Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(12)2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34208617

RESUMEN

Retinitis pigmentosa (RP) is an inherited form of retinal degeneration characterized by primary rod photoreceptor cell death followed by cone loss. Mutations in several genes linked to the disease cause increased levels of cyclic guanosine monophosphate (cGMP) and calcium ion influxes. The purpose of this project was to develop a new in vitro photoreceptor degeneration model for molecular studies of RP. 661W cells were genetically modified to stably express the neural retina leucine zipper (NRL) transcription factor. One clone (661W-A11) was selected based on the expression of Nrl target genes. 661W-A11 showed a significant increase in expression of rod-specific genes but not of cone-specific genes, compared with 661W cells. Zaprinast was used to inhibit phosphodiesterase 6 (PDE6) activity to mimic photoreceptor degeneration in vitro. The activation of cell death pathways resulting from PDE6 inhibition was confirmed by detection of decreased viability and increased intracellular cGMP and calcium, as well as activation of protein kinase G (PKG) and calpains. In this new in vitro system, we validated the effects of previously published neuroprotective drugs. The 661W-A11 cells may serve as a new model for molecular studies of RP and for high-throughput drug screening.


Asunto(s)
Retinitis Pigmentosa/etiología , Retinitis Pigmentosa/metabolismo , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Biomarcadores , Línea Celular , Células Cultivadas , Clonación Molecular , Susceptibilidad a Enfermedades , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Expresión Génica , Humanos , Ratones , Degeneración Retiniana/tratamiento farmacológico , Degeneración Retiniana/etiología , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Células Fotorreceptoras Retinianas Bastones/efectos de los fármacos , Células Fotorreceptoras Retinianas Bastones/metabolismo , Células Fotorreceptoras Retinianas Bastones/patología , Retinitis Pigmentosa/tratamiento farmacológico , Retinitis Pigmentosa/patología
2.
Bioorg Chem ; 103: 104162, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32890988

RESUMEN

In this work, 2'-alkoxymethyl substituted klavuzon derivatives were prepared starting from 2-methyl-1-naphthoic acid in eight steps. Anticancer potencies of the synthesized compounds were evaluated by performing MTT cell viability test over cancerous and healthy pancreatic cell lines, along with CRM1 inhibitory properties in HeLa cells by immunostaining and Topo I inhibition properties by supercoiled DNA relaxation assay. Their cytotoxic activities were also presented in hepatocellular carcinoma cells (HuH-7) derived 3D spheroids. Among the tested klavuzon derivatives, isobutoxymethyl substituted klavuzon showed the highest selectivity of cytotoxic activity against pancreatic cancer cell line. They showed potent Topo I inhibition while their CRM1 inhibitory properties somehow diminished compared to 4'-alkylsubstituted klavuzons. The most cytotoxic 2'-methoxymethyl derivative inhibited the growth of the spheroids derived from HuH-7 cell lines and PI staining exhibited time and concentration dependent cell death in 3D spheroids.


Asunto(s)
ADN-Topoisomerasas de Tipo I/efectos de los fármacos , Carioferinas/efectos de los fármacos , Naftalenos/química , Naftalenos/uso terapéutico , Neoplasias/tratamiento farmacológico , Piranos/química , Piranos/uso terapéutico , Receptores Citoplasmáticos y Nucleares/efectos de los fármacos , Humanos , Naftalenos/farmacología , Piranos/farmacología , Relación Estructura-Actividad , Proteína Exportina 1
3.
Bioorg Med Chem ; 25(16): 4444-4451, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28689976

RESUMEN

Klavuzons are 6-(naphthalen-1-yl) substituted 5,6-dihydro-2H-pyran-2-one derivatives showing promising antiproliferative activities in variety of cancer cell lines. In this work, racemic syntheses of nine novel 4'-alkyl substituted klavuzon derivatives were completed in eight steps and anticancer properties of these compounds were evaluated. It is found that size of the substituent has dramatic effect over the potency and selectivity of the cytotoxic activity in cancerous and healthy pancreatic cell lines. The size of the substituent can also effect the CRM1 inhibitory properties of klavuzon derivatives. Strong cytotoxic activity and CRM1 inhibition can be observed only when a small substituent present at 4'-position of naphthalen-1-yl group. However, these substituents makes the molecule more cytotoxic in healthy pancreatic cells rather than cancerous pancreatic cells. Among the tested compounds 1,2,3,4-tetrahydrophenanthren-9-yl substituted lactone was the most cytotoxic compound and its antiproliferative activity was also tested in 3D spheroids generated from HuH-7 cell lines.


Asunto(s)
Antineoplásicos/farmacología , Carioferinas/antagonistas & inhibidores , Naftalenos/farmacología , Piranos/farmacología , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Naftalenos/síntesis química , Naftalenos/química , Piranos/síntesis química , Piranos/química , Relación Estructura-Actividad , Células Tumorales Cultivadas , Proteína Exportina 1
4.
Neural Regen Res ; 15(10): 1784-1791, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32246618

RESUMEN

Inherited retinal degeneration is a major cause of incurable blindness characterized by loss of retinal photoreceptor cells. Inherited retinal degeneration is characterized by high genetic and phenotypic heterogeneity with several genes mutated in patients affected by these genetic diseases. The high genetic heterogeneity of these diseases hampers the development of effective therapeutic interventions for the cure of a large cohort of patients. Common cell demise mechanisms can be envisioned as targets to treat patients regardless the specific mutation. One of these targets is the increase of intracellular calcium ions, that has been detected in several murine models of inherited retinal degeneration. Recently, neurotrophic factors that favor the efflux of calcium ions to concentrations below toxic levels have been identified as promising molecules that should be evaluated as new treatments for retinal degeneration. Here, we discuss therapeutic options for inherited retinal degeneration and we will focus on neuroprotective approaches, such as the neuroprotective activity of the Pigment epithelium-derived factor. The characterization of specific targets for neuroprotection opens new perspectives together with many questions that require deep analyses to take advantage of this knowledge and develop new therapeutic approaches. We believe that minimizing cell demise by neuroprotection may represent a promising treatment strategy for retinal degeneration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA