Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Planta ; 258(1): 2, 2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-37208534

RESUMEN

MAIN CONCLUSION: In this study, we report that peroxynitrite is necessary for ethylene-mediated aerenchyma formation in rice roots under waterlogging conditions. Plants under waterlogging stress face anoxygenic conditions which reduce their metabolism and induce several adaptations. The formation of aerenchyma is of paramount importance for the survival of plants under waterlogging conditions. Though some studies have shown the involvement of ethylene in aerenchyma formation under waterlogging conditions, the implication of peroxynitrite (ONOO-) in such a developmental process remains elusive. Here, we report an increase in aerenchyma formation in rice roots exposed to waterlogging conditions under which the number of aerenchyma cells and their size was further enhanced in response to exogenous ethephon (a donor of ethylene) or SNP (a donor of nitric oxide) treatment. Application of epicatechin (a peroxynitrite scavenger) to waterlogged plants inhibited the aerenchyma formation, signifying that ONOO- might have a role in aerenchyma formation. Interestingly, epicatechin and ethephon co-treated waterlogged plants were unable to form aerenchyma, indicating the necessity of ONOO- in ethylene-mediated aerenchyma formation under waterlogging conditions. Taken together, our results highlight the role of ONOO- in ethylene-mediated aerenchyma formation in rice and could be used in the future to develop waterlogging stress-tolerant varieties of rice.


Asunto(s)
Catequina , Oryza , Oryza/fisiología , Ácido Peroxinitroso/metabolismo , Catequina/metabolismo , Etilenos/metabolismo , Raíces de Plantas/metabolismo
2.
Plant Reprod ; 37(1): 33-36, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37594548

RESUMEN

Petal is one of the most esthetic and essential parts of a flower that fascinates the pollinators to enhance pollination. Petal senescence is a highly controlled and organized natural phenomenon assisted by phytohormones and gene regulation. It is an inelastically programmed event preceding to which petals give rise to color and scent that captivate pollinators, representing a flower's maturity for sexual reproduction. Till today, many genes involved in the petal senescence through genetic as well as epigenetic changes in response to hormones have been identified. In most of the species, petal senescence is controlled by ethylene, whereas others are independent of this hormone. It has also been proved that the increase in the carbohydrate contents like mannitol, inositol and trehalose delayed the senescence in tulips and Gladiolus. An increased sugar content prevents the biosynthesis of EIN3-like mRNA and further upregulates several senescence correlated genes. A wide range of different transcription factors as well as regulators are disparately expressed in ethylene insensitive and ethylene sensitive petal senescence. DcHB30, a downregulating factor, which upon linking physically to DcWRKY75 leads to the upregulation of ethylene promoting petal senescence. Here we describe the role of ethylene in petal senescence through epigenetic changes. Studies show that ethylene causes petal senescence through epigenetic changes. Feng et al. (Plant Physiol 192:546-564, 2023) observed that ARABIDOPSIS HOMOLOG OF TRITHORAX1 (DcATX1) promotes trimethylation of histone 3 (H3) at 4th lysine (H3K4me3) in Carnation. H3K4me3 further stimulates the expression of genes of ethylene biosynthesis and senescence, leading to senescence in Carnation.


Asunto(s)
Arabidopsis , Etilenos , Reguladores del Crecimiento de las Plantas/metabolismo , Flores/fisiología , Epigénesis Genética , Arabidopsis/genética , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA