Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 573(7775): 532-538, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31534219

RESUMEN

A network of communicating tumour cells that is connected by tumour microtubes mediates the progression of incurable gliomas. Moreover, neuronal activity can foster malignant behaviour of glioma cells by non-synaptic paracrine and autocrine mechanisms. Here we report a direct communication channel between neurons and glioma cells in different disease models and human tumours: functional bona fide chemical synapses between presynaptic neurons and postsynaptic glioma cells. These neurogliomal synapses show a typical synaptic ultrastructure, are located on tumour microtubes, and produce postsynaptic currents that are mediated by glutamate receptors of the AMPA subtype. Neuronal activity including epileptic conditions generates synchronised calcium transients in tumour-microtube-connected glioma networks. Glioma-cell-specific genetic perturbation of AMPA receptors reduces calcium-related invasiveness of tumour-microtube-positive tumour cells and glioma growth. Invasion and growth are also reduced by anaesthesia and the AMPA receptor antagonist perampanel, respectively. These findings reveal a biologically relevant direct synaptic communication between neurons and glioma cells with potential clinical implications.


Asunto(s)
Neoplasias Encefálicas/fisiopatología , Progresión de la Enfermedad , Glioma/fisiopatología , Sinapsis/patología , Animales , Neoplasias Encefálicas/ultraestructura , Modelos Animales de Enfermedad , Glioma/ultraestructura , Humanos , Ratones , Microscopía Electrónica de Transmisión , Neuronas/fisiología , Receptores AMPA/genética , Receptores AMPA/metabolismo
2.
Lancet Oncol ; 25(3): 400-410, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38423052

RESUMEN

BACKGROUND: The extended acquisition times required for MRI limit its availability in resource-constrained settings. Consequently, accelerating MRI by undersampling k-space data, which is necessary to reconstruct an image, has been a long-standing but important challenge. We aimed to develop a deep convolutional neural network (dCNN) optimisation method for MRI reconstruction and to reduce scan times and evaluate its effect on image quality and accuracy of oncological imaging biomarkers. METHODS: In this multicentre, retrospective, cohort study, MRI data from patients with glioblastoma treated at Heidelberg University Hospital (775 patients and 775 examinations) and from the phase 2 CORE trial (260 patients, 1083 examinations, and 58 institutions) and the phase 3 CENTRIC trial (505 patients, 3147 examinations, and 139 institutions) were used to develop, train, and test dCNN for reconstructing MRI from highly undersampled single-coil k-space data with various acceleration rates (R=2, 4, 6, 8, 10, and 15). Independent testing was performed with MRIs from the phase 2/3 EORTC-26101 trial (528 patients with glioblastoma, 1974 examinations, and 32 institutions). The similarity between undersampled dCNN-reconstructed and original MRIs was quantified with various image quality metrics, including structural similarity index measure (SSIM) and the accuracy of undersampled dCNN-reconstructed MRI on downstream radiological assessment of imaging biomarkers in oncology (automated artificial intelligence-based quantification of tumour burden and treatment response) was performed in the EORTC-26101 test dataset. The public NYU Langone Health fastMRI brain test dataset (558 patients and 558 examinations) was used to validate the generalisability and robustness of the dCNN for reconstructing MRIs from available multi-coil (parallel imaging) k-space data. FINDINGS: In the EORTC-26101 test dataset, the median SSIM of undersampled dCNN-reconstructed MRI ranged from 0·88 to 0·99 across different acceleration rates, with 0·92 (95% CI 0·92-0·93) for 10-times acceleration (R=10). The 10-times undersampled dCNN-reconstructed MRI yielded excellent agreement with original MRI when assessing volumes of contrast-enhancing tumour (median DICE for spatial agreement of 0·89 [95% CI 0·88 to 0·89]; median volume difference of 0·01 cm3 [95% CI 0·00 to 0·03] equalling 0·21%; p=0·0036 for equivalence) or non-enhancing tumour or oedema (median DICE of 0·94 [95% CI 0·94 to 0·95]; median volume difference of -0·79 cm3 [95% CI -0·87 to -0·72] equalling -1·77%; p=0·023 for equivalence) in the EORTC-26101 test dataset. Automated volumetric tumour response assessment in the EORTC-26101 test dataset yielded an identical median time to progression of 4·27 months (95% CI 4·14 to 4·57) when using 10-times-undersampled dCNN-reconstructed or original MRI (log-rank p=0·80) and agreement in the time to progression in 374 (95·2%) of 393 patients with data. The dCNN generalised well to the fastMRI brain dataset, with significant improvements in the median SSIM when using multi-coil compared with single-coil k-space data (p<0·0001). INTERPRETATION: Deep-learning-based reconstruction of undersampled MRI allows for a substantial reduction of scan times, with a 10-times acceleration demonstrating excellent image quality while preserving the accuracy of derived imaging biomarkers for the assessment of oncological treatment response. Our developments are available as open source software and hold considerable promise for increasing the accessibility to MRI, pending further prospective validation. FUNDING: Deutsche Forschungsgemeinschaft (German Research Foundation) and an Else Kröner Clinician Scientist Endowed Professorship by the Else Kröner Fresenius Foundation.


Asunto(s)
Aprendizaje Profundo , Glioblastoma , Humanos , Inteligencia Artificial , Biomarcadores , Estudios de Cohortes , Glioblastoma/diagnóstico por imagen , Imagen por Resonancia Magnética , Estudios Retrospectivos
3.
Diabetologia ; 67(2): 275-289, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38019287

RESUMEN

AIMS/HYPOTHESIS: Quantitative sensory testing (QST) allows the identification of individuals with rapid progression of diabetic sensorimotor polyneuropathy (DSPN) based on certain sensory phenotypes. Hence, the aim of this study was to investigate the relationship of these phenotypes with the structural integrity of the sciatic nerve among individuals with type 2 diabetes. METHODS: Seventy-six individuals with type 2 diabetes took part in this cross-sectional study and underwent QST of the right foot and high-resolution magnetic resonance neurography including diffusion tensor imaging of the right distal sciatic nerve to determine the sciatic nerve fractional anisotropy (FA) and cross-sectional area (CSA), both of which serve as markers of structural integrity of peripheral nerves. Participants were then assigned to four sensory phenotypes (participants with type 2 diabetes and healthy sensory profile [HSP], thermal hyperalgesia [TH], mechanical hyperalgesia [MH], sensory loss [SL]) by a standardised sorting algorithm based on QST. RESULTS: Objective neurological deficits showed a gradual increase across HSP, TH, MH and SL groups, being higher in MH compared with HSP and in SL compared with HSP and TH. The number of participants categorised as HSP, TH, MH and SL was 16, 24, 17 and 19, respectively. There was a gradual decrease of the sciatic nerve's FA (HSP 0.444, TH 0.437, MH 0.395, SL 0.382; p=0.005) and increase of CSA (HSP 21.7, TH 21.5, MH 25.9, SL 25.8 mm2; p=0.011) across the four phenotypes. Further, MH and SL were associated with a lower sciatic FA (MH unstandardised regression coefficient [B]=-0.048 [95% CI -0.091, -0.006], p=0.027; SL B=-0.062 [95% CI -0.103, -0.020], p=0.004) and CSA (MH ß=4.3 [95% CI 0.5, 8.0], p=0.028; SL B=4.0 [95% CI 0.4, 7.7], p=0.032) in a multivariable regression analysis. The sciatic FA correlated negatively with the sciatic CSA (r=-0.35, p=0.002) and markers of microvascular damage (high-sensitivity troponin T, urine albumin/creatinine ratio). CONCLUSIONS/INTERPRETATION: The most severe sensory phenotypes of DSPN (MH and SL) showed diminishing sciatic nerve structural integrity indexed by lower FA, likely representing progressive axonal loss, as well as increasing CSA of the sciatic nerve, which cannot be detected in individuals with TH. Individuals with type 2 diabetes may experience a predefined cascade of nerve fibre damage in the course of the disease, from healthy to TH, to MH and finally SL, while structural changes in the proximal nerve seem to precede the sensory loss of peripheral nerves and indicate potential targets for the prevention of end-stage DSPN. TRIAL REGISTRATION: ClinicalTrials.gov NCT03022721.


Asunto(s)
Diabetes Mellitus Tipo 2 , Neuropatías Diabéticas , Humanos , Imagen de Difusión Tensora/métodos , Estudios Transversales , Nervio Ciático , Fenotipo
4.
NMR Biomed ; 37(10): e5173, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38783837

RESUMEN

PURPOSE: The purpose of this work is to apply multi-echo spin- and gradient-echo (SAGE) echo-planar imaging (EPI) combined with a navigator-based (NAV) prospective motion compensation method for a quantitative liver blood oxygen level dependent (BOLD) measurement with a breath-hold (BH) task. METHODS: A five-echo SAGE sequence was developed to quantitatively measure T2 and T2* to depict function with sufficient signal-to-noise ratio, spatial resolution and sensitivity to BOLD changes induced by the BH task. To account for respiratory motion, a navigator was employed in the form of a single gradient-echo projection readout, located at the diaphragm along the inferior-superior direction. Prior to each transverse imaging slice of the spin-echo EPI-based readouts, navigator acquisition and fat suppression were incorporated. Motion data was obtained from the navigator and transmitted back to the sequence, allowing real-time adjustments to slice positioning. Six healthy volunteers and three patients with liver carcinoma were included in this study. Quantitative T2 and T2* were calculated at each time point of the BH task. Parameters of t value from first-level analysis using a general linear model and hepatovascular reactivity (HVR) of Echo1, T2 and T2* were calculated. RESULTS: The motion caused by respiratory activity was successfully compensated using the navigator signal. The average changes of T2 and T2* during breath-hold were about 1% and 0.7%, respectively. With the help of NAV prospective motion compensation whole liver t values could be obtained without motion artifacts. The quantified liver T2 (34.7 ± 0.7 ms) and T2* (29 ± 1.2 ms) values agreed with values from literature. In healthy volunteers, the distribution of statistical t value and HVR was homogeneous throughout the whole liver. In patients with liver carcinoma, the distribution of t value and HVR was inhomogeneous due to metastases or therapy. CONCLUSIONS: This study demonstrates the feasibility of using a NAV prospective motion compensation technique in conjunction with five-echo SAGE EPI for the quantitative measurement of liver BOLD with a BH task.


Asunto(s)
Contencion de la Respiración , Imagen Eco-Planar , Hígado , Humanos , Hígado/diagnóstico por imagen , Masculino , Adulto , Femenino , Persona de Mediana Edad , Movimiento (Física) , Oxígeno/sangre , Neoplasias Hepáticas/diagnóstico por imagen , Anciano
5.
Eur J Neurol ; 31(4): e16198, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38235932

RESUMEN

BACKGROUND AND PURPOSE: It is unknown whether changes to the peripheral nervous system following spinal cord injury (SCI) are relevant for functional recovery or the development of neuropathic pain below the level of injury. Magnetic resonance neurography (MRN) at 3 T allows detection and localization of structural and functional nerve damage. This study aimed to combine MRN and clinical assessments in individuals with chronic SCI and nondisabled controls. METHODS: Twenty participants with chronic SCI and 20 controls matched for gender, age, and body mass index underwent MRN of the L5 dorsal root ganglia (DRG) and the sciatic nerve. DRG volume, sciatic nerve mean cross-sectional area (CSA), fascicular lesion load, and fractional anisotropy (FA), a marker for functional nerve integrity, were calculated. Results were correlated with clinical assessments and nerve conduction studies. RESULTS: Sciatic nerve CSA and lesion load were higher (21.29 ± 5.82 mm2 vs. 14.08 ± 4.62 mm2 , p < 0.001; and 8.70 ± 7.47% vs. 3.60 ± 2.45%, p < 0.001) in individuals with SCI compared to controls, whereas FA was lower (0.55 ± 0.11 vs. 0.63 ± 0.08, p = 0.022). DRG volumes were larger in individuals with SCI who suffered from neuropathic pain compared to those without neuropathic pain (223.7 ± 53.08 mm3 vs. 159.7 ± 55.66 mm3 , p = 0.043). Sciatic MRN parameters correlated with electrophysiological results but did not correlate with the extent of myelopathy or clinical severity of SCI. CONCLUSIONS: Individuals with chronic SCI are subject to a decline of structural peripheral nerve integrity that may occur independently from the clinical severity of SCI. Larger volumes of DRG in SCI with neuropathic pain support existing evidence from animal studies on SCI-related neuropathic pain.


Asunto(s)
Neuralgia , Traumatismos de la Médula Espinal , Animales , Humanos , Relevancia Clínica , Nervio Ciático , Traumatismos de la Médula Espinal/patología , Espectroscopía de Resonancia Magnética , Médula Espinal , Imagen por Resonancia Magnética/métodos
6.
Biophys J ; 122(8): 1459-1469, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-36905121

RESUMEN

Mitochondrial inner membrane potentials in cardiomyocytes may oscillate in cycles of depolarization/repolarization when the mitochondrial network is exposed to metabolic or oxidative stress. The frequencies of such oscillations are dynamically changing while clusters of weakly coupled mitochondrial oscillators adjust to a common phase and frequency. Across the cardiac myocyte, the averaged signal of the mitochondrial population follows self-similar or fractal dynamics; however, fractal properties of individual mitochondrial oscillators have not yet been examined. We show that the largest synchronously oscillating cluster exhibits a fractal dimension, D, that is indicative of self-similar behavior with D=1.27±0.11, in contrast to the remaining network mitochondria whose fractal dimension is close to that of Brownian noise, D=1.58±0.10. We further demonstrate that fractal behavior is correlated with local coupling mechanisms, whereas it is only weakly linked to measures of functional connections between mitochondria. Our findings suggest that individual mitochondrial fractal dimensions may serve as a simple measure of local mitochondrial coupling.


Asunto(s)
Fractales , Mitocondrias , Estrés Oxidativo , Potencial de la Membrana Mitocondrial , Membranas Mitocondriales
7.
Magn Reson Med ; 90(1): 231-239, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36806110

RESUMEN

PURPOSE: To apply a navigator-based slice-tracking method to prospectively compensate respiratory motion for kidney pseudo-continuous arterial spin labeling (pCASL), using spin-echo (SE) EPI acquisition. METHODS: A single gradient-echo slice selection and projection readout at the location of the diaphragm along the inferior-superior direction was applied as a navigator. Navigator acquisition and fat suppression were inserted before each transverse imaging slice of the readouts of a 2D-SE-EPI-based pCASL sequence. Motion information was calculated after exclusion of the signal saturation in the navigator signal caused by EPI excitations. The motion information was then used to directly adjust the slice positioning in real time. RESULTS: The respiratory motion from the navigator signal was calculated, and slice positioning was changed in real time based on the motion information. We could show that motion compensation reduces kidney movement, and that the coefficients of variation across renal perfusion values were significantly reduced when motion correction was applied. The average reduction of coefficients of variation was approximately 20%, resulting in a more accurate and detailed structure of the respective perfusion maps. CONCLUSIONS: This study demonstrates the feasibility of a navigator-based slice-tracking technique in kidney imaging with a SE-EPI readout pCASL sequence to reduce kidney motion.


Asunto(s)
Arterias , Encéfalo , Marcadores de Spin , Movimiento (Física) , Riñón/diagnóstico por imagen
8.
NMR Biomed ; 35(4): e4307, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-32289884

RESUMEN

Remodeling of tissue microvasculature commonly promotes neoplastic growth; however, there is no imaging modality in oncology yet that noninvasively quantifies microvascular changes in clinical routine. Although blood capillaries cannot be resolved in typical magnetic resonance imaging (MRI) measurements, their geometry and distribution influence the integral nuclear magnetic resonance (NMR) signal from each macroscopic MRI voxel. We have numerically simulated the expected transverse relaxation in NMR voxels with different dimensions based on the realistic microvasculature in healthy and tumor-bearing mouse brains (U87 and GL261 glioblastoma). The 3D capillary structure in entire, undissected brains was acquired using light sheet fluorescence microscopy to produce large datasets of the highly resolved cerebrovasculature. Using this data, we trained support vector machines to classify virtual NMR voxels with different dimensions based on the simulated spin dephasing accountable to field inhomogeneities caused by the underlying vasculature. In prediction tests with previously blinded virtual voxels from healthy brain tissue and GL261 tumors, stable classification accuracies above 95% were reached. Our results indicate that high classification accuracies can be stably attained with achievable training set sizes and that larger MRI voxels facilitated increasingly successful classifications, even with small training datasets. We were able to prove that, theoretically, the transverse relaxation process can be harnessed to learn endogenous contrasts for single voxel tissue type classifications on tailored MRI acquisitions. If translatable to experimental MRI, this may augment diagnostic imaging in oncology with automated voxel-by-voxel signal interpretation to detect vascular pathologies.


Asunto(s)
Neoplasias Encefálicas , Máquina de Vectores de Soporte , Animales , Encéfalo/patología , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética , Ratones
9.
Eur J Neurol ; 29(10): 3081-3091, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35700123

RESUMEN

BACKGROUND AND PURPOSE: Diabetic sensorimotor peripheral neuropathy is usually considered to affect predominantly the lower limbs (LL-N), whereas the impact of upper limb neuropathy (UL-N) on hand functional performance and quality of life (QoL) has not been evaluated systematically. This study aims to investigate the prevalence and characteristics of UL-N and its functional and psychosocial consequences in type 2 diabetes. METHODS: Individuals with type 2 diabetes (n = 141) and an age- and sex-matched control group (n = 73) underwent comprehensive assessment of neuropathy, hand functional performance, and psychosocial status. RESULTS: The prevalence of UL-N was 30.5% in patients with diabetes and that of LL-N was 49.6%, with 25.5% exhibiting both. Patients with diabetes showed similar sensory phenotype regarding both large and small fiber functions in hands and feet. Patients with UL-N showed reduced manual dexterity, but normal hand grip force. Additionally, there was a correlation between reduced dexterity and sensory deficits. Patients with UL-N had reduced estimates of psychosocial health including health-related QoL compared to control subjects and patients without UL-N. UL-N correlated with the severity of LL-N, but not with duration of diabetes, glycemia, age, or sex. CONCLUSIONS: This study points to a substantial prevalence of UL-N in type 2 diabetes. The sensory phenotype of patients with UL-N was similar to LL-N and was characterized by loss of sensory function. Our study demonstrated an association of UL-N with impaired manual dexterity and reduced health-related QoL. Thus, upper limb sensorimotor functions should be assessed early in patients with diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Neuropatías Diabéticas , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/epidemiología , Neuropatías Diabéticas/epidemiología , Mano , Fuerza de la Mano , Humanos , Rendimiento Físico Funcional , Calidad de Vida , Extremidad Superior
10.
Int Endod J ; 55(3): 252-262, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34767640

RESUMEN

AIM: This prospective in vivo study aimed to optimize the assessment of pulpal contrast-enhancement (PCE) on dental magnetic resonance imaging (dMRI) and investigate physiological PCE patterns. METHODOLOGY: In 70 study participants, 1585 healthy teeth were examined using 3-Tesla dMRI before and after contrast agent administration. For all teeth, the quotient of post- and pre-contrast pulp signal intensity (Q-PSI) was calculated to quantify PCE. First, pulp chambers were analysed in 10 participants to compare the coefficient of variation of mean versus maximum Q-PSI values (Q-PSImean versus Q-PSImax ). Second, dynamic PCE was evaluated in 10 subjects to optimize the time interval between contrast agent application and image acquisition. Finally, 50 participants (age groups: 20-29, 30-39, 40-49, 50-59 and 60-69 years) were examined to analyse age, gender, tooth types and maxilla versus mandible as independent factors of PCE. Statistical analysis was performed using Wilcoxon signed rank test and linear mixed models. RESULTS: PCE assessment based on Q-PSImax was associated with a significantly smaller coefficient of variation compared with Q-PSImean , with median values of 0.17 versus 0.21 (p = .002). Analysis of dynamic PCE revealed an optimal timing interval for image acquisition 4 min after contrast media application. No significant differences in PCE were observed by comparing age groups, female versus male participants and maxillary versus mandibular teeth (p > .05). Differences between tooth types were small (median Q-PSImax values of 2.52/2.32/2.30/2.20 for molars/premolars/canines/incisors) but significant (p < .05), except for the comparison of canines versus premolars (p = .80). CONCLUSIONS: PCE in dMRI was a stable intra-individual marker with only minor differences between different tooth types, thus forming an important basis for intra-individual controls when assessing teeth with suspected endodontic pathosis. Furthermore, it was demonstrated that PCE is independent of age, gender and jaw type. These findings indicate that dMRI-based PCE analysis could be a valuable diagnostic tool for the identification of various pulp diseases in future patient studies.


Asunto(s)
Pulpa Dental , Imagen por Resonancia Magnética , Adulto , Diente Premolar , Pulpa Dental/diagnóstico por imagen , Femenino , Humanos , Espectroscopía de Resonancia Magnética , Masculino , Maxilar , Estudios Prospectivos , Adulto Joven
11.
Diabetologia ; 64(12): 2843-2855, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34480211

RESUMEN

AIMS/HYPOTHESIS: The individual risk of progression of diabetic peripheral neuropathy is difficult to predict for each individual. Mutations in proteins that are responsible for the process of myelination are known to cause neurodegeneration and display alteration in experimental models of diabetic neuropathy. In a prospective observational human pilot study, we investigated myelin-specific circulating mRNA targets, which have been identified in vitro, for their capacity in the diagnosis and prediction of diabetic neuropathy. The most promising candidate was tested against the recently established biomarker of neural damage, neurofilament light chain protein. METHODS: Schwann cells were cultured under high-glucose conditions and mRNAs of various myelin-specific genes were screened intra- and extracellularly. Ninety-two participants with type 2 diabetes and 30 control participants were enrolled and evaluated for peripheral neuropathy using neuropathy deficit scores, neuropathy symptom scores and nerve conduction studies as well as quantitative sensory testing at baseline and after 12/24 months of a follow-up period. Magnetic resonance neurography of the sciatic nerve was performed in 37 individuals. Neurofilament light chain protein and four myelin-specific mRNA transcripts derived from in vitro screenings were measured in the serum of all participants. The results were tested for associations with specific neuropathic deficits, fractional anisotropy and the progression of neuropathic deficits at baseline and after 12 and 24 months. RESULTS: In neuronal Schwann cells and human nerve sections, myelin protein zero was identified as the strongest candidate for a biomarker study. Circulating mRNA of myelin protein zero was decreased significantly in participants with diabetic neuropathy (p < 0.001), whereas neurofilament light chain protein showed increased levels in participants with diabetic neuropathy (p < 0.05). Both variables were linked to altered electrophysiology, fractional anisotropy and quantitative sensory testing. In a receiver-operating characteristic curve analysis myelin protein zero improved the diagnostic performance significantly in combination with a standard model (diabetes duration, age, BMI, HbA1c) from an AUC of 0.681 to 0.836 for the detection of diabetic peripheral neuropathy. A follow-up study revealed that increased neurofilament light chain was associated with the development of a hyperalgesic phenotype (p < 0.05), whereas decreased myelin protein zero predicted hypoalgesia (p < 0.001) and progressive loss of nerve function 24 months in advance (HR of 6.519). CONCLUSIONS/INTERPRETATION: This study introduces a dynamic and non-invasive assessment strategy for the underlying pathogenesis of diabetic peripheral neuropathy. The diagnosis of axonal degeneration, associated with hyperalgesia, and demyelination, linked to hypoalgesia, could benefit from the usage of neurofilament light chain protein and circulating mRNA of myelin protein zero as potential biomarkers.


Asunto(s)
Diabetes Mellitus Tipo 2 , Neuropatías Diabéticas , Biomarcadores , Diabetes Mellitus Tipo 2/complicaciones , Neuropatías Diabéticas/patología , Estudios de Seguimiento , Humanos , Hiperalgesia/complicaciones , Neuronas/metabolismo , Proyectos Piloto
12.
Nature ; 528(7580): 93-8, 2015 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-26536111

RESUMEN

Astrocytic brain tumours, including glioblastomas, are incurable neoplasms characterized by diffusely infiltrative growth. Here we show that many tumour cells in astrocytomas extend ultra-long membrane protrusions, and use these distinct tumour microtubes as routes for brain invasion, proliferation, and to interconnect over long distances. The resulting network allows multicellular communication through microtube-associated gap junctions. When damage to the network occurred, tumour microtubes were used for repair. Moreover, the microtube-connected astrocytoma cells, but not those remaining unconnected throughout tumour progression, were protected from cell death inflicted by radiotherapy. The neuronal growth-associated protein 43 was important for microtube formation and function, and drove microtube-dependent tumour cell invasion, proliferation, interconnection, and radioresistance. Oligodendroglial brain tumours were deficient in this mechanism. In summary, astrocytomas can develop functional multicellular network structures. Disconnection of astrocytoma cells by targeting their tumour microtubes emerges as a new principle to reduce the treatment resistance of this disease.


Asunto(s)
Astrocitoma/patología , Neoplasias Encefálicas/patología , Uniones Comunicantes/metabolismo , Animales , Astrocitoma/metabolismo , Astrocitoma/radioterapia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/radioterapia , Comunicación Celular/efectos de la radiación , Muerte Celular/efectos de la radiación , Proliferación Celular/efectos de la radiación , Extensiones de la Superficie Celular/metabolismo , Extensiones de la Superficie Celular/efectos de la radiación , Supervivencia Celular/efectos de la radiación , Conexina 43/metabolismo , Progresión de la Enfermedad , Proteína GAP-43/metabolismo , Uniones Comunicantes/efectos de la radiación , Glioma/metabolismo , Glioma/patología , Glioma/radioterapia , Humanos , Masculino , Ratones , Ratones Desnudos , Invasividad Neoplásica , Tolerancia a Radiación/efectos de los fármacos
13.
Radiology ; 294(2): 405-414, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31891321

RESUMEN

Background The pathophysiologic mechanisms underlying painful symptoms in diabetic polyneuropathy (DPN) are poorly understood. They may be associated with MRI characteristics, which have not yet been investigated. Purpose To investigate correlations between nerve structure, load and spatial distribution of nerve lesions, and pain in patients with DPN. Materials and Methods In this prospective single-center cross-sectional study, participants with type 1 or 2 diabetes volunteered between June 2015 and March 2018. Participants underwent 3-T MR neurography of the sciatic nerve with a T2-weighed fat-suppressed sequence, which was preceded by clinical and electrophysiologic tests. For group comparisons, analysis of variance or the Kruskal-Wallis test was performed depending on Gaussian or non-Gaussian distribution of data. Spearman correlation coefficients were calculated for correlation analysis. Results A total of 131 participants (mean age, 62 years ± 11 [standard deviation]; 82 men) with either type 1 (n = 45) or type 2 (n = 86) diabetes were evaluated with painful (n = 64), painless (n = 37), or no (n = 30) DPN. Participants who had painful diabetic neuropathy had a higher percentage of nerve lesions in the full nerve volume (15.2% ± 1.6) than did participants with nonpainful DPN (10.4% ± 1.7, P = .03) or no DPN (8.3% ± 1.7; P < .001). The amount and extension of T2-weighted hyperintense nerve lesions correlated positively with the neuropathy disability score (r = 0.37; 95% confidence interval [CI]: 0.21, 0.52; r = 0.37; 95% CI: 0.20, 0.52, respectively) and the neuropathy symptom score (r = 0.41; 95% CI: 0.25, 0.55; r = 0.34; 95% CI: 0.17, 0.49, respectively). Negative correlations were found for the tibial nerve conduction velocity (r = -0.23; 95% CI: -0.44, -0.01; r = -0.37; 95% CI: -0.55, -0.15, respectively). The cross-sectional area of the nerve was positively correlated with the neuropathy disability score (r = 0.23; 95% CI: 0.03, 0.36). Negative correlations were found for the tibial nerve conduction velocity (r = -0.24; 95% CI: -0.45, -0.01). Conclusion The amount and extension of T2-weighted hyperintense fascicular nerve lesions were greater in patients with painful diabetic neuropathy than in those with painless diabetic neuropathy. These results suggest that proximal fascicular damage is associated with the evolution of painful sensory symptoms in diabetic polyneuropathy. © RSNA, 2019 Online supplemental material is available for this article.


Asunto(s)
Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 2/complicaciones , Neuropatías Diabéticas/complicaciones , Imagen por Resonancia Magnética/métodos , Dolor/etiología , Nervios Periféricos/diagnóstico por imagen , Anciano , Estudios Transversales , Diabetes Mellitus Tipo 1/patología , Diabetes Mellitus Tipo 2/patología , Neuropatías Diabéticas/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Dolor/patología , Nervios Periféricos/patología , Estudios Prospectivos
14.
J Theor Biol ; 494: 110230, 2020 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-32142806

RESUMEN

Microvascular proliferation in glioblastoma multiforme is a biological key mechanism to facilitate tumor growth and infiltration and a main target for treatment interventions. The vascular architecture can be obtained by Single Plane Illumination Microscopy (SPIM) to evaluate vascular heterogeneity in tumorous tissue. We make use of the Gibbs point field model to quantify the order of regularity in capillary distributions found in the U87 glioblastoma model in a murine model and to compare tumorous and healthy brain tissue. A single model parameter Γ was assigned that is linked to tissue-specific vascular topology through Monte-Carlo simulations. Distributions of the model parameter Γ differ significantly between glioblastoma tissue with mean 〈ΓG〉=2.1±0.4, as compared to healthy brain tissue with mean 〈ΓH〉=4.9±0.4, suggesting that the average Γ-value allows for tissue differentiation. These results may be used for diagnostic magnetic resonance imaging, where it has been shown recently that Γ is linked to tissue-inherent relaxation parameters.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Microvasos , Modelos Biológicos , Animales , Encéfalo/irrigación sanguínea , Encéfalo/patología , Neoplasias Encefálicas/irrigación sanguínea , Neoplasias Encefálicas/diagnóstico por imagen , Modelos Animales de Enfermedad , Glioblastoma/irrigación sanguínea , Glioblastoma/diagnóstico por imagen , Imagen por Resonancia Magnética , Ratones , Microvasos/patología
15.
J Clin Periodontol ; 47(12): 1485-1495, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32990988

RESUMEN

AIM: To compare non-contrast-enhanced dental magnetic resonance imaging (NCE-dMRI) and cone-beam computed tomography (CBCT) in assessing horizontal and vertical furcation defects in maxillary molars in vivo. MATERIALS AND METHODS: (NCE-dMRI) and CBCT were performed in 23 patients with severe periodontitis. Sixty-five first/second maxillary molars (195 furcation entrances) were analysed by two independent observers on both modalities to assess the horizontal and vertical components of furcation defects. Reliability of defect classification was evaluated using weighted kappa (κ) statistics. Agreement between NCE-dMRI and CBCT was determined by the Bland-Altman analysis. Sensitivity and specificity of NCE-dMRI were calculated using CBCT as the reference. RESULTS: Inter-radicular bone loss was observed in 94 furcation entrances. Intra- and inter-rater κ-values were ≥0.9 for both NCE-dMRI and CBCT. The Bland-Altman analysis showed mean differences (95% limits of agreement) of 0.12 mm (-0.67 to 0.90) for horizontal and 0.12 mm (-1.27 to 1.50) for vertical measurements. For the detection of furcation defects, sensitivity/specificity of NCE-dMRI was 98%/100% for horizontal and 99%/99% for vertical components. For defect classification, sensitivity values of NCE-dMRI were 88%/89%/100% (horizontal degree I/II/III) and 95%/91%/80% (vertical subclass A/B/C), respectively. CONCLUSIONS: Non-contrast-enhanced dental magnetic resonance imaging demonstrated high reliability and high agreement with CBCT for the assessment of furcation defects in maxillary molars.


Asunto(s)
Defectos de Furcación , Tomografía Computarizada de Haz Cónico , Estudios de Factibilidad , Defectos de Furcación/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Diente Molar/diagnóstico por imagen , Reproducibilidad de los Resultados
16.
J Clin Periodontol ; 47(7): 809-815, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32343861

RESUMEN

AIM: To investigate the accuracy and reliability of dental magnetic resonance imaging (dMRI) in assessing maxillary molar furcation involvement (FI). MATERIAL AND METHODS: In this prospective study, 22 patients with severe periodontitis underwent cone-beam computed tomography (CBCT) and dMRI. For 192 furcation entrances, the degree of horizontal FI was assessed by two independent observers on both modalities. Results of dMRI were compared with CBCT (reference modality) to assess the accuracy of dMRI. Cohen's kappa (κ), sensitivity and specificity were calculated for FI classification. Bland-Altman analysis and the Kruskal-Wallis test were used to evaluate measurement accuracy of dMRI. RESULTS: Based on CBCT findings, 93 furcation entrances revealed FI (degree I/II/III: 35/19/39). Intra- and inter-reader agreement was excellent for both modalities (κ-range: 0.884 to 0.933). dMRI measurements showed high agreement with CBCT (bias: 0.17 mm; 95% limits of agreement: -1.05 to 1.38 mm), and measurement accuracy did not differ among different degrees of FI (p = .67). For FI detection, sensitivity and specificity of dMRI were 98% and 99%. For FI classification, sensitivity values of dMRI were 89%/84%/100% for degree I/II/III. CONCLUSIONS: Compared to CBCT (non-invasive gold standard), dMRI demonstrates high accuracy and reliability in evaluating the degree of FI in maxillary molars.


Asunto(s)
Defectos de Furcación , Tomografía Computarizada de Haz Cónico , Estudios de Factibilidad , Defectos de Furcación/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Diente Molar/diagnóstico por imagen , Estudios Prospectivos , Reproducibilidad de los Resultados
17.
Ann Neurol ; 83(3): 588-598, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29443416

RESUMEN

OBJECTIVE: To visualize and quantify differences of microstructural nerve damage in distal symmetric diabetic neuropathy (DPN) between type 1 diabetes (T1D) and type 2 diabetes (T2D), and to detect correlations between neuropathic symptoms and serological risk factors. METHODS: Three-tesla magnetic resonance neurography of the sciatic nerve was performed in 120 patients (T1D, n = 35; T2D, n = 85) with either DPN (n = 84) or no DPN (n = 36). Results were subsequently correlated with clinical, serological, and electrophysiological patient data. RESULTS: T2-weighted (T2w)-hyperintense lesions correlated negatively with tibial compound motor action potential (r = -0.58, p < 0.0001) and peroneal nerve conduction (r = 0.51, p = 0.0002), and positively with neuropathy disability score (NDS; r = -0.54, p < 0.0001), neuropathy symptom score (NSS; r = 0.52, p < 0.0001), and HbA1c level (r = 0.23, p = 0.014). T2w-hypointense lesions correlated positively with NDS (r = 0.28, p = 0.002), NSS (r = 0.36, p < 0.0001), and serum triglycerides (r = 0.34, p = 0.0003), and negatively with serum high-density lipoprotein (HDL; r = -0.48, p < 0.0001). For DPN in T1D, elevated values of T2w-hyperintense lesions (19.67 ± 4.13% vs 12.49 ± 1.23%, p = 0.027) and HbA1c (8.74 ± 0.29% vs 7.11 ± 0.16%, p < 0.0001) were found when compared to T2D. For DPN in T2D, elevated T2w-hypointense lesions (23.41 ± 2.69mm3 vs 11.43 ± 1.74mm3 , p = 0.046) and triglycerides (220.70 ± 23.70mg/dl vs 106.60 ± 14.51mg/dl, p < 0.0001), and lower serum HDL (51.29 ± 3.02mg/dl vs 70.79 ± 4.65mg/dl, p < 0.0001) were found when compared to T1D. INTERPRETATION: The predominant type of nerve lesion in DPN differs between T1D and T2D. Correlations found between lesion type and serological parameters indicate that predominant nerve lesions in T1D are associated with poor glycemic control and loss of nerve conduction, whereas predominant lesions in T2D are associated with changes in lipid metabolism. These findings may be helpful for future studies on the underlying pathophysiological pathways and possible treatments for DPN in T1D and T2D. Ann Neurol 2018;83:588-598.


Asunto(s)
Diabetes Mellitus Tipo 1/patología , Diabetes Mellitus Tipo 2/patología , Neuropatías Diabéticas/patología , Espectroscopía de Resonancia Magnética , Adulto , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/diagnóstico , Neuropatías Diabéticas/complicaciones , Neuropatías Diabéticas/diagnóstico , Femenino , Humanos , Espectroscopía de Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Conducción Nerviosa/fisiología , Factores de Riesgo , Nervio Ciático/patología
18.
MAGMA ; 32(1): 63-77, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30604144

RESUMEN

OBJECTIVE: In magnetic resonance imaging (MRI), compressed sensing (CS) enables the reconstruction of undersampled sparse data sets. Thus, partial acquisition of the underlying k-space data is sufficient, which significantly reduces measurement time. While 19F MRI data sets are spatially sparse, they often suffer from low SNR. This can lead to artifacts in CS reconstructions that reduce the image quality. We present a method to improve the image quality of undersampled, reconstructed CS data sets. MATERIALS AND METHODS: Two resampling strategies in combination with CS reconstructions are presented. Numerical simulations are performed for low-SNR spatially sparse data obtained from 19F chemical-shift imaging measurements. Different parameter settings for undersampling factors and SNR values are tested and the error is quantified in terms of the root-mean-square error. RESULTS: An improvement in overall image quality compared to conventional CS reconstructions was observed for both strategies. Specifically spike artifacts in the background were suppressed, while the changes in signal pixels remained small. DISCUSSION: The proposed methods improve the quality of CS reconstructions. Furthermore, because resampling is applied during post-processing, no additional measurement time is required. This allows easy incorporation into existing protocols and application to already measured data.


Asunto(s)
Biología Computacional/métodos , Compresión de Datos/métodos , Imagen por Resonancia Magnética con Fluor-19 , Flúor/química , Algoritmos , Animales , Artefactos , Simulación por Computador , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional , Ratones , Modelos Teóricos , Distribución Normal , Fantasmas de Imagen , Relación Señal-Ruido
19.
J Neurosci ; 37(29): 6837-6850, 2017 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-28607172

RESUMEN

Early and progressive colonization of the healthy brain is one hallmark of diffuse gliomas, including glioblastomas. We recently discovered ultralong (>10 to hundreds of microns) membrane protrusions [tumor microtubes (TMs)] extended by glioma cells. TMs have been associated with the capacity of glioma cells to effectively invade the brain and proliferate. Moreover, TMs are also used by some tumor cells to interconnect to one large, resistant multicellular network. Here, we performed a correlative gene-expression microarray and in vivo imaging analysis, and identified novel molecular candidates for TM formation and function. Interestingly, these genes were previously linked to normal CNS development. One of the genes scoring highest in tests related to the outgrowth of TMs was tweety-homolog 1 (TTYH1), which was highly expressed in a fraction of TMs in mice and patients. Ttyh1 was confirmed to be a potent regulator of normal TM morphology and of TM-mediated tumor-cell invasion and proliferation. Glioma cells with one or two TMs were mainly responsible for effective brain colonization, and Ttyh1 downregulation particularly affected this cellular subtype, resulting in reduced tumor progression and prolonged survival of mice. The remaining Ttyh1-deficient tumor cells, however, had more interconnecting TMs, which were associated with increased radioresistance in those small tumors. These findings imply a cellular and molecular heterogeneity in gliomas regarding formation and function of distinct TM subtypes, with multiple parallels to neuronal development, and suggest that Ttyh1 might be a promising target to specifically reduce TM-associated brain colonization by glioma cells in patients.SIGNIFICANCE STATEMENT In this report, we identify tweety-homolog 1 (Ttyh1), a membrane protein linked to neuronal development, as a potent driver of tumor microtube (TM)-mediated brain colonization by glioma cells. Targeting of Ttyh1 effectively inhibited the formation of invasive TMs and glioma growth, but increased network formation by intercellular TMs, suggesting a functional and molecular heterogeneity of the recently discovered TMs with potential implications for future TM-targeting strategies.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Glioblastoma/metabolismo , Glioblastoma/patología , Proteínas de la Membrana/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular , Humanos , Masculino , Ratones , Ratones Desnudos , Invasividad Neoplásica
20.
Int J Cancer ; 143(5): 1176-1187, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29582423

RESUMEN

The Peroxiredoxin 1 (PRDX1) gene maps to chromosome arm 1p and is hemizygously deleted and epigenetically silenced in isocitrate dehydrogenase 1 or 2 (IDH)-mutant and 1p/19q-codeleted oligodendroglial tumors. In contrast, IDH-wildtype astrocytic gliomas including glioblastomas mostly lack epigenetic silencing and express PRDX1 protein. In our study, we investigated how PRDX1 contributes to the infiltrative growth of IDH-wildtype gliomas. Focusing on p38α-dependent pathways, we analyzed clinical data from 133 patients of the NOA-04 trial cohort to look for differences in the gene expression profiles of gliomas with wildtype or mutant IDH. Biochemical interaction studies as well as in vitro and ex vivo migration studies were used to establish a biological role of PRDX1 in maintaining pathway activity. Whole-brain high-resolution ultramicroscopy and survival analyses of pre-clinical mouse models for IDH-wildtype gliomas were then used for in vivo confirmation. Based on clinical data, we found that the absence of PRDX1 is associated with changes in the expression of MET/HGF signaling components. PRDX1 forms a heterodimer with p38α mitogen-activated protein kinase 14 (MAPK14), stabilizing phospho-p38α in glioma cells. This process amplifies hepatocyte growth factor (HGF)-mediated signaling and stimulates actin cytoskeleton dynamics that promote glioma cell migration. Whole-brain high-resolution ultramicroscopy confirms these findings, indicating that PRDX1 promotes glioma brain invasion in vivo. Finally, reduced expression of PRDX1 increased survival in mouse glioma models. Thus, our preclinical findings suggest that PRDX1 expression levels may serve as a molecular marker for patients who could benefit from targeted inhibition of MET/HGF signaling.


Asunto(s)
Glioma/patología , Isocitrato Deshidrogenasa/genética , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Mutación , Peroxirredoxinas/metabolismo , Proteínas Proto-Oncogénicas c-met/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Movimiento Celular , Proliferación Celular , Estudios de Seguimiento , Glioma/genética , Glioma/metabolismo , Humanos , Masculino , Ratones , Ratones Desnudos , Proteína Quinasa 14 Activada por Mitógenos/genética , Invasividad Neoplásica , Peroxirredoxinas/genética , Pronóstico , Proteínas Proto-Oncogénicas c-met/genética , Tasa de Supervivencia , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA