Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell ; 184(18): 4680-4696.e22, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34380047

RESUMEN

Mutations causing amyotrophic lateral sclerosis (ALS) often affect the condensation properties of RNA-binding proteins (RBPs). However, the role of RBP condensation in the specificity and function of protein-RNA complexes remains unclear. We created a series of TDP-43 C-terminal domain (CTD) variants that exhibited a gradient of low to high condensation propensity, as observed in vitro and by nuclear mobility and foci formation. Notably, a capacity for condensation was required for efficient TDP-43 assembly on subsets of RNA-binding regions, which contain unusually long clusters of motifs of characteristic types and density. These "binding-region condensates" are promoted by homomeric CTD-driven interactions and required for efficient regulation of a subset of bound transcripts, including autoregulation of TDP-43 mRNA. We establish that RBP condensation can occur in a binding-region-specific manner to selectively modulate transcriptome-wide RNA regulation, which has implications for remodeling RNA networks in the context of signaling, disease, and evolution.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ARN/metabolismo , ARN/metabolismo , Regiones no Traducidas 3'/genética , Secuencia de Bases , Núcleo Celular/metabolismo , Células HEK293 , Células HeLa , Homeostasis , Humanos , Mutación/genética , Motivos de Nucleótidos/genética , Transición de Fase , Mutación Puntual/genética , Poli A/metabolismo , Unión Proteica , Multimerización de Proteína , ARN Mensajero/genética , ARN Mensajero/metabolismo , Eliminación de Secuencia
2.
Nat Struct Mol Biol ; 31(9): 1439-1447, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39054355

RESUMEN

Signaling pathways drive cell fate transitions largely by changing gene expression. However, the mechanisms for rapid and selective transcriptome rewiring in response to signaling cues remain elusive. Here we use deep learning to deconvolve both the sequence determinants and the trans-acting regulators that trigger extracellular signal-regulated kinase (ERK)-mitogen-activated protein kinase kinase (MEK)-induced decay of the naive pluripotency mRNAs. Timing of decay is coupled to embryo implantation through ERK-MEK phosphorylation of LIN28A, which repositions pLIN28A to the highly A+U-rich 3' untranslated region (3'UTR) termini of naive pluripotency mRNAs. Interestingly, these A+U-rich 3'UTR termini serve as poly(A)-binding protein (PABP)-binding hubs, poised for signal-induced convergence with LIN28A. The multivalency of AUU motifs determines the efficacy of pLIN28A-PABP convergence, which enhances PABP 3'UTR binding, decreases the protection of poly(A) tails and activates mRNA decay to enable progression toward primed pluripotency. Thus, the signal-induced convergence of LIN28A with PABP-RNA hubs drives the rapid selection of naive mRNAs for decay, enabling the transcriptome remodeling that ensures swift developmental progression.


Asunto(s)
Regiones no Traducidas 3' , Estabilidad del ARN , ARN Mensajero , Proteínas de Unión al ARN , Regiones no Traducidas 3'/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética , Animales , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Ratones , Transducción de Señal , Humanos , Proteínas de Unión a Poli(A)/metabolismo , Proteínas de Unión a Poli(A)/genética , Regulación del Desarrollo de la Expresión Génica , Fosforilación
3.
Genome Biol ; 24(1): 180, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37542318

RESUMEN

We present RBPNet, a novel deep learning method, which predicts CLIP-seq crosslink count distribution from RNA sequence at single-nucleotide resolution. By training on up to a million regions, RBPNet achieves high generalization on eCLIP, iCLIP and miCLIP assays, outperforming state-of-the-art classifiers. RBPNet performs bias correction by modeling the raw signal as a mixture of the protein-specific and background signal. Through model interrogation via Integrated Gradients, RBPNet identifies predictive sub-sequences that correspond to known and novel binding motifs and enables variant-impact scoring via in silico mutagenesis. Together, RBPNet improves imputation of protein-RNA interactions, as well as mechanistic interpretation of predictions.


Asunto(s)
Secuencia de Bases , Simulación por Computador , Aprendizaje Profundo , Proteínas de Unión al ARN , ARN , Humanos , Alelos , Sesgo , Sitios de Unión , Secuencia de Consenso , Conjuntos de Datos como Asunto , Internet , Mutación , Motivos de Nucleótidos , Nucleótidos/metabolismo , ARN/química , ARN/genética , ARN/metabolismo , Sitios de Empalme de ARN , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Viral/química , ARN Viral/genética , ARN Viral/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo
4.
Genome Biol ; 23(1): 191, 2022 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-36085079

RESUMEN

BACKGROUND: Crosslinking and immunoprecipitation (CLIP) is a method used to identify in vivo RNA-protein binding sites on a transcriptome-wide scale. With the increasing amounts of available data for RNA-binding proteins (RBPs), it is important to understand to what degree the enriched motifs specify the RNA-binding profiles of RBPs in cells. RESULTS: We develop positionally enriched k-mer analysis (PEKA), a computational tool for efficient analysis of enriched motifs from individual CLIP datasets, which minimizes the impact of technical and regional genomic biases by internal data normalization. We cross-validate PEKA with mCross and show that the use of input control for background correction is not required to yield high specificity of enriched motifs. We identify motif classes with common enrichment patterns across eCLIP datasets and across RNA regions, while also observing variations in the specificity and the extent of motif enrichment across eCLIP datasets, between variant CLIP protocols, and between CLIP and in vitro binding data. Thereby, we gain insights into the contributions of technical and regional genomic biases to the enriched motifs, and find how motif enrichment features relate to the domain composition and low-complexity regions of the studied proteins. CONCLUSIONS: Our study provides insights into the overall contributions of regional binding preferences, protein domains, and low-complexity regions to the specificity of protein-RNA interactions, and shows the value of cross-motif and cross-RBP comparison for data interpretation. Our results are presented for exploratory analysis via an online platform in an RBP-centric and motif-centric manner ( https://imaps.goodwright.com/apps/peka/ ).


Asunto(s)
Genómica , ARN , Sitios de Unión , Inmunoprecipitación , Dominios Proteicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA