity. The underlying molecular mechanisms remain to be determined, however. METHODS: We aim to elucidate molecular mechanisms by which NRSF maintains normal cardiac function. We generated cardiac-specific NRSF knockout mice and analyzed cardiac gene expression profiles in those mice and mice cardiac-specifically expressing a dominant-negative NRSF mutant. RESULTS: We found that cardiac expression of Gαo, an inhibitory G protein encoded in humans by GNAO1, is transcriptionally regulated by NRSF and is increased in the ventricles of several mouse models of heart failure. Genetic knockdown of Gnao1 ameliorated the cardiac dysfunction and prolonged survival rates in these mouse heart failure models. Conversely, cardiac-specific overexpression of GNAO1 in mice was sufficient to induce cardiac dysfunction. Mechanistically, we observed that increasing Gαo expression increased surface sarcolemmal L-type Ca2+ channel activity, activated CaMKII (calcium/calmodulin-dependent kinase-II) signaling, and impaired Ca2+ handling in ventricular myocytes, which led to cardiac dysfunction. CONCLUSIONS: These findings shed light on a novel function of Gαo in the regulation of cardiac Ca2+ homeostasis and systolic function and suggest Gαo may be an effective therapeutic target for the treatment of heart failure.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Insuficiencia Cardíaca/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas Represoras/metabolismo , Animales , Canales de Calcio Tipo L/metabolismo , Señalización del Calcio , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Células Cultivadas , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/metabolismo , Homeostasis , Ratones , Ratones Endogámicos C57BL , Proteínas Represoras/genética
4.
Chem Pharm Bull (Tokyo) ; 72(4): 399-407, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38644198

RESUMEN

Ryanodine receptor 2 (RyR2) is a large Ca2+-release channel in the sarcoplasmic reticulum (SR) of cardiac muscle cells. It serves to release Ca2+ from the SR into the cytosol to initiate muscle contraction. RyR2 overactivation is associated with arrhythmogenic cardiac disease, but few specific inhibitors have been reported so far. Here, we identified an RyR2-selective inhibitor 1 from the chemical compound library and synthesized it from glycolic acid. Synthesis of various derivatives to investigate the structure-activity relationship of each substructure afforded another two RyR2-selective inhibitors 6 and 7, among which 6 was the most potent. Notably, compound 6 also inhibited Ca2+ release in cells expressing the RyR2 mutants R2474S, R4497C and K4750Q, which are associated with cardiac arrhythmias such as catecholaminergic polymorphic ventricular tachycardia (CPVT). This inhibitor is expected to be a useful tool for research on the structure and dynamics of RyR2, as well as a lead compound for the development of drug candidates to treat RyR2-related cardiac disease.


Asunto(s)
Bloqueadores de los Canales de Calcio , Canal Liberador de Calcio Receptor de Rianodina , Humanos , Calcio/metabolismo , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas , Células HEK293 , Estructura Molecular , Canal Liberador de Calcio Receptor de Rianodina/efectos de los fármacos , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Relación Estructura-Actividad , Bloqueadores de los Canales de Calcio/química , Bloqueadores de los Canales de Calcio/farmacología , Antiarrítmicos/química , Antiarrítmicos/farmacología , Taquicardia Ventricular/tratamiento farmacológico , Taquicardia Ventricular/genética
5.
Mol Pharmacol ; 104(6): 275-286, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37678938

RESUMEN

Type 2 ryanodine receptor (RyR2) is a Ca2+ release channel on the endoplasmic (ER)/sarcoplasmic reticulum that plays a central role in the excitation-contraction coupling in the heart. Hyperactivity of RyR2 has been linked to ventricular arrhythmias in patients with catecholaminergic polymorphic ventricular tachycardia and heart failure, where spontaneous Ca2+ release via hyperactivated RyR2 depolarizes diastolic membrane potential to induce triggered activity. In such cases, drugs that suppress RyR2 activity are expected to prevent the arrhythmias, but there is no clinically available RyR2 inhibitors at present. In this study, we searched for RyR2 inhibitors from a well-characterized compound library using a recently developed ER Ca2+-based assay, where the inhibition of RyR2 activity was detected by the increase in ER Ca2+ signals from R-CEPIA1er, a genetically encoded ER Ca2+ indicator, in RyR2-expressing HEK293 cells. By screening 1535 compounds in the library, we identified three compounds (chloroxylenol, methyl orsellinate, and riluzole) that greatly increased the ER Ca2+ signal. All of the three compounds suppressed spontaneous Ca2+ oscillations in RyR2-expressing HEK293 cells and correspondingly reduced the Ca2+-dependent [3H]ryanodine binding activity. In cardiomyocytes from RyR2-mutant mice, the three compounds effectively suppressed abnormal Ca2+ waves without substantial effects on the action-potential-induced Ca2+ transients. These results confirm that ER Ca2+-based screening is useful for identifying modulators of ER Ca2+ release channels and suggest that RyR2 inhibitors have potential to be developed as a new category of antiarrhythmic drugs. SIGNIFICANCE STATEMENT: We successfully identified three compounds having RyR2 inhibitory action from a well-characterized compound library using an endoplasmic reticulum Ca2+-based assay, and demonstrated that these compounds suppressed arrhythmogenic Ca2+ wave generation without substantially affecting physiological action-potential induced Ca2+ transients in cardiomyocytes. This study will facilitate the development of RyR2-specific inhibitors as a potential new class of drugs for life-threatening arrhythmias induced by hyperactivation of RyR2.


Asunto(s)
Miocitos Cardíacos , Canal Liberador de Calcio Receptor de Rianodina , Humanos , Ratones , Animales , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Células HEK293 , Retículo Endoplásmico/metabolismo , Arritmias Cardíacas/metabolismo , Retículo Sarcoplasmático , Señalización del Calcio , Calcio/metabolismo , Mutación
6.
Cancer Sci ; 113(10): 3449-3462, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35879248

RESUMEN

Trastuzumab-induced cardiotoxicity interferes with continued treatment in approximately 10% of patients with ErbB2-positive breast cancer, but its mechanism has not been fully elucidated. In this study, we recruited trastuzumab-treated patients with ≥30% reduction in left ventricular ejection fraction (SP) and noncardiotoxic patients (NP). From each of these patients, we established three cases of induced pluripotent stem cell-derived cardiomyocytes (pt-iPSC-CMs). Reduced contraction and relaxation velocities following trastuzumab treatment were more evident in SP pt-iPSC-CMs than NP pt-iPSC-CMs, indicating the cardiotoxicity phenotype could be replicated. Differences in ATP production, reactive oxygen species, and autophagy activity were observed between the two groups. Analysis of transcripts revealed enhanced kallikrein5 expression and pro-inflammatory signaling pathways, such as interleukin-1ß, in SP pt-iPSC-CMs after trastuzumab treatment. The kallilkrein5-protease-activated receptor 2 (PAR2)-MAPK signaling pathway was more activated in SP pt-iPSC-CMs, and treatment with a PAR2-antagonist suppressed interleukin-1ß expression. Our data indicate enhanced pro-inflammatory responses through kallikrein5-PAR2 signaling and vulnerability to external stresses appear to be the cause of trastuzumab-induced cardiotoxicity in SP.


Asunto(s)
Cardiotoxicidad , Receptor PAR-2 , Adenosina Trifosfato , Cardiotoxicidad/etiología , Humanos , Interleucina-1beta , Calicreínas , Especies Reactivas de Oxígeno , Volumen Sistólico , Trastuzumab/efectos adversos , Función Ventricular Izquierda
7.
Genes Cells ; 26(8): 583-595, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34060165

RESUMEN

Genetic mutations in actin regulators have been emerging as a cause of cardiomyopathy, although the functional link between actin dynamics and cardiac contraction remains largely unknown. To obtain insight into this issue, we examined the effects of pharmacological inhibition of formins, a major class of actin-assembling proteins. The formin inhibitor SMIFH2 significantly enhanced the cardiac contractility of isolated frog hearts, thereby augmenting cardiac performance. SMIFH2 treatment had no significant effects on the Ca2+ sensitivity of frog muscle fibers. Instead, it unexpectedly increased Ca2+ concentrations of isolated frog cardiomyocytes, suggesting that the inotropic effect is due to enhanced Ca2+ transients. In contrast to frog hearts, the contractility of mouse cardiomyocytes was attenuated by SMIFH2 treatment with decreasing Ca2+ transients. Thus, SMIFH2 has opposing effects on the Ca2+ transient and contractility between frog and mouse cardiomyocytes. We further found that SMIFH2 suppressed Ca2+ -release via type 2 ryanodine receptor (RyR2); this inhibitory effect may explain the species differences, since RyR2 is critical for Ca2+ transients in mouse myocardium but absent in frog myocardium. Although the mechanisms underlying the enhancement of Ca2+ transients in frog cardiomyocytes remain unclear, SMIFH2 differentially affects the cardiac contraction of amphibian and mammalian by differentially modulating their Ca2+ handling.


Asunto(s)
Señalización del Calcio , Corazón/efectos de los fármacos , Contracción Miocárdica , Miocitos Cardíacos/efectos de los fármacos , Animales , Células Cultivadas , Corazón/fisiología , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Rana catesbeiana , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Especificidad de la Especie , Tionas/farmacología , Uracilo/análogos & derivados , Uracilo/farmacología
8.
Europace ; 24(3): 497-510, 2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-34661651

RESUMEN

AIMS: Gain-of-function mutations in RYR2, encoding the cardiac ryanodine receptor channel (RyR2), cause catecholaminergic polymorphic ventricular tachycardia (CPVT). Whereas, genotype-phenotype correlations of loss-of-function mutations remains unknown, due to a small number of analysed mutations. In this study, we aimed to investigate their genotype-phenotype correlations in patients with loss-of-function RYR2 mutations. METHODS AND RESULTS: We performed targeted gene sequencing for 710 probands younger than 16-year-old with inherited primary arrhythmia syndromes (IPAS). RYR2 mutations were identified in 63 probands, and 3 probands displayed clinical features different from CPVT. A proband with p.E4146D developed ventricular fibrillation (VF) and QT prolongation whereas that with p.S4168P showed QT prolongation and bradycardia. Another proband with p.S4938F showed short-coupled variant of torsade de pointes (scTdP). To evaluate the functional alterations in these three mutant RyR2s and p.K4594Q previously reported in a long QT syndrome (LQTS), we measured Ca2+ signals in HEK293 cells and HL-1 cardiomyocytes as well as Ca2+-dependent [3H]ryanodine binding. All mutant RyR2s demonstrated a reduced Ca2+ release, an increased endoplasmic reticulum Ca2+, and a reduced [3H]ryanodine binding, indicating loss-of-functions. In HL-1 cells, the exogenous expression of S4168P and K4594Q reduced amplitude of Ca2+ transients without inducing Ca2+ waves, whereas that of E4146D and S4938F evoked frequent localized Ca2+ waves. CONCLUSION: Loss-of-function RYR2 mutations may be implicated in various types of arrhythmias including LQTS, VF, and scTdP, depending on alteration of the channel activity. Search of RYR2 mutations in IPAS patients clinically different from CPVT will be a useful strategy to effectively discover loss-of-function RYR2 mutations.


Asunto(s)
Síndrome de QT Prolongado , Taquicardia Ventricular , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/genética , Calcio/metabolismo , Células HEK293 , Humanos , Síndrome de QT Prolongado/diagnóstico , Síndrome de QT Prolongado/genética , Mutación , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/genética
9.
Bioorg Med Chem ; 74: 117027, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36223685

RESUMEN

Ryanodine receptor 1 (RyR1) is a Ca2+-release channel expressed on the sarcoplasmic reticulum (SR) membrane. RyR1 mediates release of Ca2+ from the SR to the cytoplasm to induce muscle contraction, and mutations associated with overactivation of RyR1 cause lethal muscle diseases. Dantrolene sodium salt (dantrolene Na) is the only approved RyR inhibitor to treat malignant hyperthermia patients with RyR1 mutations, but is poorly water-soluble. Our group recently developed a bioassay system and used it to identify quinoline derivatives such as 1 as potent RyR1 inhibitors. In the present study, we focused on modification of these inhibitors with the aim of increasing their water-solubility. First, we tried reducing the hydrophobicity by shortening the N-octyl chain at the quinolone ring of 1; the N-heptyl compound retained RyR1-inhibitory activity, but the N-hexyl compound showed decreased activity. Next, we introduced a more hydrophilic azaquinolone ring in place of quinolone; in this case, only the N-octyl compound retained activity. The sodium salt of N-octyl azaquinolone 7 showed similar inhibitory activity to dantrolene Na with approximately 1,000-fold greater solubility in saline.


Asunto(s)
Quinolonas , Canal Liberador de Calcio Receptor de Rianodina , Humanos , Dantroleno/farmacología , Agua , Calcio/metabolismo , Músculo Esquelético/metabolismo , Quinolonas/farmacología
10.
J Muscle Res Cell Motil ; 42(2): 291-304, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32040690

RESUMEN

Ryanodine receptors (RyRs) are huge homotetrameric Ca2+ release channels localized to the sarcoplasmic reticulum. RyRs are responsible for the release of Ca2+ from the SR during excitation-contraction coupling in striated muscle cells. Recent revolutionary advancements in cryo-electron microscopy have provided a number of near-atomic structures of RyRs, which have enabled us to better understand the architecture of RyRs. Thus, we are now in a new era understanding the gating, regulatory and disease-causing mechanisms of RyRs. Here we review recent advances in the elucidation of the structures of RyRs, especially RyR1 in skeletal muscle, and their mechanisms of regulation by small molecules, associated proteins and disease-causing mutations.


Asunto(s)
Canal Liberador de Calcio Receptor de Rianodina , Retículo Sarcoplasmático , Calcio/metabolismo , Señalización del Calcio , Microscopía por Crioelectrón , Acoplamiento Excitación-Contracción , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo
11.
J Electrocardiol ; 69: 111-118, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34656916

RESUMEN

BACKGROUND: Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited arrhythmogenic syndrome and a cause of exercise-related sudden death. CPVT has been reported to be caused by gain of function underlying a mutation of cardiac ryanodine receptor (RyR2). METHODS: In a family with a CPVT patient, genomic DNA was extracted from peripheral blood lymphocytes, and the RyR2 gene underwent target gene sequence using MiSeq. The activity of wild-type (WT) and mutant RyR2 channel were evaluated by monitoring Ca2+ signals in HEK293 cells expressing WT and mutant RyR2. We investigated a role of a RyR2 mutation in the recent tertiary structure of RyR2. RESULTS: Though a 17-year-old man diagnosed as CPVT had implantable cardioverter defibrillator (ICD) and was going to undergo catheter ablation for the control of paroxysmal atrial fibrillation, he suddenly died at the age of twenty-one because of ventricular fibrillation which was spontaneously developed after maximum inappropriate ICD shocks against rapid atrial fibrillation. The genetic test revealed a de novo RyR2 mutation, Gln4936Lys in mosaicism which was located at the α-helix interface between U-motif and C-terminal domain. In the functional analysis, Ca2+ release from endoplasmic reticulum via the mutant RyR2 significantly increased than that from WT. CONCLUSION: A RyR2 mutation, Gln4936Lys, to be documented in a CPVT patient with exercise-induced ventricular tachycardias causes an excessive Ca2+ release from the sarcoplasmic reticulum which corresponded to clinical phenotypes of CPVT. The reduction of inappropriate shocks of ICD is essential to prevent unexpected sudden death in patients with CPVT.


Asunto(s)
Desfibriladores Implantables , Taquicardia Ventricular , Adolescente , Muerte Súbita Cardíaca/etiología , Electrocardiografía , Células HEK293 , Humanos , Masculino , Mutación , Canal Liberador de Calcio Receptor de Rianodina/genética , Taquicardia Ventricular/genética , Taquicardia Ventricular/terapia
12.
Int J Mol Sci ; 22(19)2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34639137

RESUMEN

The ryanodine receptor (RyR) is a Ca2+ release channel in the sarcoplasmic reticulum of skeletal and cardiac muscles and plays a key role in excitation-contraction coupling. The activity of the RyR is regulated by the changes in the level of many intracellular factors, such as divalent cations (Ca2+ and Mg2+), nucleotides, associated proteins, and reactive oxygen species. Since these intracellular factors change depending on the condition of the muscle, e.g., exercise, fatigue, or disease states, the RyR channel activity will be altered accordingly. In this review, we describe how the RyR channel is regulated under various conditions and discuss the possibility that the RyR acts as a sensor for changes in the intracellular environments in muscles.


Asunto(s)
Calcio/metabolismo , Contracción Muscular , Músculo Esquelético/fisiología , Miocardio/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Animales , Humanos , Músculo Esquelético/citología , Miocardio/citología
13.
Circ J ; 84(2): 226-234, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31875585

RESUMEN

BACKGROUND: Left ventricular non-compaction (LVNC) is a cardiomyopathy characterized by prominent trabeculae and intertrabecular recesses. We present the cases of 3 girls with the sameryanodine receptor type 2(RYR2) mutation who had phenotypes of both catecholaminergic polymorphic ventricular tachycardia (CPVT) and LVNC .Methods and Results:Clinical characteristics and genetic background of the 3 patients were analyzed retrospectively. Age at onset was 5, 6, and 7 years, respectively. Clinical presentation included syncope during exercise in all 3 patients and cardiac arrest in 2 patients. LVNC diagnosis was confirmed on echocardiography according to previously defined criteria. Exercise stress testing provoked ventricular arrhythmia in two of the patients. Beta-blockers (n=3) and flecainide (n=2) were given, and an implantable cardioverter defibrillator was used in 1 patient. Genotyping identified the sameRYR2-R169Q missense mutation and no other CPVT- or LVNC-related gene mutations. Functional analysis of the mutation using HEK293 cells with single-cell Ca2+imaging and [3H]ryanodine binding analysis, indicated a gain of function: a reduced threshold for overload-induced Ca2+release from the sarcoplasmic reticulum and increased fractional Ca2+release. CONCLUSIONS: The rare association of LVNC and CPVT phenotypes withRYR2mutations is less likely to be coincidental. Screening for life-threatening arrhythmias using exercise or pharmacologic stress tests is recommended in LVNC patients to prevent sudden cardiac death in those with preserved LV function.


Asunto(s)
No Compactación Aislada del Miocardio Ventricular/genética , Mutación Missense , Canal Liberador de Calcio Receptor de Rianodina/genética , Taquicardia Ventricular/genética , Antagonistas Adrenérgicos beta/uso terapéutico , Antiarrítmicos/uso terapéutico , Señalización del Calcio , Niño , Preescolar , Muerte Súbita Cardíaca/prevención & control , Desfibriladores Implantables , Cardioversión Eléctrica/instrumentación , Femenino , Flecainida/uso terapéutico , Predisposición Genética a la Enfermedad , Células HEK293 , Herencia , Humanos , No Compactación Aislada del Miocardio Ventricular/diagnóstico por imagen , No Compactación Aislada del Miocardio Ventricular/metabolismo , No Compactación Aislada del Miocardio Ventricular/terapia , Linaje , Fenotipo , Estudios Retrospectivos , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/terapia
14.
J Pharmacol Sci ; 140(1): 109-112, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31155393

RESUMEN

Cancer cachexia is a systemic wasting syndrome characterized by anorexia and loss of body weight. The xanthine oxidase (XO) inhibitor febuxostat is one of the promising candidates for cancer cachexia treatment. However, cachexic symptoms were not alleviated by oral administration of febuxostat in our cancer cachexia model. Metabolomic analysis with brains of our cachexic model showed that purine metabolism was activated and XO activity was increased, and thus suggested that febuxostat would not reach the brain. Accordingly, targeting XO in the brain, which controls appetite, may be an effective strategy for treatment of cancer cachexia.


Asunto(s)
Encéfalo/enzimología , Encéfalo/metabolismo , Caquexia/tratamiento farmacológico , Febuxostat/administración & dosificación , Neoplasias/complicaciones , Xantina Oxidasa/metabolismo , Administración Oral , Animales , Caquexia/enzimología , Caquexia/etiología , Caquexia/metabolismo , Modelos Animales de Enfermedad , Masculino , Ratones Endogámicos BALB C , Purinas/metabolismo , Xantina Oxidasa/fisiología
15.
Mol Pharmacol ; 94(1): 722-730, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29674523

RESUMEN

Genetic mutations in ryanodine receptors (RyRs), Ca2+-release channels in the sarcoplasmic reticulum essential for muscle contractions, cause various skeletal muscle and cardiac diseases. Because the main underlying mechanism of the pathogenesis is overactive Ca2+ release by gain-of-function of the RyR channel, inhibition of RyRs is expected to be a promising treatment of these diseases. Here, to identify inhibitors specific to skeletal muscle type 1 RyR (RyR1), we developed a novel high-throughput screening (HTS) platform using time-lapse fluorescence measurement of Ca2+ concentrations in the endoplasmic reticulum (ER) ([Ca2+]ER). Because expression of RyR1 carrying disease-associated mutation reduces [Ca2+]ER in HEK293 cells through Ca2+ leakage from RyR1 channels, specific drugs that inhibit RyR1 will increase [Ca2+]ER by preventing such Ca2+ leakage. RyR1 carrying the R2163C mutation and R-CEPIA1er, a genetically encoded ER Ca2+ indicator, were stably expressed in HEK293 cells, and time-lapse fluorescence was measured using a fluorometer. False positives were effectively excluded by using cells expressing wild-type (WT) RyR1. By screening 1535 compounds in a library of well characterized drugs, we successfully identified four compounds that significantly increased [Ca2+]ER They include dantrolene, a known RyR1 inhibitor, and three structurally different compounds: oxolinic acid, 9-aminoacridine, and alexidine. All the hit compounds, except for oxolinic acid, inhibited [3H]ryanodine binding of WT and mutant RyR1. Interestingly, they showed different dose dependencies and isoform specificities. The highly quantitative nature and good correlation with the channel activity validated this HTS platform by [Ca2+]ER measurement to explore drugs for RyR-related diseases.


Asunto(s)
Bloqueadores de los Canales de Calcio/farmacología , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Señalización del Calcio/efectos de los fármacos , Línea Celular , Dantroleno/farmacología , Retículo Endoplásmico/efectos de los fármacos , Células HEK293 , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Contracción Muscular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Mutación/efectos de los fármacos , Isoformas de Proteínas/metabolismo , Retículo Sarcoplasmático/efectos de los fármacos , Retículo Sarcoplasmático/metabolismo
16.
Endocr J ; 64(Suppl.): S35-S39, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28652542

RESUMEN

Cancer was considered an incurable disease for many years; however, with the development of anticancer drugs and state-of-the art technologies, it has become curable. Cardiovascular diseases in patients with cancer or induced by cancer chemotherapy have recently become a great concern. Certain anticancer drugs and molecular targeted therapies cause cardiotoxicity, which limit the widespread implementation of cancer treatment and decrease the quality of life in cancer patients significantly. The anthracycline doxorubicin (DOX) causes cardiotoxicity. The cellular mechanism underlying DOX-induced cardiotoxicity include free-radical damage to cardiac myocytes, leading to mitochondrial injury and subsequent death of myocytes. Recently, circulating orexigenic hormones, ghrelin and des-acyl ghrelin, have been reported to inhibit DOX-induced cardiotoxicity. However, little is known about the molecular mechanisms underlying their preventive effects. In the present study, we show the possible mechanisms underlying the effects of ghrelin and des-acyl ghrelin against DOX-induced cardiotoxicity through in vitro and in vivo researches.


Asunto(s)
Antineoplásicos/efectos adversos , Cardiotoxicidad/tratamiento farmacológico , Doxorrubicina/efectos adversos , Ghrelina/uso terapéutico , Corazón/efectos de los fármacos , Sustancias Protectoras/uso terapéutico , Animales , Antineoplásicos/uso terapéutico , Cardiotoxicidad/diagnóstico por imagen , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/uso terapéutico , Ecocardiografía , Ghrelina/administración & dosificación , Corazón/diagnóstico por imagen , Ratones , Miocitos Cardíacos/efectos de los fármacos , Sustancias Protectoras/administración & dosificación
17.
Hum Mutat ; 37(11): 1231-1241, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27586648

RESUMEN

Type 1 ryanodine receptor (RYR1) is a Ca2+ release channel in the sarcoplasmic reticulum of skeletal muscle and is mutated in some muscle diseases, including malignant hyperthermia (MH) and central core disease (CCD). Over 200 mutations associated with these diseases have been identified, and most mutations accelerate Ca2+ -induced Ca2+ release (CICR), resulting in abnormal Ca2+ homeostasis in skeletal muscle. However, it remains largely unknown how specific mutations cause different phenotypes. In this study, we investigated the CICR activity of 14 mutations at 10 different positions in the central region of RYR1 (10 MH and four MH/CCD mutations) using a heterologous expression system in HEK293 cells. In live-cell Ca2+ imaging, the mutant channels exhibited an enhanced sensitivity to caffeine, a reduced endoplasmic reticulum Ca2+ content, and an increased resting cytoplasmic Ca2+ level. The three parameters for CICR (Ca2+ sensitivity for activation, Ca2+ sensitivity for inactivation, and attainable maximum activity, i.e., gain) were obtained by [3 H]ryanodine binding and fitting analysis. The mutant channels showed increased gain and Ca2+ sensitivity for activation in a site-specific manner. Genotype-phenotype correlations were explained well by the near-atomic structure of RYR1. Our data suggest that divergent CICR activity may cause various disease phenotypes by specific mutations.


Asunto(s)
Calcio/metabolismo , Hipertermia Maligna/genética , Mutación , Miopatía del Núcleo Central/genética , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Endoplásmico/metabolismo , Predisposición Genética a la Enfermedad , Células HEK293 , Humanos , Hipertermia Maligna/metabolismo , Modelos Moleculares , Miopatía del Núcleo Central/metabolismo , Estructura Secundaria de Proteína , Canal Liberador de Calcio Receptor de Rianodina/química , Retículo Sarcoplasmático/metabolismo
18.
EMBO J ; 31(2): 417-28, 2012 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-22036948

RESUMEN

Mobilization of intracellular Ca(2+) stores regulates a multitude of cellular functions, but the role of intracellular Ca(2+) release via the ryanodine receptor (RyR) in the brain remains incompletely understood. We found that nitric oxide (NO) directly activates RyRs, which induce Ca(2+) release from intracellular stores of central neurons, and thereby promote prolonged Ca(2+) signalling in the brain. Reversible S-nitrosylation of type 1 RyR (RyR1) triggers this Ca(2+) release. NO-induced Ca(2+) release (NICR) is evoked by type 1 NO synthase-dependent NO production during neural firing, and is essential for cerebellar synaptic plasticity. NO production has also been implicated in pathological conditions including ischaemic brain injury, and our results suggest that NICR is involved in NO-induced neuronal cell death. These findings suggest that NICR via RyR1 plays a regulatory role in the physiological and pathophysiological functions of the brain.


Asunto(s)
Señalización del Calcio/fisiología , Cerebelo/fisiología , Corteza Cerebral/fisiología , Proteínas del Tejido Nervioso/fisiología , Neuronas/fisiología , Óxido Nítrico/fisiología , Canal Liberador de Calcio Receptor de Rianodina/fisiología , Animales , Apoptosis/efectos de los fármacos , Cerebelo/citología , Corteza Cerebral/citología , Células HEK293 , Humanos , Técnicas In Vitro , Infarto de la Arteria Cerebral Media/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Fluorescente , Óxido Nítrico Sintasa de Tipo I/deficiencia , Óxido Nítrico Sintasa de Tipo I/genética , Óxido Nítrico Sintasa de Tipo I/fisiología , Técnicas de Placa-Clamp , Proteínas Recombinantes de Fusión/fisiología , Canal Liberador de Calcio Receptor de Rianodina/biosíntesis , Canal Liberador de Calcio Receptor de Rianodina/deficiencia , Canal Liberador de Calcio Receptor de Rianodina/genética
19.
Biochem Biophys Res Commun ; 466(3): 475-80, 2015 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-26367178

RESUMEN

Inositol 1,4,5-trisphosphate receptor (IP3R) is a key regulator of intracellular Ca(2+) concentration that release Ca(2+) from Ca(2+) stores in response to various external stimuli. IP3R also works as a signal hub which form a platform for interacting with various proteins involved in diverse cell signaling. Previously, we have identified an IP3R homolog in the parasitic protist, Trypanosoma cruzi (TcIP3R). Parasites expressing reduced or increased levels of TcIP3R displayed defects in growth, transformation, and infectivity. In the present study, we established parasitic strains expressing a dominant negative form of TcIP3R, named DN-TcIP3R, to further investigate the physiological role(s) of TcIP3R. We found that the growth of epimastigotes expressing DN-TcIP3R was significantly slower than that of parasites with TcIP3R expression levels that were approximately 65% of wild-type levels. The expression of DN-TcIP3R in epimastigotes induced metacyclogenesis even in the normal growth medium. Furthermore, these epimastigotes showed the presence of dense mitochondria under a transmission electron microscope. Our findings confirm that TcIP3R is crucial for epimastigote growth, as previously reported. They also suggest that a strong inhibition of the IP3R-mediated signaling induces metacyclogenesis and that mitochondrial integrity is closely associated with this signaling.


Asunto(s)
Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Trypanosoma cruzi/genética , Trypanosoma cruzi/metabolismo , Animales , Compuestos de Boro/farmacología , Regulación del Desarrollo de la Expresión Génica , Genes Protozoarios , Microscopía Electrónica de Transmisión , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Protozoario/genética , ARN Protozoario/metabolismo , Transducción de Señal , Trypanosoma cruzi/patogenicidad
20.
Mol Microbiol ; 87(6): 1133-50, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23320762

RESUMEN

In animals, inositol 1,4,5-trisphosphate receptors (IP3 Rs) are ion channels that play a pivotal role in many biological processes by mediating Ca(2+) release from the endoplasmic reticulum. Here, we report the identification and characterization of a novel IP3 R in the parasitic protist, Trypanosoma cruzi, the pathogen responsible for Chagas disease. DT40 cells lacking endogenous IP3 R genes expressing T. cruzi IP3 R (TcIP3 R) exhibited IP3 -mediated Ca(2+) release from the ER, and demonstrated receptor binding to IP3 . TcIP3 R was expressed throughout the parasite life cycle but the expression level was much lower in bloodstream trypomastigotes than in intracellular amastigotes or epimastigotes. Disruption of two of the three TcIP3 R gene loci led to the death of the parasite, suggesting that IP3 R is essential for T. cruzi. Parasites expressing reduced or increased levels of TcIP3 R displayed defects in growth, transformation and infectivity, indicating that TcIP3 R is an important regulator of the parasite's life cycle. Furthermore, mice infected with T. cruzi expressing reduced levels of TcIP3 R exhibited a reduction of disease symptoms, indicating that TcIP3 R is an important virulence factor. Combined with the fact that the primary structure of TcIP3 R has low similarity to that of mammalian IP3 Rs, TcIP3 R is a promising drug target for Chagas disease.


Asunto(s)
Regulación de la Expresión Génica , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Trypanosoma cruzi/fisiología , Factores de Virulencia/metabolismo , Animales , Enfermedad de Chagas/parasitología , Enfermedad de Chagas/patología , ADN Protozoario/química , ADN Protozoario/genética , Modelos Animales de Enfermedad , Técnicas de Inactivación de Genes , Genes Esenciales , Ratones , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Trypanosoma cruzi/genética , Trypanosoma cruzi/crecimiento & desarrollo , Trypanosoma cruzi/patogenicidad , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA